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Hurewicz
Ufin(O, Γ): (∀U1,U2, . . . ∈ O )(∃ fin F1 ⊆ U1,F2 ⊆ U2, . . . )( {

⋃
Fn : n ∈ N } ∈ Γ )

Sierpiński set
X ∪ Fin, where X = { xα : α < b } ⊆ [N]∞ is a b-scale, i.e., X is
unbounded and xα ≤∗ xβ for α < β

when ground model sets became Hurewicz in the extension

Theorem (Just–Miller-Scheepers–Szeptycki 1996)
If X ⊆ P(N) is Hurewicz and does not contain a copy of the Cantor set, then
for each perfect set P ⊆ P(N), the set X ∩ P is meager in P.

Theorem (Sz–Tsaban 2017)
Assuming d = ω1, each productively Lindelöf space is productively Hurewicz.

Theorem (Chodounsky–Repovš–Zdomskyy 2015)
Let F ⊆ [N]∞ be a filter. Then M(F ) preserves unbounded sets from the
ground model if and only if F is Hurewicz.
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Theorem (Chodounsky–Repovš–Zdomskyy 2015)
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Sierpiński set
X ∪ Fin, where X = { xα : α < b } ⊆ [N]∞ is a b-scale, i.e., X is
unbounded and xα ≤∗ xβ for α < β

when ground model sets became Hurewicz in the extension

Theorem (Just–Miller-Scheepers–Szeptycki 1996)
If X ⊆ P(N) is Hurewicz and does not contain a copy of the Cantor set, then
for each perfect set P ⊆ P(N), the set X ∩ P is meager in P.

Theorem (Sz–Tsaban 2017)
Assuming d = ω1, each productively Lindelöf space is productively Hurewicz.
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Products

γ-property: each open ω-cover contains a γ-cover

Hurewicz Scheepers Menger
γ-property Ufin(O, Γ) Ufin(O,Ω) Ufin(O,O) Lindelöf

Theorem (Todorčević 1995)
For general topological spaces, there are γ-sets whose product is not Lindelöf.

Corollary
For general topological spaces, Hurewicz, Scheepers and Menger are not
productive.

Problem (Open Problems in Topology II 2005)
Are there in ZFC Menger sets of reals whose product is not Menger?
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Theorem (Sz–Tsaban 2017)
If X ⊆ [N]∞ contains a d-unbounded or cf(d)-unbounded set, then there is a
d-unbounded set Y ⊆ [N]∞ such that X × (Y ∪ Fin) is not Menger.

Theorem (Sz–Tsaban 2017)
Assuming d ≤ r, there are Menger sets whose product is not Menger.

MA Cohen Random Sacks Hechler Laver Mathias Miller

Theorem (Zdomskyy 2018)
In the Miller model (where d > r), Menger is productive.
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Products
Theorem (Miller–Tsaban–Zdomskyy 2016)
Under CH, there are γ-sets X and Y whose product X × Y is not Menger.

Theorem (Repovš–Zdomskyy 2019)
In the Miller model, each ground model γ-set is a γ-set in the extension.

Theorem (Miller 1984)
In the Miller model, each ground model non-Menger set is non-Hurewicz in the
extension.

Corollary
In the Miller model, Hurewicz is not productive.

Problem
Is it true that, in the Miller model, any Sierpiński set from the ground model is
Hurewicz in the extension?
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Hurewicz in the extension?



Products
Theorem (Miller–Tsaban–Zdomskyy 2016)
Under CH, there are γ-sets X and Y whose product X × Y is not Menger.

Theorem (Repovš–Zdomskyy 2019)
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U-Menger and products
[N]∞ ⊇ U: nonprincipal ultrafilter

For x , y ∈ [N]∞, x ≤U y if { n : x(n) ≤ y(n) } ∈ U

b(U): minimal cardinality of a ≤U -unbounded set

[N]∞ ⊇ { xα : α < b(U) } is a U-scale if it is ≤U -unbounded and

xα ≤U xβ for α < β
U-Menger:
(∀U1,U2, . . . ∈ O )(∃ fin F1 ⊆ U1,F2 ⊆ U2, . . . )( ∀ x )( { n : x ∈

⋃
Fn } ∈ U )

Hurewicz→ U-Menger→ Scheepers→ Menger

Lemma (Sz–Tsaban 2017)
If X ⊆ [N]∞ is a U-scale, then X ∪ Fin is productively U-Menger.

Theorem (Sz, Tsaban, Zdomskyy 2021)
Assume that d ≤ r and d is regular. Then there are sets Menger in all finite
powers (and thus Scheepers) whose product is not Menger.
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Products in the Laver model
Theorem (Sz–Tsaban 2017)
If X ⊆ [N]∞ contains a d-unbounded set, then there is a d-unbounded set
Y ⊆ [N]∞ such that X × (Y ∪ Fin) is not Menger.

Theorem (Sz–Tsaban 2017)
Assuming b = d, each productively Menger set is productively Hurewicz.

Theorem (Repovš–Zdomskyy 2024)
In the Laver model, each Hurewicz set is productively Menger.

Corollary
In the Laver model (where b = d),

productively Menger productively Hurewicz Hurewicz

Hurewicz→ Scheepers→ Menger
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Products in the Laver model
Q[X ] : all increasing sequences of countable compact sets Q = 〈K Q

n : n ∈ ω 〉

Lemma (Sz–Zdomskyy 2024)
In the Laver model, a set X is Hurewicz iff for each function f : Q[X ]→ NN,
there is a family Q1 ⊆ Q[X ] of size ω1 such that for each finite set F ⊆ X,
there is Q ∈ Q1 such that F ⊆ B(K Q

n ,
1

fQ(n) ) for all but finitely many n.

Theorem (Sz–Zdomskyy 2024)
In the Laver model, the following assertions are equivalent

1 X is Hurewicz
2 X satisfies the property from Lemma
3 X is productively Menger
4 X is productively Scheepers
5 X is productively Hurewicz

Corollary (from one of the previous results)
In the Laver model, Scheepers and Menger are not productive.
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General spaces

Hurewicz Scheepers Menger
γ-property Ufin(O, Γ) Ufin(O,Ω) Ufin(O,O) Lindelöf

Theorem (Todorčević 1995)
For general topological spaces, there are γ-sets whose product is not Lindelöf.

Theorem (Zdomskyy 2016)
In the Miller model, if a product of Menger spaces is Lindelöff, then it is
Menger.

Theorem (Sz–Zdomskyy 2024)
In the Laver model, if X is Hurewicz, Y is Hurewicz (Scheepers, Menger) and
the product X × Y is Lindelöff, then X × Y is Hurewicz (Scheepers, Menger).
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General spaces
Theorem (Michael 1971)
Under CH, there is an uncountable subset of the Sorgenfrey line whose all
finite powers are Lindelöff.

Theorem (Sz–Tsaban 2019)
Assuming b = ω1, for general topological spaces, if X ⊆ [N]∞ is a b-scale, then
(X ∪ Fin)M with the Michael topology is productively Hurewicz. In particular
(X ∪ Fin)M is Hurewicz (and thus Lindelöff) in all finite powers.

id : (X ∪ Fin)M → (X ∪ Fin)S

Corollary
Assuming b = ω1, if X ⊆ [N]∞ is a b-scale, then (X ∪ Fin)S is Hurewicz (and
thus Lindelöff) in all finite powers.

Theorem (Todorčević 1989)
Under OCA, for each uncountable subset X of the Sorgenfrey line, X 2 contains
a closed discrete uncountable subspace.
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thus Lindelöff) in all finite powers.

Theorem (Todorčević 1989)
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id : (X ∪ Fin)M → (X ∪ Fin)S

Corollary
Assuming b = ω1, if X ⊆ [N]∞ is a b-scale, then (X ∪ Fin)S is Hurewicz (and
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Theorem (Sz–Tsaban 2019)
Assuming b = ω1, for general topological spaces, if X ⊆ [N]∞ is a b-scale, then
(X ∪ Fin)M with the Michael topology is productively Hurewicz. In particular
(X ∪ Fin)M is Hurewicz (and thus Lindelöff) in all finite powers.
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