More on hyperspaces of knots

Paweł Krupski (Wrocław University of Science and Technology) and Krzysztof Omiljanowski (University of Wrocław)

Coimbra 2024

Nadler's problem (1978):

Characterize the Vietoris hyperspace $S(\mathbb{R}^n)$, n > 1, of simple closed curves.

Well-known properties of $\mathcal{S}(\mathbb{R}^n)$

- ① The exact absolute Borel class: $F_{\sigma\delta}$,
- ② contains a copy of $c_0 = \{(x_k) \in \mathbb{R}^{\infty} : \lim x_k = 0\}$ as a closed subset,
- is of the first category in itself,

Properties (3) and (4) hold in the PL-category for the hyperspace $S_P(\mathbb{R}^2)$ of polygonal planar simple closed curves.

Nadler's problem (1978):

Characterize the Vietoris hyperspace $S(\mathbb{R}^n)$, n > 1, of simple closed curves.

Well-known properties of $\mathcal{S}(\mathbb{R}^n)$:

- **1** The exact absolute Borel class: $F_{\sigma\delta}$,
- ② contains a copy of $c_0 = \{(x_k) \in \mathbb{R}^{\infty} : \lim x_k = 0\}$ as a closed subset,
- is of the first category in itself,
- **3** $\mathcal{S}(\mathbb{R}^2)$ is arcwise connected and homogeneous (any two simple closed curves in \mathbb{R}^2 are isotopic by an ambient isotopy of \mathbb{R}^2 .)

Properties (3) and (4) hold in the PL-category for the hyperspace $S_P(\mathbb{R}^2)$ of polygonal planar simple closed curves.

Denote:

 $\mathcal{K}:=\mathcal{S}(\mathbb{R}^3)$,

 $\mathcal{K}_P := \mathcal{S}_P(\mathbb{R}^3) =$ the hyperspace of polygonal knots,

 $\mathcal{K}_{\mathcal{T}}{:=}$ the hyperspace of tame knots.

Clearly, $\mathcal{K}_P \subset \mathcal{K}_T \subset \mathcal{K}$.

Proposition (2023)

- **1** $\mathcal{S}_P(\mathbb{R}^2)$ and \mathcal{K}_P are σ compact
- ② $S_P(\mathbb{R}^2)$ and \mathcal{K}_P contain a closed copy of

$$\sigma = \{(x_j) \in [0,1]^{\infty} : x_j = 0 \text{ for almost all } j\}$$

(an f.d.capset)

Proof. There is an embedding $f:[0,1]^\infty o C(\mathbb{R}^2)$ such that

$$f((x_j)_{j=1}^{\infty}) \in \mathcal{S}_P(\mathbb{R}^2)$$
 if and only if $(x_m)_{m=1}^{\infty} \in \sigma$.

Denote:

 $\mathcal{K}:=\mathcal{S}(\mathbb{R}^3)$,

 $\mathcal{K}_P := \mathcal{S}_P(\mathbb{R}^3) = \text{the hyperspace of polygonal knots,}$

 $\mathcal{K}_{\mathcal{T}}$:= the hyperspace of tame knots.

Clearly, $\mathcal{K}_P \subset \mathcal{K}_T \subset \mathcal{K}$.

Proposition (2023)

- **1** $\mathcal{S}_P(\mathbb{R}^2)$ and \mathcal{K}_P are σ compact
- ${\mathfrak O}_{\mathcal P}({\mathbb R}^2)$ and ${\mathcal K}_{\mathcal P}$ contain a closed copy of

$$\sigma = \{(x_j) \in [0,1]^{\infty} : x_j = 0 \text{ for almost all } j\}$$

(an f.d.capset)

Proof.There is an embedding $f:[0,1]^\infty o \mathcal{C}(\mathbb{R}^2)$ such that

$$f((x_j)_{j=1}^{\infty}) \in \mathcal{S}_P(\mathbb{R}^2)$$
 if and only if $(x_m)_{m=1}^{\infty} \in \sigma$.

Denote:

 $\mathcal{K}:=\mathcal{S}(\mathbb{R}^3)$,

 $\mathcal{K}_P := \mathcal{S}_P(\mathbb{R}^3) = \text{the hyperspace of polygonal knots,}$

 $\mathcal{K}_{\mathcal{T}}$:= the hyperspace of tame knots.

Clearly, $\mathcal{K}_P \subset \mathcal{K}_T \subset \mathcal{K}$.

Proposition (2023)

- **1** $\mathcal{S}_P(\mathbb{R}^2)$ and \mathcal{K}_P are σ compact
- ${\mathfrak O}$ ${\mathcal S}_P({\mathbb R}^2)$ and ${\mathcal K}_P$ contain a closed copy of

$$\sigma = \{(x_j) \in [0,1]^{\infty} : x_j = 0 \text{ for almost all } j\}$$

(an f.d.capset)

Proof. There is an embedding $f:[0,1]^{\infty}\to C(\mathbb{R}^2)$ such that

$$f((x_j)_{j=1}^{\infty}) \in \mathcal{S}_P(\mathbb{R}^2)$$
 if and only if $(x_m)_{m=1}^{\infty} \in \sigma$.

For the simple closed polygon P with vertices $e^{i\frac{2\pi j}{m}}$, $j=1,\ldots,m$ consider the annulus neighborhood of P: $U=\left\{tz:z\in P,\ 1-\frac{6}{n}< t<1+\frac{6}{n}\right\}$,

and $\langle U_1, \ldots, U_n \rangle$ a Vietoris basic neighborhood in $C(\mathbb{R}^2)$ of P, with polyhedral open sectors U_k covering U.

If $\mathcal C$ is any PL-topological family of continua in $\mathbb R^2$ containing P, then the neighborhood $\langle U_1,\ldots,U_n\rangle\cap\mathcal C$ of P in $\mathcal C$ is contractible in itself to P.

Since $S_P(\mathbb{R}^2)$ is homogeneous, we get

Corollary

 $S_P(\mathbb{R}^2)$ has a basis of open AR-sets (i.e., it is strongly locally contractible).

Similarly, we get the strong local contractibility of $\mathcal{S}(\mathbb{R}^2)$.

If $\mathcal C$ is any PL-topological family of continua in $\mathbb R^2$ containing P, then the neighborhood $\langle U_1,\ldots,U_n\rangle\cap\mathcal C$ of P in $\mathcal C$ is contractible in itself to P.

Since $\mathcal{S}_P(\mathbb{R}^2)$ is homogeneous, we get

Corollary

 $S_P(\mathbb{R}^2)$ has a basis of open AR-sets (i.e., it is strongly locally contractible).

Similarly, we get the strong local contractibility of $\mathcal{S}(\mathbb{R}^2)$.

In
$$\mathbb{R}^3$$
, replace P , U , U_k by $P \times \{0\}$, $\widetilde{U} = U \times (-\frac{1}{n}, \frac{1}{n})$, $\widetilde{U}_k = U_k \times (-\frac{1}{n}, \frac{1}{n})$

If $\mathcal C$ is any PL-topological family of continua in $\mathbb R^3$ containing $P \times \{0\}$, then the neighborhood $\langle \widetilde{U_1}, \ldots, \widetilde{U_n} \rangle \cap \mathcal C$ of $P \times \{0\}$ in $\mathcal C$ is contractible in itself to $P \times \{0\}$

A space X is *locally homogeneous* if for each pair of points $x, y \in X$ there exist open neighborhoods U of x and y of y, and a homeomorphism $f: U \to V$ such that f(x) = y.

Proposition

The hyperspaces K_T and K_P are locally homogeneous.

In
$$\mathbb{R}^3$$
, replace P , U , U_k by $P \times \{0\}$, $\widetilde{U} = U \times (-\frac{1}{n}, \frac{1}{n})$, $\widetilde{U}_k = U_k \times (-\frac{1}{n}, \frac{1}{n})$

$\mathsf{Theorem}$

If $\mathcal C$ is any PL-topological family of continua in $\mathbb R^3$ containing $P \times \{0\}$, then the neighborhood $\langle \widetilde{U_1}, \ldots, \widetilde{U_n} \rangle \cap \mathcal C$ of $P \times \{0\}$ in $\mathcal C$ is contractible in itself to $P \times \{0\}$

A space X is *locally homogeneous* if for each pair of points $x,y\in X$ there exist open neighborhoods U of x and y of y, and a homeomorphism $f:U\to V$ such that f(x)=y.

Proposition

The hyperspaces K_T and K_P are locally homogeneous.

This is because

a knot C is tame if and only if there exist a neighborhood W of C and a homeomorphism $f:W\to \widetilde{U}$ such that $f(C)=P\times\{0\}$.

An analogue property holds in the PL-category:

Corollary

 K_T and K_P are strongly locally contractible.

This is because

a knot C is tame if and only if there exist a neighborhood W of C and a homeomorphism $f:W\to \widetilde{U}$ such that $f(C)=P\times\{0\}$.

An analogue property holds in the PL-category:

Corollary

 \mathcal{K}_T and \mathcal{K}_P are strongly locally contractible.

- $S_P(\mathbb{R}^2)$ and K_P are σ -compact, strongly countable-dimensional ANRs.
- **2** Each compact subset of $S_P(\mathbb{R}^2)$ and of \mathcal{K}_P is a Z-set.

Proof. (1) Sakai proved that the Vietoris hyperspace Pol(X) of all connected compact polyhedra in a compact convex subset X of \mathbb{R}^n , n > 1, is $\cong \sigma$, so it is σ -compact, strongly countable-dimensional.

Hence, the hyperspace $Pol(\mathbb{R}^n)$ of connected compact polyhedra in \mathbb{R}^n also is σ -compact and strongly countable-dimensional.

Since $S_P(\mathbb{R}^2)$ and K_P are σ -compact subsets of $Pol(\mathbb{R}^3)$, they are strongly countable-dimensional locally contractible spaces, so they are ANRs.

- $S_P(\mathbb{R}^2)$ and K_P are σ -compact, strongly countable-dimensional ANRs.
- **2** Each compact subset of $S_P(\mathbb{R}^2)$ and of \mathcal{K}_P is a Z-set.

Proof. (1) Sakai proved that the Vietoris hyperspace Pol(X) of all connected compact polyhedra in a compact convex subset X of \mathbb{R}^n , n > 1, is $\cong \sigma$, so it is σ -compact, strongly countable-dimensional.

Hence, the hyperspace $Pol(\mathbb{R}^n)$ of connected compact polyhedra in \mathbb{R}^n also is σ -compact and strongly countable-dimensional.

Since $S_P(\mathbb{R}^2)$ and K_P are σ -compact subsets of $Pol(\mathbb{R}^3)$, they are strongly countable-dimensional locally contractible spaces, so they are ANRs.

- $S_P(\mathbb{R}^2)$ and K_P are σ -compact, strongly countable-dimensional ANRs.
- **2** Each compact subset of $S_P(\mathbb{R}^2)$ and of \mathcal{K}_P is a Z-set.

Proof. (1) Sakai proved that the Vietoris hyperspace Pol(X) of all connected compact polyhedra in a compact convex subset X of \mathbb{R}^n , n > 1, is $\cong \sigma$, so it is σ -compact, strongly countable-dimensional.

Hence, the hyperspace $Pol(\mathbb{R}^n)$ of connected compact polyhedra in \mathbb{R}^n also is σ -compact and strongly countable-dimensional.

Since $S_P(\mathbb{R}^2)$ and \mathcal{K}_P are σ -compact subsets of $Pol(\mathbb{R}^3)$, they are strongly countable-dimensional locally contractible spaces, so they are ANRs.

- $S_P(\mathbb{R}^2)$ and K_P are σ -compact, strongly countable-dimensional ANRs.
- **2** Each compact subset of $S_P(\mathbb{R}^2)$ and of K_P is a Z-set.

Proof. (1) Sakai proved that the Vietoris hyperspace Pol(X) of all connected compact polyhedra in a compact convex subset X of \mathbb{R}^n , n > 1, is $\cong \sigma$, so it is σ -compact, strongly countable-dimensional.

Hence, the hyperspace $Pol(\mathbb{R}^n)$ of connected compact polyhedra in \mathbb{R}^n also is σ -compact and strongly countable-dimensional.

Since $S_P(\mathbb{R}^2)$ and K_P are σ -compact subsets of $Pol(\mathbb{R}^3)$, they are strongly countable-dimensional locally contractible spaces, so they are ANRs.

Proposition

 $S_P(\mathbb{R}^2)$, $S(\mathbb{R}^2)$, K, K_P , and K_T are arcwise connected.

Proof. Classical for $\mathcal{S}_P(\mathbb{R}^2)$, $\mathcal{S}(\mathbb{R}^2)$.

In the case of knots, it is enough to exhibit, for any knot C, a PL-isotopy on \mathbb{R}^3 transferring C into $\langle \widetilde{U_1}, \ldots, \widetilde{U_n} \rangle$.

The following facts are well known.

Fact

The action of the autohomeomorphism group H of \mathbb{R}^3 on \mathcal{K}_T has countably many orbits which coincide with orbits of polygonal knots.

Fact

KT is absolute Borel

Proposition

 $S_P(\mathbb{R}^2)$, $S(\mathbb{R}^2)$, K, K_P , and K_T are arcwise connected.

Proof. Classical for $\mathcal{S}_P(\mathbb{R}^2)$, $\mathcal{S}(\mathbb{R}^2)$.

In the case of knots, it is enough to exhibit, for any knot C, a PL-isotopy on \mathbb{R}^3 transferring C into $\langle \widetilde{U}_1, \ldots, \widetilde{U}_n \rangle$.

The following facts are well known.

Fact

The action of the autohomeomorphism group H of \mathbb{R}^3 on \mathcal{K}_T has countably many orbits which coincide with orbits of polygonal knots.

Fact

 $\mathcal{K}_{\mathcal{T}}$ is absolute Borel.

Proposition

 $S_P(\mathbb{R}^2)$, $S(\mathbb{R}^2)$, K, K_P , and K_T are arcwise connected.

Proof. Classical for $\mathcal{S}_P(\mathbb{R}^2)$, $\mathcal{S}(\mathbb{R}^2)$.

In the case of knots, it is enough to exhibit, for any knot C, a PL-isotopy on \mathbb{R}^3 transferring C into $\langle \widetilde{U}_1, \ldots, \widetilde{U}_n \rangle$.

The following facts are well known.

Fact

The action of the autohomeomorphism group H of \mathbb{R}^3 on \mathcal{K}_T has countably many orbits which coincide with orbits of polygonal knots.

Fact

 \mathcal{K}_{T} is absolute Borel.

An infinite-dimensional space X is called an *infinite-dimensional* Cantor manifold if no finite-dimensional closed subset separates X.

If no weakly infinite-dimensional closed subset separates X, then X is strongly infinite-dimensional Cantor manifold.

The Hilbert cube $[0,1]^{\infty}$ and $c_0 \cong \{(x_j) \in [0,1]^{\infty} : \lim_j x_j = 0\}$ are strongly infinite-dimensional Cantor manifolds.

 $\sigma = \{(x_j) \in [0,1]^{\infty} : x_j = 0 \text{ for all but finitely many } j\}$ is an infinite-dimensional Cantor manifold.

An infinite-dimensional space X is called an *infinite-dimensional* Cantor manifold if no finite-dimensional closed subset separates X.

If no weakly infinite-dimensional closed subset separates X, then X is strongly infinite-dimensional Cantor manifold.

The Hilbert cube $[0,1]^{\infty}$ and $c_0 \cong \{(x_j) \in [0,1]^{\infty} : \lim_j x_j = 0\}$ are strongly infinite-dimensional Cantor manifolds.

 $\sigma = \{(x_j) \in [0,1]^{\infty} : x_j = 0 \text{ for all but finitely many } j\}$ is an infinite-dimensional Cantor manifold.

An infinite-dimensional space X is called an *infinite-dimensional* Cantor manifold if no finite-dimensional closed subset separates X.

If no weakly infinite-dimensional closed subset separates X, then X is strongly infinite-dimensional Cantor manifold.

The Hilbert cube $[0,1]^{\infty}$ and $c_0 \cong \{(x_j) \in [0,1]^{\infty} : \lim_j x_j = 0\}$ are strongly infinite-dimensional Cantor manifolds.

 $\sigma = \{(x_j) \in [0,1]^{\infty} : x_j = 0 \text{ for all but finitely many } j\}$ is an infinite-dimensional Cantor manifold.

Theorem

- The hyperspaces $\mathcal{S}(\mathbb{R}^2)$ and \mathcal{K}_T are strongly infinite-dimensional Cantor manifolds
- ② The hyperspaces $S_P(\mathbb{R}^2)$ and \mathcal{K}_P are infinite-dimensional Cantor manifolds.

In the proof, we use

- the existence of copies of c_0 in $\mathcal{S}(\mathbb{R}^2)$ and \mathcal{K}_T and of copies of σ in $\mathcal{S}_P(\mathbb{R}^2)$ and \mathcal{K}_P ,
- the local homogeneity of the hyperspaces d the following facts.

$\mathsf{Theorem}$

- The hyperspaces $\mathcal{S}(\mathbb{R}^2)$ and \mathcal{K}_T are strongly infinite-dimensional Cantor manifolds
- ② The hyperspaces $S_P(\mathbb{R}^2)$ and \mathcal{K}_P are infinite-dimensional Cantor manifolds.

In the proof, we use

- the existence of copies of c_0 in $\mathcal{S}(\mathbb{R}^2)$ and \mathcal{K}_T and of copies of σ in $\mathcal{S}_P(\mathbb{R}^2)$ and \mathcal{K}_P ,
- the local homogeneity of the hyperspaces,
- and the following facts.

Let H^+_{PL} denote the subgroup of H consisting of orientation preserving PL-autohomeomorphisms.

Fact

Knots C, D belong to the same orbit of the group H^+_{PL} if and only if C and D have the same PL-isotopy type.

Fact

Each orbit of H_{PL}^+ on \mathcal{K}_T is dense in \mathcal{K}_T .

Let H^+_{PL} denote the subgroup of H consisting of orientation preserving PL-autohomeomorphisms.

Fact

Knots C, D belong to the same orbit of the group H_{PL}^+ if and only if C and D have the same PL-isotopy type.

Fact

Each orbit of $\mathrm{H}^+_{\mathsf{PL}}$ on \mathcal{K}_{T} is dense in \mathcal{K}_{T} .

Let H^+_{PL} denote the subgroup of H consisting of orientation preserving PL-autohomeomorphisms.

Fact

Knots C, D belong to the same orbit of the group H_{PL}^+ if and only if C and D have the same PL-isotopy type.

Fact

Each orbit of H_{Pl}^+ on \mathcal{K}_T is dense in \mathcal{K}_T .

Arcs and triods in $\mathbb{R}3$

Behave like knots:

Theorem

If $A \subset C(\mathbb{R}^3)$ contains an arc $A = [0,1] \times \{0\}$, then $\langle \widetilde{U_1}, \ldots, \widetilde{U_n} \rangle \cap a(\mathbb{R}^3)$ is contractible, where $\widetilde{U_1}, \ldots, \widetilde{U_n}$ is a chain of open polyhedral 3-cells

Theorem

 $a_P(\mathbb{R}^3)$ and $t_P(\mathbb{R}^3)$ are σ -compact, strongly countable-dimensional ANRs which are infinite-dimensional Cantor manifolds. $a_T(\mathbb{R}^3), t_T(\mathbb{R}^3)$ have open basis of AR-sets and are strongly infinite-dimensional Cantor manifolds.

Arcs and triods in $\mathbb{R}3$

Behave like knots:

Theorem

If $A \subset C(\mathbb{R}^3)$ contains an arc $A = [0,1] \times \{0\}$, then $\langle \widetilde{U_1}, \ldots, \widetilde{U_n} \rangle \cap a(\mathbb{R}^3)$ is contractible, where $\widetilde{U_1}, \ldots, \widetilde{U_n}$ is a chain of open polyhedral 3-cells

Theorem

 $a_P(\mathbb{R}^3)$ and $t_P(\mathbb{R}^3)$ are σ -compact, strongly countable-dimensional ANRs which are infinite-dimensional Cantor manifolds. $a_T(\mathbb{R}^3)$, $t_T(\mathbb{R}^3)$ have open basis of AR-sets and are strongly infinite-dimensional Cantor manifolds.

References

P. Krupski and K. Omiljanowski, On hyperspaces of knots and planar simple closed curves, arXiv:2401.13084v2

S. B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York-Basel, 1978.

K. Sakai, On hyperspaces of polyhedra. Proc. Amer. Math. Soc. 110 (1990), no. 4, 1089–1097.

