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Introduction

Joint work with César Corral, Pourya Memarpanahi and others...

Compactness Properties

Sequentially compact, countably compact, p-compact (p ∈ ω∗)....

Every f : ω → X has

E.g., if p ∈ ω∗, x is a p-limit of f if {n : f (n) ∈ U} ∈ p for every
open neighborhood U of x .
Recall:

If X is compact then ∀f ∀p (f has a p-limit point).

X is countably compact iff ∀f ∃p (f has a p-limit point).
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Higher dimensional convergence

Definition

Given a function f : [ω]n → X and M ⊆ ω we say that
f ↾ [M]n converges to x ∈ X if for every nbhd U of x

f ([M \ k]n) ⊆ U for some k ∈ ω

Definition

A topological space X is
if every f : [ω]n → X ∃M infinite such that f ↾ [M]n converges.

Ramsey’s Theorem is equivalent to the statement
compact metrizable spaces are for all n
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Barriers

B ⊆ [ω]<ω is a barrier if

(1) B is pairwise incomparable wrt ⊆ and
(2) every infinite X ⊆ ω has an initial segment in B.
Examples:
[ω]n is a barrier.
Schreier Barrier: {s ∈ [ω]<ω : min(s) + 1 = |s|}

Definition

Given a barrier B, a space X is B-sequentially compact if for every
f : B → X there is an infinite M such that f ↾ B ∩ [M]<ω

converges to some x .

Nash-Williams’s Theorem

If k ∈ ω and B ⊆ [ω]<ω a barrier, then for every f : B → k there is
M infinite such that f is constant on B ∩ [M]<∞.

⇔ Compact metrizable spaces are B-sequentially compact.
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B-sequentially compact spaces

Every barrier has a recursively defined Cantor-Bendixson rank
< ω1,

so we define

Definition [1]

For α < ω1, a space X is α-sequentially compact if it is
B-sequentially compact for all barriers of rank α.

β < α implies that if X is α-sequentially compact then it is
β-sequentially compact.

X is α-sequentially compact iff X is B-sequentially compact
for some uniform barrier of rank α.

CH (and weaker assumptions) imply that for all α there is X
that is < α-sequentially compact but not α-sequentially
compact.

Compact bisequential spaces are < ω1 sequentially compact.
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Higher dimensional limit/accumulation points

For B a barrier, FINB is the the Fubini product of the ideal FIN.
For p ∈ ω∗, pB is the Fubini product of the ultrafilter p.

Definition

Let X be a space, p ∈ ω∗, B a barrier, f : B → X . Then x ∈ X is:

the FINB-limit point of f if {s ∈ B : f (s) /∈ U} ∈ FINB for
every U ∈ N (x).

the pB-limit of f if f −1(U) ∈ pB for every U ∈ N (x).

A B-accumulation point of f if for every U ∈ N (x) there
exists M ∈ [ω]ω such that f [B|M] ⊆ U.

A B-limit point of f if f −1(U) /∈ FINB for every U ∈ N (x).

Definition

X is B-countably compact if every f : B → X has a pB-limit point
for some p ∈ ω∗.
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Relationship between the different properties
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2-countably compact = [ω]2-countably compact

X is 2-countably compact if for every f : [ω]2 → X , there is a
p ∈ ω∗ such that f has a p2 limit point.

A ∈ p2 if {n : {m : {n,m} ∈ A} ∈ p} ∈ p}

If f : [ω]2 → X , and
(1) if xn = limp(f ({n,m}) : m ∈ ω), and
(2) if x = limp(xn),
then x is the p2 limit of f .

Definition (Banakh-Dimitrova-Gutik)

X is doubly countably compact if for every f : ω2 → X , there
exists (xn : n ∈ ω) and x in X such that
xn = limp(f (n,m) : m ∈ ω) and x = limp(xn).

Doubly countably compact ⇒ 2-countably compact.
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Double limit points

Theorem (B-D-G)

A topological semigroup G contains an idempotent if and only if
for some x ∈ G the double sequence (xm−n) has a double p-limit
for some p ∈ ω∗.

The double p-limit is the promised idempotent, and the same proof
shows that a 2-limit point is sufficient. And so, 2-countably
compact topological semi-groups have idempotents

Question (B-D-G)

If X is doubly countably compact is X 2 countably compact?

Question

Are 2-countably compacts spaces doubly countably compact?
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Examples

Example 1

There is a countably compact not 2-countably compact subspace
of βω

Conjecture (∗)
If X ⊆ ω∗ and |X | < c then βω \ X is 2-countably compact.

Examples

Assuming (∗) there are

1 A subspace of βω that is 2 countably compact not doubly
countably compact.

2 A doubly countably compact subspace of βω whose square is
not countably compact
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The conjecture

Theorem

Assuming the existence of κ many selective ultrafilters, if X ⊆ βω
has size < κ then βω \ X is 2-countably compact.

Easy: If X ⊆ βω has size < 2c then βω \ X is countably
compact.
Conjecture: If X ⊆ βω has size < 2c then βω \ X is
B-countably compact for any barrier B (in ZFC).

(YES if there are 2c many selective ultrafilters).
(For our constructions we need only that this is true for X of
size < c)

THANK YOU

Paul J. Szeptycki Higher dimensional compactness properties



The conjecture

Theorem

Assuming the existence of κ many selective ultrafilters, if X ⊆ βω
has size < κ then βω \ X is 2-countably compact.

Easy: If X ⊆ βω has size < 2c then βω \ X is countably
compact.
Conjecture: If X ⊆ βω has size < 2c then βω \ X is
B-countably compact for any barrier B (in ZFC).

(YES if there are 2c many selective ultrafilters).
(For our constructions we need only that this is true for X of
size < c)

THANK YOU

Paul J. Szeptycki Higher dimensional compactness properties



The conjecture

Theorem

Assuming the existence of κ many selective ultrafilters, if X ⊆ βω
has size < κ then βω \ X is 2-countably compact.

Easy: If X ⊆ βω has size < 2c then βω \ X is countably
compact.

Conjecture: If X ⊆ βω has size < 2c then βω \ X is
B-countably compact for any barrier B (in ZFC).

(YES if there are 2c many selective ultrafilters).
(For our constructions we need only that this is true for X of
size < c)

THANK YOU

Paul J. Szeptycki Higher dimensional compactness properties



The conjecture

Theorem

Assuming the existence of κ many selective ultrafilters, if X ⊆ βω
has size < κ then βω \ X is 2-countably compact.

Easy: If X ⊆ βω has size < 2c then βω \ X is countably
compact.
Conjecture: If X ⊆ βω has size < 2c then βω \ X is
B-countably compact for any barrier B (in ZFC).

(YES if there are 2c many selective ultrafilters).
(For our constructions we need only that this is true for X of
size < c)

THANK YOU

Paul J. Szeptycki Higher dimensional compactness properties



The conjecture

Theorem

Assuming the existence of κ many selective ultrafilters, if X ⊆ βω
has size < κ then βω \ X is 2-countably compact.

Easy: If X ⊆ βω has size < 2c then βω \ X is countably
compact.
Conjecture: If X ⊆ βω has size < 2c then βω \ X is
B-countably compact for any barrier B (in ZFC).
(YES if there are 2c many selective ultrafilters).

(For our constructions we need only that this is true for X of
size < c)

THANK YOU

Paul J. Szeptycki Higher dimensional compactness properties



The conjecture

Theorem

Assuming the existence of κ many selective ultrafilters, if X ⊆ βω
has size < κ then βω \ X is 2-countably compact.

Easy: If X ⊆ βω has size < 2c then βω \ X is countably
compact.
Conjecture: If X ⊆ βω has size < 2c then βω \ X is
B-countably compact for any barrier B (in ZFC).
(YES if there are 2c many selective ultrafilters).
(For our constructions we need only that this is true for X of
size < c)

THANK YOU

Paul J. Szeptycki Higher dimensional compactness properties



The conjecture

Theorem

Assuming the existence of κ many selective ultrafilters, if X ⊆ βω
has size < κ then βω \ X is 2-countably compact.

Easy: If X ⊆ βω has size < 2c then βω \ X is countably
compact.
Conjecture: If X ⊆ βω has size < 2c then βω \ X is
B-countably compact for any barrier B (in ZFC).
(YES if there are 2c many selective ultrafilters).
(For our constructions we need only that this is true for X of
size < c)

THANK YOU

Paul J. Szeptycki Higher dimensional compactness properties



Bibliography

[1] C. Corral, O. Guzman, C. Lopez-Callejas, P. Memarpanahi, P.
Szeptycki and S. Todorcevic Infinite dimensional sequential
compactness, to appear in Canadian Journal of Mathematics.

[2] C. Corral, P. Memarpanahi and P. Szeptycki Infinite
dimensional countable compactness arXiv:2406.17217.

[3] W. Kubís and P. Szeptycki On a topological Ramsey Theorem
Canadian Bulletin of Mathematics, Volume 66, Issue 1, March
2023, pp 156 - 165.

[4] T.O. Banakh, S. Dimitrova, O.V. Gutik The
Rees-Sushkewitsch theorem for simple topological semigroups
Matematychni Studii V 31 no 2 (2009).

Paul J. Szeptycki Higher dimensional compactness properties


