Interval maps with dense periodicity

Piotr Oprocha (joint work with Jozef Bobok, Jernej Činč and Serge Troubetzkoy)

AGH University of Krakow, Kraków, Poland

38th Summer Conference on Topology and its Applications Coimbra, Portugal, Jul 11, 2024

Piotr Oprocha (AGH)

Dense periodicity

Coimbra, Jul 2024 1 / 11

Basic setting

- I := [0, 1] denote the unit interval,
- \bigcirc C(I) continuous interval maps,
- $\rho(f,g) := \sup_{x \in I} |f(x) g(x)|$ the uniform metric on C(I)
- λ the Lebesgue measure on I = [0, 1].
- Per(f) := $\{x \in I : \exists n \in \mathbb{N} \text{ s.t. } f^n(x) = x\}$ periodic points of f,
- $CP := \{f \in C(I) : \overline{Per(f)} = I\}$ maps with dense periodicity.
- \overline{CP} the closure of CP with respect to ρ .
- $C_{\lambda}(I) = \{f \in C(I); \forall A \subset [0, 1], A \text{ Borel} : \lambda(A) = \lambda(f^{-1}(A))\}.$ Note that $C_{\lambda}(I) = \overline{C_{\lambda}(I)}.$
- a property *P* is typical in $(C_{\lambda}(I), \rho) \equiv$ the set of all maps with the property *P* is residual, maps bearing a typical property are called generic.

Piotr Oprocha (AGH)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Main questions

We study the following questions for maps from CP and \overline{CP} :

- Are characterizations of maps in CP and CP possible?
- If not, what can be said about typical maps there?
- I How many distinct conjugacy classes

 $\{\psi^{-1} \circ f \circ \psi \in C(I) : \psi \text{ is a homeomorphism of } I\}$

are there?

• Related question: recently we proved with Činč that the inverse limit of any generic map in $C_{\lambda}(I)$ is the pseudo-arc (using techniques from Minc-Transue (1991)) and constructed a parameterized family of planar homeomorphisms with pseudo-arc attractors. Are these maps all topologically conjugate?

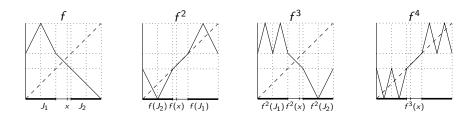
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Barge-Martin Theorem (1985) - decomposition in CP

Suppose $f \in CP$. The following holds:

- There is a collection (perhaps finite or empty) J = {J₁, J₂,...} of closed subintervals of I with mutually disjoint interiors, such that for each J ∈ J we have f²(J) = J.
- If $x \in (0,1) \setminus \bigcup_{i \ge 1} \operatorname{int} J_i$, then $f^2(x) = x$.

So For each $J \in \mathcal{J}$, the map $f^2|_J$ is topologically mixing.



Let f be an interval map. The following conditions are equivalent.

- f has a dense set of periodic points, i.e., $\overline{Per(f)} = I$.
- **2** f preserves a nonatomic probability measure μ with supp $\mu = I$.
- **③** There exists a homeomorphism *h* of *I* such that $h \circ f \circ h^{-1} \in C_{\lambda}(I)$.

• for $C_{\mu}(I)$, supp $\mu = I$, nonatomic

 all topological "typical properties" can be translated to the complete metric space (C_μ(I), ρ)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

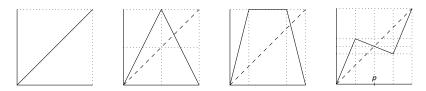
Some hints (works of J. Bobok, S. Troubetzkoy, 2020)

- $C_{\lambda}(I)$ typical map f
 - is weakly mixing with respect to λ ,
 - is topologically exact,
 - satisfies the periodic specification property,
 - 4 has infinite topological entropy,
 - **()** has its graph of Hausdorff dimension = lower Box dimension = 1.
- and its graph upper Box dimension = 2
 [J. Schmeling, R. Winkler, *Typical dimension of the graph of certain functions*, Monatsh. Math. **119** (1995), 303–320].
- In joint works with Jernej (and Jozef and Serge) we extended this list even further:
 - inverse limit with f as bounding map is the pseudo-arc,
 - periodic points of any period form a Cantor set,
 - f has the shadowing property,
 - ...

イロト 不得下 イヨト イヨト 二日

Chain recurrence

- any $x = x_0, ..., x_n = y$ where n > 0 and $|f(x_i) x_{i+1}| < \varepsilon$ for 0 < i < n-1 is ε -chain from x to y
- x is *chain-recurrent* (for f) if for every ε > 0 there is an ε-chain from x to itself.
- **(3)** f is chain-recurrent is every x is chain-recurrent
- f is chan-transitive if there is ε-chain between x, y for any x, y ∈ X and any ε > 0.

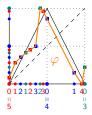


Remark: Every chain-recurrent map on connected space is chain-transitive.

Piotr Oprocha (AGH)

Theorem

A map $f \in C(I)$ is chain-recurrent if and only if $f \in \overline{CP}$.



3

A D N A B N A B N A B N

Consequences of chain-recurrence

Theorem (BČOT, 2024)

A map $f \in C(I)$ is chain-recurrent if and only if $f \in \overline{CP}$.

Theorem (Block-Coven, 1986)

Chain recurrent f is either s.t. $f^2 = id$ or f^2 is turbulent. Turbulent maps have h_{top} at least log 2.

Corollary (BČOT, 2024)

The following hold:

• The maps id and up to conjugacy the map $1 - \operatorname{id}$ are the only maps with zero topological entropy in \overline{CP} .

② If $f \in \overline{CP}$ such that $h_{top}(f) > 0 \implies f^2$ turbulent. Therefore, either $h_{top}(f) = 0$ or $h_{top}(f) \ge \log 2/2$.

Topological exactness (leo)

• A map f is leo or topologically exact if for every non-empty open $U \subset I$ there exists $n \in \mathbb{N}$ such that $f^n(U) = I$.

leo \implies topologically mixing \implies transitive

Theorem (Bobok, Troubetzkoy, 2020)

Set of leo maps is residual in the set of continuous Lebesgue measure-preserving interval maps $C_{\lambda}(I)$.

Theorem (BČOT, 2024)

Set of leo maps is open and dense in the set CP.

Corollary (BČOT, 2024)

Set of leo maps is residual in the set \overline{CP} but is not open.

Piotr Oprocha (AGH)

Conjugacy classes

Let $\mathcal{H}(I)$ denote the set of all homeomorphism (increasing or decreasing) of *I*. For $f \in \overline{CP}$ put

$$\mathbf{G}_{\mathbf{f}} := \{ \psi^{-1} \circ \mathbf{f} \circ \psi : \psi \in \mathcal{H}(\mathbf{I}) \}.$$

All maps in G_f are chain recurrent, thus $\overline{G_f}$ is a subset of \overline{CP} .

Theorem (BČOT, 2024)

For every $f \in \overline{CP}$, the set G_f is nowhere dense in \overline{CP} .

Thus each union of countably many conjugacy classes is a meager set, so we have

Corollary (BČOT, 2024)

Any residual set $G \subset \overline{CP}$ contains uncountably many conjugacy classes.

Remark

Analogous results hold for *CP* and $C_{\lambda}(I)$.

Piotr Oprocha (AGH)