Higher dimensional compactness properties

Paul J. Szeptycki

Department of Mathematics and Statistics York University Toronto Canada

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

イロト イヨト イヨト イヨト

æ

Compactness Properties

Sequentially compact, countably compact, *p*-compact ($p \in \omega^*$)....

向下 イヨト イヨト

Compactness Properties

Sequentially compact, countably compact, *p*-compact ($p \in \omega^*$).... Every $f : \omega \to X$ has (some particular kind of limit point)

• (1) • (2) • (3) • (3) • (3)

Compactness Properties

Sequentially compact, countably compact, *p*-compact ($p \in \omega^*$).... Every $f : \omega \to X$ has (some particular kind of limit point)

E.g., if $p \in \omega^*$, x is a p-limit of f if $\{n : f(n) \in U\} \in p$ for every open neighborhood U of x.

白 ト イ ヨ ト イ ヨ ト

Compactness Properties

Sequentially compact, countably compact, *p*-compact ($p \in \omega^*$).... Every $f : \omega \to X$ has a *p*-limit point.

E.g., if $p \in \omega^*$, x is a p-limit of f if $\{n : f(n) \in U\} \in p$ for every open neighborhood U of x.

・ 同 ト ・ ヨ ト ・ ヨ ト

Compactness Properties

Sequentially compact, countably compact, *p*-compact ($p \in \omega^*$).... Every $f : \omega \to X$ has a *p*-limit point.

E.g., if $p \in \omega^*$, x is a p-limit of f if $\{n : f(n) \in U\} \in p$ for every open neighborhood U of x. Recall:

• If X is compact then $\forall f \forall p$ (f has a p-limit point).

Compactness Properties

Sequentially compact, countably compact, *p*-compact ($p \in \omega^*$).... Every $f : \omega \to X$ has a *p*-limit point.

E.g., if $p \in \omega^*$, x is a p-limit of f if $\{n : f(n) \in U\} \in p$ for every open neighborhood U of x. Recall:

- If X is compact then $\forall f \forall p \ (f \text{ has a } p \text{-limit point}).$
- X is countably compact iff $\forall f \exists p \ (f \text{ has a } p \text{-limit point})$.

< ロ > < 同 > < 三 > < 三 >

Given a function $f : [\omega]^n \to X$ and $M \subseteq \omega$ we say that $f \upharpoonright [M]^n$ converges to $x \in X$ if for every nbhd U of x

 $f([M \setminus k]^n) \subseteq U$ for some $k \in \omega$

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a function $f : [\omega]^n \to X$ and $M \subseteq \omega$ we say that $f \upharpoonright [M]^n$ converges to $x \in X$ if for every nbhd U of x

 $f([M \setminus k]^n) \subseteq U$ for some $k \in \omega$

Definition

A topological space X is *n*-Ramsey if every $f : [\omega]^n \to X \exists M$ infinite such that $f \upharpoonright [M]^n$ converges.

ヘロト ヘ回ト ヘヨト ヘヨト

Given a function $f : [\omega]^n \to X$ and $M \subseteq \omega$ we say that $f \upharpoonright [M]^n$ converges to $x \in X$ if for every nbhd U of x

 $f([M \setminus k]^n) \subseteq U$ for some $k \in \omega$

Definition

A topological space X is *n*-Ramsey if every $f : [\omega]^n \to X \exists M$ infinite such that $f \upharpoonright [M]^n$ converges.

Ramsey's Theorem is equivalent to the statement compact metrizable spaces are n-Ramsey for all n

Given a function $f : [\omega]^n \to X$ and $M \subseteq \omega$ we say that $f \upharpoonright [M]^n$ converges to $x \in X$ if for every nbhd U of x

 $f([M \setminus k]^n) \subseteq U$ for some $k \in \omega$

Definition

A topological space X is *n*-sequentially compact if every $f : [\omega]^n \to X \exists M$ infinite such that $f \upharpoonright [M]^n$ converges.

Ramsey's Theorem is equivalent to the statement compact metrizable spaces are n-Ramsey for all n

Given a function $f : [\omega]^n \to X$ and $M \subseteq \omega$ we say that $f \upharpoonright [M]^n$ converges to $x \in X$ if for every nbhd U of x

 $f([M \setminus k]^n) \subseteq U$ for some $k \in \omega$

Definition

A topological space X is *n*-sequentially compact if every $f : [\omega]^n \to X \exists M$ infinite such that $f \upharpoonright [M]^n$ converges.

Ramsey's Theorem is equivalent to the statement compact metrizable spaces are n-sequentially compact for all n

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

 $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if

(日)

$\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if (1) \mathcal{B} is pairwise incomparable wrt \subseteq and

・ 回 ト ・ ヨ ト ・ ヨ ト

2

 $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if (1) \mathcal{B} is pairwise incomparable wrt \subseteq and (2) every infinite $X \subseteq \omega$ has an initial segment in \mathcal{B} .

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if (1) \mathcal{B} is pairwise incomparable wrt \subseteq and (2) every infinite $X \subseteq \omega$ has an initial segment in \mathcal{B} .

Examples:

 $[\omega]^n$ is a barrier.

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

 $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if (1) \mathcal{B} is pairwise incomparable wrt \subseteq and (2) every infinite $X \subseteq \omega$ has an initial segment in \mathcal{B} .

Examples:

 $[\omega]^n$ is a barrier. Schreier Barrier: $\{s \in [\omega]^{<\omega} : \min(s) + 1 = |s|\}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

 $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if (1) \mathcal{B} is pairwise incomparable wrt \subseteq and (2) every infinite $X \subseteq \omega$ has an initial segment in \mathcal{B} .

Examples:

 $[\omega]^n$ is a barrier. Schreier Barrier: $\{s \in [\omega]^{<\omega} : \min(s) + 1 = |s|\}$

Definition

Given a barrier *B*, a space *X* is *B*-sequentially compact if for every $f : \mathcal{B} \to X$ there is an infinite *M* such that $f \upharpoonright \mathcal{B} \cap [M]^{<\omega}$ converges to some *x*.

A (10) × (10) × (10) ×

 $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if (1) \mathcal{B} is pairwise incomparable wrt \subseteq and (2) every infinite $X \subseteq \omega$ has an initial segment in \mathcal{B} .

Examples:

 $[\omega]^n$ is a barrier. Schreier Barrier: $\{s \in [\omega]^{<\omega} : \min(s) + 1 = |s|\}$

Definition

Given a barrier *B*, a space *X* is *B*-sequentially compact if for every $f : \mathcal{B} \to X$ there is an infinite *M* such that $f \upharpoonright \mathcal{B} \cap [M]^{<\omega}$ converges to some *x*.

Nash-Williams's Theorem

If $k \in \omega$ and $\mathcal{B} \subseteq [\omega]^{<\omega}$ a barrier, then for every $f : \mathcal{B} \to k$ there is M infinite such that f is constant on $\mathcal{B} \cap [M]^{<\infty}$.

 $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if (1) \mathcal{B} is pairwise incomparable wrt \subseteq and (2) every infinite $X \subseteq \omega$ has an initial segment in \mathcal{B} .

Examples:

 $[\omega]^n$ is a barrier. Schreier Barrier: $\{s \in [\omega]^{<\omega} : \min(s) + 1 = |s|\}$

Definition

Given a barrier *B*, a space *X* is *B*-sequentially compact if for every $f : \mathcal{B} \to X$ there is an infinite *M* such that $f \upharpoonright \mathcal{B} \cap [M]^{<\omega}$ converges to some *x*.

Nash-Williams's Theorem

If $k \in \omega$ and $\mathcal{B} \subseteq [\omega]^{<\omega}$ a barrier, then for every $f : \mathcal{B} \to k$ there is M infinite such that f is constant on $\mathcal{B} \cap [M]^{<\infty}$.

 $\Leftrightarrow \mathsf{Compact} \ \mathsf{metrizable} \ \mathsf{spaces} \ \mathsf{are} \ \mathcal{B}\text{-sequentially} \ \mathsf{compact}.$

イロト イヨト イヨト

\mathcal{B} -sequentially compact spaces

Every barrier has a recursively defined Cantor-Bendixson rank $<\omega_{\rm 1},$

Image: A Image: A

臣

Every barrier has a recursively defined Cantor-Bendixson rank $<\omega_{\rm 1},$ so we define

Definition [1]

For $\alpha < \omega_1$, a space X is α -sequentially compact if it is *B*-sequentially compact for all barriers of rank α .

向下 イヨト イヨト

Every barrier has a recursively defined Cantor-Bendixson rank $<\omega_{\rm 1},$ so we define

Definition [1]

For $\alpha < \omega_1$, a space X is α -sequentially compact if it is *B*-sequentially compact for all barriers of rank α .

• $\beta < \alpha$ implies that if X is α -sequentially compact then it is β -sequentially compact.

Every barrier has a recursively defined Cantor-Bendixson rank $<\omega_{\rm 1},$ so we define

Definition [1]

For $\alpha < \omega_1$, a space X is α -sequentially compact if it is *B*-sequentially compact for all barriers of rank α .

- $\beta < \alpha$ implies that if X is α -sequentially compact then it is β -sequentially compact.
- X is α -sequentially compact iff X is \mathcal{B} -sequentially compact for some *uniform* barrier of rank α .

Every barrier has a recursively defined Cantor-Bendixson rank $<\omega_{\rm 1},$ so we define

Definition [1]

For $\alpha < \omega_1$, a space X is α -sequentially compact if it is *B*-sequentially compact for all barriers of rank α .

- $\beta < \alpha$ implies that if X is α -sequentially compact then it is β -sequentially compact.
- X is α -sequentially compact iff X is \mathcal{B} -sequentially compact for some *uniform* barrier of rank α .
- CH (and weaker assumptions) imply that for all α there is X that is < α-sequentially compact but not α-sequentially compact.

イロト イポト イヨト イヨト

Every barrier has a recursively defined Cantor-Bendixson rank $<\omega_{\rm 1},$ so we define

Definition [1]

For $\alpha < \omega_1$, a space X is α -sequentially compact if it is *B*-sequentially compact for all barriers of rank α .

- $\beta < \alpha$ implies that if X is α -sequentially compact then it is β -sequentially compact.
- X is α -sequentially compact iff X is \mathcal{B} -sequentially compact for some *uniform* barrier of rank α .
- CH (and weaker assumptions) imply that for all α there is X that is < α-sequentially compact but not α-sequentially compact.
- Compact bisequential spaces are $< \omega_1$ sequentially compact.

イロト イポト イヨト イヨト

For \mathcal{B} a barrier, FIN^{\mathcal{B}} is the the Fubini product of the ideal FIN. For $p \in \omega^*$, $p^{\mathcal{B}}$ is the Fubini product of the ultrafilter p.

For \mathcal{B} a barrier, FIN^{\mathcal{B}} is the the Fubini product of the ideal FIN. For $p \in \omega^*$, $p^{\mathcal{B}}$ is the Fubini product of the ultrafilter p.

Definition

Let X be a space, $p \in \omega^*$, B a barrier, $f : \mathcal{B} \to X$. Then $x \in X$ is:

For \mathcal{B} a barrier, FIN^{\mathcal{B}} is the the Fubini product of the ideal FIN. For $p \in \omega^*$, $p^{\mathcal{B}}$ is the Fubini product of the ultrafilter p.

Definition

Let X be a space, $p \in \omega^*$, B a barrier, $f : \mathcal{B} \to X$. Then $x \in X$ is:

• the FIN^B-limit point of f if $\{s \in \mathcal{B} : f(s) \notin U\} \in FIN^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.

For \mathcal{B} a barrier, FIN^{\mathcal{B}} is the the Fubini product of the ideal FIN. For $p \in \omega^*$, $p^{\mathcal{B}}$ is the Fubini product of the ultrafilter p.

Definition

Let X be a space, $p \in \omega^*$, B a barrier, $f : \mathcal{B} \to X$. Then $x \in X$ is:

- the FIN^B-limit point of f if $\{s \in B : f(s) \notin U\} \in FIN^{B}$ for every $U \in \mathcal{N}(x)$.
- the $p^{\mathcal{B}}$ -limit of f if $f^{-1}(U) \in p^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.

For \mathcal{B} a barrier, FIN^{\mathcal{B}} is the the Fubini product of the ideal FIN. For $p \in \omega^*$, $p^{\mathcal{B}}$ is the Fubini product of the ultrafilter p.

Definition

Let X be a space, $p \in \omega^*$, B a barrier, $f : \mathcal{B} \to X$. Then $x \in X$ is:

- the FIN^B-limit point of f if $\{s \in B : f(s) \notin U\} \in FIN^{B}$ for every $U \in \mathcal{N}(x)$.
- the $p^{\mathcal{B}}$ -limit of f if $f^{-1}(U) \in p^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.
- A B-accumulation point of f if for every U ∈ N(x) there exists M ∈ [ω]^ω such that f[B|M] ⊆ U.

(4月) トイヨト イヨト

For \mathcal{B} a barrier, FIN^{\mathcal{B}} is the the Fubini product of the ideal FIN. For $p \in \omega^*$, $p^{\mathcal{B}}$ is the Fubini product of the ultrafilter p.

Definition

Let X be a space, $p \in \omega^*$, B a barrier, $f : \mathcal{B} \to X$. Then $x \in X$ is:

- the FIN^B-limit point of f if $\{s \in \mathcal{B} : f(s) \notin U\} \in FIN^{B}$ for every $U \in \mathcal{N}(x)$.
- the $p^{\mathcal{B}}$ -limit of f if $f^{-1}(U) \in p^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.
- A B-accumulation point of f if for every U ∈ N(x) there exists M ∈ [ω]^ω such that f[B|M] ⊆ U.
- A *B*-limit point of f if $f^{-1}(U) \notin FIN^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.

For \mathcal{B} a barrier, FIN^{\mathcal{B}} is the the Fubini product of the ideal FIN. For $p \in \omega^*$, $p^{\mathcal{B}}$ is the Fubini product of the ultrafilter p.

Definition

Let X be a space, $p \in \omega^*$, B a barrier, $f : \mathcal{B} \to X$. Then $x \in X$ is:

- the FIN^B-limit point of f if $\{s \in B : f(s) \notin U\} \in FIN^{B}$ for every $U \in \mathcal{N}(x)$.
- the $p^{\mathcal{B}}$ -limit of f if $f^{-1}(U) \in p^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.
- A B-accumulation point of f if for every U ∈ N(x) there exists M ∈ [ω]^ω such that f[B|M] ⊆ U.
- A *B*-limit point of f if $f^{-1}(U) \notin FIN^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.

< ロ > < 同 > < 三 > < 三 >

For \mathcal{B} a barrier, FIN^{\mathcal{B}} is the the Fubini product of the ideal FIN. For $p \in \omega^*$, $p^{\mathcal{B}}$ is the Fubini product of the ultrafilter p.

Definition

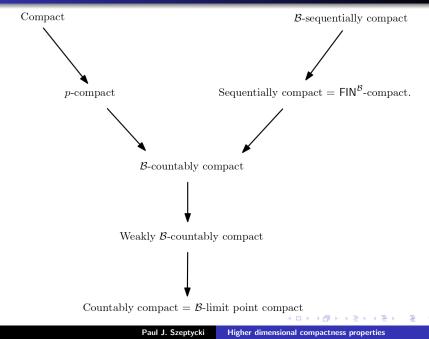
Let X be a space, $p \in \omega^*$, B a barrier, $f : \mathcal{B} \to X$. Then $x \in X$ is:

- the FIN^B-limit point of f if $\{s \in B : f(s) \notin U\} \in FIN^{B}$ for every $U \in \mathcal{N}(x)$.
- the $p^{\mathcal{B}}$ -limit of f if $f^{-1}(U) \in p^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.
- A B-accumulation point of f if for every U ∈ N(x) there exists M ∈ [ω]^ω such that f[B|M] ⊆ U.
- A *B*-limit point of f if $f^{-1}(U) \notin FIN^{\mathcal{B}}$ for every $U \in \mathcal{N}(x)$.

Definition

X is *B*-countably compact if every $f : B \to X$ has a $p^{\mathcal{B}}$ -limit point for some $p \in \omega^*$.

Relationship between the different properties



回 と く ヨ と く ヨ と

臣

X is 2-countably compact if for every $f : [\omega]^2 \to X$, there is a $p \in \omega^*$ such that f has a p^2 limit point.

伺 ト イヨト イヨト

X is 2-countably compact if for every $f : [\omega]^2 \to X$, there is a $p \in \omega^*$ such that f has a p^2 limit point.

$$A \in p^2$$
 if $\{n : \{m : \{n, m\} \in A\} \in p\} \in p\}$

伺 ト イヨト イヨト

X is 2-countably compact if for every $f : [\omega]^2 \to X$, there is a $p \in \omega^*$ such that f has a p^2 limit point.

$$A \in p^2$$
 if $\{n : \{m : \{n, m\} \in A\} \in p\} \in p\}$

If $f: [\omega]^2 \to X$, and

向下 イヨト イヨト

X is 2-countably compact if for every $f : [\omega]^2 \to X$, there is a $p \in \omega^*$ such that f has a p^2 limit point.

$$A \in p^2$$
 if $\{n : \{m : \{n, m\} \in A\} \in p\} \in p\}$

If
$$f:[\omega]^2
ightarrow X$$
, and (1) if $x_n=\lim_p(f(\{n,m\}):m\in\omega)$, and

伺 ト イヨト イヨト

X is 2-countably compact if for every $f : [\omega]^2 \to X$, there is a $p \in \omega^*$ such that f has a p^2 limit point.

$$A \in p^2$$
 if $\{n : \{m : \{n, m\} \in A\} \in p\} \in p\}$

If
$$f : [\omega]^2 \to X$$
, and
(1) if $x_n = \lim_p (f(\{n, m\}) : m \in \omega)$, and
(2) if $x = \lim_p (x_n)$,

(日本) (日本) (日本)

X is 2-countably compact if for every $f : [\omega]^2 \to X$, there is a $p \in \omega^*$ such that f has a p^2 limit point.

$$A \in p^2$$
 if $\{n : \{m : \{n, m\} \in A\} \in p\} \in p\}$

If
$$f : [\omega]^2 \to X$$
, and
(1) if $x_n = \lim_p (f(\{n, m\}) : m \in \omega)$, and
(2) if $x = \lim_p (x_n)$,
then x is the p^2 limit of f.

伺下 イヨト イヨト

X is 2-countably compact if for every $f : [\omega]^2 \to X$, there is a $p \in \omega^*$ such that f has a p^2 limit point.

$$A \in p^2$$
 if $\{n : \{m : \{n, m\} \in A\} \in p\} \in p\}$

If
$$f : [\omega]^2 \to X$$
, and
(1) if $x_n = \lim_p (f(\{n, m\}) : m \in \omega)$, and
(2) if $x = \lim_p (x_n)$,
then x is the p^2 limit of f.

Definition (Banakh-Dimitrova-Gutik)

X is doubly compact if for every $f : \omega^2 \to X$, there exists $(x_n : n \in \omega)$ and x in X such that $x_n = \lim_p (f(n, m) : m \in \omega)$ and $x = \lim_p (x_n)$.

X is 2-countably compact if for every $f : [\omega]^2 \to X$, there is a $p \in \omega^*$ such that f has a p^2 limit point.

$$A \in p^2$$
 if $\{n : \{m : \{n, m\} \in A\} \in p\} \in p\}$

If
$$f : [\omega]^2 \to X$$
, and
(1) if $x_n = \lim_p (f(\{n, m\}) : m \in \omega)$, and
(2) if $x = \lim_p (x_n)$,
then x is the p^2 limit of f.

Definition (Banakh-Dimitrova-Gutik)

X is doubly countably compact if for every $f : \omega^2 \to X$, there exists $(x_n : n \in \omega)$ and x in X such that $x_n = \lim_p (f(n, m) : m \in \omega)$ and $x = \lim_p (x_n)$.

Doubly countably compact \Rightarrow 2-countably compact.

A topological semigroup G contains an idempotent if and only if for some $x \in G$ the double sequence (x^{m-n}) has a double p-limit for some $p \in \omega^*$.

< ロ > < 同 > < 三 > < 三 >

A topological semigroup G contains an idempotent if and only if for some $x \in G$ the double sequence (x^{m-n}) has a double p-limit for some $p \in \omega^*$.

The double *p*-limit is the promised idempotent, and the same proof shows that a 2-limit point is sufficient. And so, 2-*countably compact topological semi-groups have idempotents*

A topological semigroup G contains an idempotent if and only if for some $x \in G$ the double sequence (x^{m-n}) has a double p-limit for some $p \in \omega^*$.

The double *p*-limit is the promised idempotent, and the same proof shows that a 2-limit point is sufficient. And so, 2-*countably compact topological semi-groups have idempotents*

Question (B-D-G)

If X is doubly countably compact is X^2 countably compact?

< ロ > < 同 > < 三 > < 三 >

A topological semigroup G contains an idempotent if and only if for some $x \in G$ the double sequence (x^{m-n}) has a double p-limit for some $p \in \omega^*$.

The double *p*-limit is the promised idempotent, and the same proof shows that a 2-limit point is sufficient. And so, 2-countably compact topological semi-groups have idempotents

Question (B-D-G)

If X is doubly countably compact is X^2 countably compact?

Question

Are 2-countably compacts spaces doubly countably compact?

< ロ > < 同 > < 三 > < 三 >

There is a countably compact not 2-countably compact subspace of $\beta\omega$

・日・ ・ ヨ・ ・ ヨ・

臣

There is a countably compact not 2-countably compact subspace of $\beta\omega$

Conjecture (*)

If $X \subseteq \omega^*$ and $|X| < \mathfrak{c}$ then $\beta \omega \setminus X$ is 2-countably compact.

イロン 不同 とうほう 不同 とう

臣

There is a countably compact not 2-countably compact subspace of $\beta\omega$

Conjecture (*)

If $X \subseteq \omega^*$ and $|X| < \mathfrak{c}$ then $\beta \omega \setminus X$ is 2-countably compact.

Examples

Assuming (*) there are

イロト イヨト イヨト イヨト

There is a countably compact not 2-countably compact subspace of $\beta\omega$

Conjecture (*)

If $X \subseteq \omega^*$ and $|X| < \mathfrak{c}$ then $\beta \omega \setminus X$ is 2-countably compact.

Examples

Assuming (*) there are

• A subspace of $\beta \omega$ that is 2 countably compact not doubly countably compact.

イロト イポト イヨト イヨト

There is a countably compact not 2-countably compact subspace of $\beta\omega$

Conjecture (*)

If $X \subseteq \omega^*$ and $|X| < \mathfrak{c}$ then $\beta \omega \setminus X$ is 2-countably compact.

Examples

Assuming (*) there are

- A subspace of $\beta \omega$ that is 2 countably compact not doubly countably compact.
- 2 A doubly countably compact subspace of $\beta \omega$ whose square is not countably compact

イロト イヨト イヨト イヨト

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Theorem

Assuming the existence of κ many selective ultrafilters, if $X \subseteq \beta \omega$ has size $< \kappa$ then $\beta \omega \setminus X$ is 2-countably compact.

Theorem

Assuming the existence of κ many selective ultrafilters, if $X \subseteq \beta \omega$ has size $< \kappa$ then $\beta \omega \setminus X$ is 2-countably compact.

Easy: If X ⊆ βω has size < 2^c then βω \ X is countably compact.

向下 イヨト イヨト

Theorem

Assuming the existence of κ many selective ultrafilters, if $X \subseteq \beta \omega$ has size $< \kappa$ then $\beta \omega \setminus X$ is 2-countably compact.

- Easy: If X ⊆ βω has size < 2^c then βω \ X is countably compact.
- Conjecture: If X ⊆ βω has size < 2^c then βω \ X is B-countably compact for any barrier B (in ZFC).

・ 同 ト ・ 三 ト ・ 三 ト

Theorem

Assuming the existence of κ many selective ultrafilters, if $X \subseteq \beta \omega$ has size $< \kappa$ then $\beta \omega \setminus X$ is 2-countably compact.

- Easy: If X ⊆ βω has size < 2^c then βω \ X is countably compact.
- Conjecture: If X ⊆ βω has size < 2^c then βω \ X is B-countably compact for any barrier B (in ZFC). (YES if there are 2^c many selective ultrafilters).

・ 同 ト ・ 三 ト ・ 三 ト

Theorem

Assuming the existence of κ many selective ultrafilters, if $X \subseteq \beta \omega$ has size $< \kappa$ then $\beta \omega \setminus X$ is 2-countably compact.

- Easy: If $X \subseteq \beta \omega$ has size $< 2^{\mathfrak{c}}$ then $\beta \omega \setminus X$ is countably compact.
- Conjecture: If X ⊆ βω has size < 2^c then βω \ X is B-countably compact for any barrier B (in ZFC). (YES if there are 2^c many selective ultrafilters). (For our constructions we need only that this is true for X of size < c)

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Assuming the existence of κ many selective ultrafilters, if $X \subseteq \beta \omega$ has size $< \kappa$ then $\beta \omega \setminus X$ is 2-countably compact.

- Easy: If $X \subseteq \beta \omega$ has size $< 2^{\mathfrak{c}}$ then $\beta \omega \setminus X$ is countably compact.
- Conjecture: If X ⊆ βω has size < 2^c then βω \ X is B-countably compact for any barrier B (in ZFC). (YES if there are 2^c many selective ultrafilters). (For our constructions we need only that this is true for X of size < c)

THANK YOU

向下 イヨト イヨト

- C. Corral, O. Guzman, C. Lopez-Callejas, P. Memarpanahi, P. Szeptycki and S. Todorcevic *Infinite dimensional sequential compactness*, to appear in Canadian Journal of Mathematics.
- [2] C. Corral, P. Memarpanahi and P. Szeptycki *Infinite* dimensional countable compactness arXiv:2406.17217.
- [3] W. Kubiś and P. Szeptycki On a topological Ramsey Theorem Canadian Bulletin of Mathematics, Volume 66, Issue 1, March 2023, pp 156 - 165.
- [4] T.O. Banakh, S. Dimitrova, O.V. Gutik The Rees-Sushkewitsch theorem for simple topological semigroups Matematychni Studii V 31 no 2 (2009).

< ロ > < 同 > < 三 > < 三 >