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Nadler’s problem (1978):

Characterize the Vietoris hyperspace
S(Rn), n > 1, of simple closed curves.

Well-known properties of S(Rn):

1 The exact absolute Borel class: Fσδ,

2 contains a copy of c0 = {(xk) ∈ R∞ : lim xk = 0} as a closed
subset,

3 is of the first category in itself,

4 S(R2) is arcwise connected and homogeneous (any two simple
closed curves in R2 are isotopic by an ambient isotopy of R2.)

Properties (3) and (4) hold in the PL-category for the hyperspace
SP(R2) of polygonal planar simple closed curves.
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Denote:
K := S(R3),
KP := SP(R3) = the hyperspace of polygonal knots,
KT := the hyperspace of tame knots.

Clearly, KP ⊂ KT ⊂ K.

Proposition (2023)

1 SP(R2) and KP are σ − compact

2 SP(R2) and KP contain a closed copy of

σ = {(xj) ∈ [0, 1]∞ : xj = 0 for almost all j}

(an f.d.capset)

Proof.There is an embedding f : [0, 1]∞ → C (R2) such that

f ((xj)
∞
j=1) ∈ SP(R2) if and only if (xm)∞m=1 ∈ σ.
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For the simple closed polygon P with vertices e i
2πj
m , j = 1, . . . ,m

consider the annulus neighborhood of P:
U =

{
tz : z ∈ P, 1 − 6

n < t < 1 + 6
n

}
,

and ⟨U1, . . . ,Un⟩ a Vietoris basic neighborhood in C (R2) of P,
with polyhedral open sectors Uk covering U.
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Theorem

If C is any PL-topological family of continua in R2 containing P,
then the neighborhood ⟨U1, . . . ,Un⟩ ∩ C of P in C is contractible in
itself to P.

Since SP(R2) is homogeneous, we get

Corollary

SP(R2) has a basis of open AR-sets (i.e., it is strongly locally
contractible).

Similarly, we get the strong local contractibility of S(R2).
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In R3, replace P, U, Uk by P × {0}, Ũ = U × (− 1
n ,

1
n ),

Ũk = Uk × (− 1
n ,

1
n )

Theorem

If C is any PL-topological family of continua in R3 containing
P × {0}, then the neighborhood ⟨Ũ1, . . . , Ũn⟩ ∩ C of P × {0} in C
is contractible in itself to P × {0}

A space X is locally homogeneous if for each pair of points
x , y ∈ X there exist open neighborhoods U of x and V of y , and a
homeomorphism f : U → V such that f (x) = y .

Proposition

The hyperspaces KT and KP are locally homogeneous.
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This is because

a knot C is tame if and only if there exist a neighborhood W of C

and a homeomorphism f : W → Ũ such that f (C ) = P × {0}.

An analogue property holds in the PL-category:

Corollary

KT and KP are strongly locally contractible.
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Theorem

1 SP(R2) and KP are σ-compact, strongly
countable-dimensional ANRs.

2 Each compact subset of SP(R2) and of KP is a Z-set.

Proof. (1) Sakai proved that the Vietoris hyperspace Pol(X ) of all
connected compact polyhedra in a compact convex subset X of Rn,
n > 1, is ∼= σ, so it is σ-compact, strongly countable-dimensional.

Hence, the hyperspace Pol(Rn) of connected compact polyhedra in
Rn also is σ-compact and strongly countable-dimensional.

Since SP(R2) and KP are σ-compact subsets of Pol(R3), they are
strongly countable-dimensional locally contractible spaces, so they
are ANRs.
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Proposition

SP(R2), S(R2), K, KP , and KT are arcwise connected.

Proof. Classical for SP(R2), S(R2).
In the case of knots, it is enough to exhibit, for any knot C , a
PL-isotopy on R3 transferring C into ⟨Ũ1, . . . , Ũn⟩.

The following facts are well known.

Fact

The action of the autohomeomorphism group H of R3 on KT has
countably many orbits which coincide with orbits of polygonal
knots.

Fact

KT is absolute Borel.
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Infinite-dimensional Cantor manifolds

An infinite-dimensional space X is called an infinite-dimensional
Cantor manifold if no finite-dimensional closed subset separates X .

If no weakly infinite-dimensional closed subset separates X , then X
is strongly infinite-dimensional Cantor manifold.

The Hilbert cube [0, 1]∞ and c0
∼= {(xj) ∈ [0, 1]∞ : limj xj = 0} are

strongly infinite-dimensional Cantor manifolds.

σ = {(xj) ∈ [0, 1]∞ : xj = 0 for all but finitely many j} is an
infinite-dimensional Cantor manifold.
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Infinite-dimensional Cantor manifolds

Theorem

1 The hyperspaces S(R2) and KT are strongly
infinite-dimensional Cantor manifolds

2 The hyperspaces SP(R2) and KP are infinite-dimensional
Cantor manifolds.

In the proof, we use

the existence of copies of c0 in S(R2) and KT and of copies
of σ in SP(R2) and KP ,

the local homogeneity of the hyperspaces,

and the following facts.
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Let H+
PL denote the subgroup of H consisting of orientation

preserving PL-autohomeomorphisms.

Fact

Knots C ,D belong to the same orbit of the group H+
PL if and only

if C and D have the same PL-isotopy type.

Fact

Each orbit of H+
PL on KT is dense in KT .
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Arcs and triods in R3

Behave like knots:

Theorem

If A ⊂ C (R3) contains an arc A = [0, 1] × {0}, then
⟨Ũ1, . . . , Ũn⟩ ∩ a(R3) is contractible, where

Ũ1, . . . , Ũn is a chain of open polyhedral 3-cells

Theorem

aP(R3) and tP(R3) are σ-compact, strongly countable-dimensional
ANRs which are infinite-dimensional Cantor manifolds.
aT (R3),tT (R3) have open basis of AR-sets and are strongly
infinite-dimensional Cantor manifolds.
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