Fractal dimension and common hypercyclicity

F. Bayart, F. Costa Jr., Q. Menet

38th Summer conference on topology and its applications

July 9, 2024

Linear dynamical systems

Definition: Linear dynamical system

A **linear dynamical system** is a pair (X, T) consisting of a Banach space (or Fréchet space) X and a continuous linear operator $T: X \to X$.

Example

The pair (ℓ^p, B) where B is given by

$$B(x_0, x_1, x_2, x_3, \cdots) = (x_1, x_2, x_3, x_4, \cdots)$$

is a linear dynamical system.

Hypercyclicity

Definition: Hypercyclicity

Let (X, T) be a linear dynamical system. The operator T is said to be **hypercyclic** if there exists a vector $x \in X$ (said to be hypercyclic) such that

$$Orb(x, T) := \{T^n x : n \ge 0\}$$
 is dense in X .

Moreover, we denote by HC(T) the set of hypercyclic vectors of T.

Theorem [Rolewicz 1969]

There is no hypercyclic operator on any finite-dimensional Banach space.

Theorem [Ansari '97, Bernal '99, Bonet-Peris '98]

Every separable infinite-dimensional Fréchet space supports a hypercyclic operator.

(ロト 4 國 M 시 필 M 시 필 M 시 연

Examples of hypercyclic operators

Birkhoff (1929) : the translation operators \mathcal{T}_a on $\mathcal{H}(\mathbb{C})$ defined by

$$T_a f(z) = f(z+a), \ a \in \mathbb{C} \setminus \{0\}.$$

lacksquare MacLane (1952) : the derivative operator D on $H(\mathbb{C})$ defined by

$$Df = f'$$
.

Rolewicz (1969) : the multiples of backward shift λB on ℓ^p defined by

$$\lambda B(x_0,x_1,x_2,x_3,\cdots)=(\lambda x_1,\lambda x_2,\lambda x_3,\lambda x_4,\cdots),\ |\lambda|>1.$$

How to prove that an operator is hypercyclic?

Birkhoff transitivity theorem (1920)

Let (X, T) be a linear dynamical system. If X is separable then the following assertions are equivalent :

- T is hypercyclic;
- **2** T is topologically transitive, *i.e.* for every non-empty open sets U, V in X, there exists n such that

$$T^nU\cap V\neq\emptyset$$
.

Moreover, if T is hypercyclic then HC(T) is a dense G_{δ} -set.

Idea of the proof : Let $(U_k)_{k\geq 0}$ be a countable open basis of X. We have

$$HC(T) = \bigcap_{k\geq 1} \bigcup_{n\geq 0} T^{-n}(U_k).$$

How to prove that an operator is hypercyclic?

Hypercyclicity Criterion [Kitai '82, Gethner-Shapiro '87, Bès-Peris '99]

Let X be a separable Fréchet space and $T \in L(X)$. If there exist a strictly increasing sequence $(n_k) \subset \mathbb{N}$, a dense set X_0 in X and maps $S_{n_k}: X_0 \to X_0$ such that for any $x \in X_0$,

$$T^{n_k}x o 0, \quad S_{n_k}x o 0 \quad \text{and} \quad T^{n_k}S_{n_k}x o x \text{ as } k \text{ tends to } \infty$$
,

then T is hypercyclic.

Idea of the proof : Let $(y_j)_{j\geq 0}$ be a dense sequence in X_0 . We can show that if (n_{k_l}) grows sufficiently rapidly then the vector

$$x := y_0 + \sum_{l=1}^{\infty} S_{n_{k_l}} y_l$$

is well-defined and has a dense orbit.

□▶→□▶→臺▶→臺▶ 臺 釣魚(

Hypercyclicity of λB with $|\lambda| > 1$

Birkhoff transitivity theorem: Let U, V be non-empty open subsets of ℓ^p . Let $y = (y_0, \dots, y_N, 0, \dots) \in V$ and $x = (x_0, \dots, x_N, 0, \dots) \in U$. We can find n > N such that

$$z = (x_0, \cdots, x_N, 0, \cdots, 0, \frac{y_0}{\lambda^n}, \cdots, \frac{y_N}{\lambda^n}, 0, \cdots) \in U$$

since $|\lambda| > 1$ and we have $(\lambda B)^n z = y \in V$.

2 Hypercyclicity Criterion: We consider $X_0 = c_{00}$, $n_k = k$ and $S_k x = \frac{1}{\lambda^k} F^k x$ where

$$F(x_0, x_1, x_2, x_3, \cdots) = (0, x_0, x_1, x_2, x_3, \cdots).$$

Therefore we remark that for every $x \in X_0$, we have

$$(\lambda B)^k x \to 0$$
, $S_k x \to 0$ and $(\lambda B)^k S_k x \to x$ as k tends to ∞ .

ロト (個) (重) (重) (重) のの(

Hypercyclicity of direct sums of λB

Proposition

Let X_1, \ldots, X_d be separable Fréchet spaces and $T_i \in L(X_i)$ for each $1 \leq i \leq d$. If there exists a sequence (n_k) such that each operator T_i satisfies the Hypercyclicity Criterion along (n_k) then $T_1 \oplus \cdots \oplus T_d$ is hypercyclic on $X_1 \oplus \cdots \oplus X_d$.

Consequences : Let $\lambda \in]1, \infty[^d]$. The operator $\lambda B := \lambda_1 B \oplus \cdots \oplus \lambda_d B$ is hypercyclic on $\ell^p \oplus \cdots \oplus \ell^p$.

Question:

Given $\Lambda \subset]1,\infty[^d]$, does the family $(\lambda B)_{\lambda\in\Lambda}$ share a common hypercyclic vector, i.e $\bigcap_{\lambda\in\Lambda}HC(\lambda B)\neq\emptyset$?

Common hypercyclicity

Proposition

Let X be a separable Fréchet space and $(T_{\lambda})_{\lambda \in \Lambda} \subset L(X)$ a family of hypercyclic operators. If Λ is countable then the family T_{λ} shares a common hypercyclic vector.

Proof: Direct consequence of Birkhoff transitivity theorem.

Consequence : If $\Lambda \subset]1, \infty[^d]$ is a countable set then the family $(\lambda B)_{\lambda \in \Lambda}$ shares a common hypercyclic vector.

Theorem (Abakumov-Gordon 2003)

The family $(\lambda B)_{\lambda \in]1,\infty[}$ shares a common hypercyclic vector.

Idea of the proof : We extend the construction used in the proof of the Hypercyclicity Criterion. Given $1 < a < b < \infty$, $y \in c_{00} \setminus \{0\}$, $\varepsilon > 0$, we show that there exist N arbitrarily big and M such that if we let

$$x := \sum_{l=1}^{d} \frac{F^{N+lM} y}{\lambda_{l}^{N+lM}}$$

for some convenient choice of $\lambda_1,\ldots,\lambda_d$ then for every $\lambda\in[a,b]$ there exists $1\leq l\leq d$ such that

$$\|(\lambda B)^{N+IM}x-y\|<\varepsilon.$$

Good choice of $\lambda_I: \lambda_1 = a + \frac{\varepsilon}{2\|y\|} \frac{1}{N+M}$ and $\lambda_{I+1} = \lambda_I + \frac{\varepsilon}{2\|y\|} \frac{1}{N+(I+1)M}$.

<ロ > ← □

Theorem (Abakumov-Gordon 2003)

If $d \geq 2$, the family $(\lambda B)_{\lambda \in]1,\infty[^d]}$ does not share a common hypercyclic vector.

Idea of the proof : Let $\Lambda \subset]1,\infty[^d.$ We can show that if $(\lambda B)_{\lambda\in\Lambda}$ shares a common hypercyclic vector then Leb(Λ) = 0. Indeed, if x is a common hypercyclic vector for $(\lambda B)_{\lambda\in\Lambda}$ then ,

$$\Lambda \subset \bigcap_{N\geq 1} \bigcup_{n\geq N} \{\lambda \in]1, \infty[^d: \|(\lambda B)^n x - (e_0, \cdots, e_0)\| < \frac{1}{2}\}.$$

However, there exists a constant C such that for any n

$$\mathsf{Leb}\left(\{\lambda\in]1,\infty[^d\colon\|(\lambda B)^nx-(e_0,\cdots,e_0)\|<\frac{1}{2}\}\right)\leq\frac{C}{n^d}.$$

Since $d \ge 2$, it implies that Leb(Λ) = 0.

4□ > 4□ > 4□ > 4□ > 4□ > □
900

A (technical) characterization

Theorem (Bayart, Costa Jr, M., 2022)

Let $\Lambda \subset (0, +\infty)^d$ be σ -compact, $X = \ell_p(\mathbb{N})$, $p \in [1, +\infty)$ or $X = c_0(\mathbb{N})$. The following assertions are equivalent :

- 1 $(e^{\lambda(1)}B \times \cdots \times e^{\lambda(d)}B)_{\lambda \in \Lambda}$ shares a common hypercyclic vector.
- 2 For all $\tau > 0$, for all $N \ge 1$, for all $K \subset \Lambda$ compact, there exist $N \le n_1 < n_1 + N \le n_2 < \cdots < n_{q-1} + N \le n_q$ and $(\lambda_k)_{k=1,\dots,q} \in (0,+\infty)^d$ such that
 - $K \subset \bigcup_{k=1}^q \prod_{i=1}^d \left[\lambda_k(i) \frac{\tau}{n_k}, \lambda_k(i) \right]$
 - for all $k = 1, \ldots, q 1$, for all $i = 1, \ldots, d$,

$$\lambda_{k+1}(i)n_{k+1} - \lambda_k(i)n_k \geq N.$$

Main Results I

Theorem (Bayart, Matheron 2007)

If $\Lambda \subset (0, +\infty)^d$ is a monotonic Lipschitz curve then $(e^{\lambda(1)}B \times \cdots \times e^{\lambda(d)}B)_{\lambda \in \Lambda}$ shares a common hypercyclic vector.

Theorem (Bayart, Costa Jr, M. 2022)

If $\Lambda \subset (0, +\infty)^d$ is a Lipschitz curve then $(e^{\lambda(1)}B \times \cdots \times e^{\lambda(d)}B)_{\lambda \in \Lambda}$ shares a common hypercyclic vector.

Main Results II

We recall that the Hausdorff dimension of a set Λ is given by

$$\dim_{\mathcal{H}}(\Lambda) = \inf\{s > 0 : \mathcal{H}^s(\Lambda) = 0\}$$

where

$$\mathcal{H}^s(\Lambda) = \lim_{\varepsilon \to 0} \inf_{\mathsf{diam}(A_i) < \varepsilon} \left\{ \sum_{i=1}^{\infty} \mathsf{diam}(A_i)^s \right\}.$$

Theorem (Bayart, Costa Jr, M. 2022)

If $\Lambda \subset (0, +\infty)^d$ satisfies $\dim_{\mathcal{H}}(\Lambda) > 1$ then $(e^{\lambda(1)}B \times \cdots \times e^{\lambda(d)}B)_{\lambda \in \Lambda}$ does not admit a common hypercyclic vector.

Consequence : There exists $\Lambda \subset (0,+\infty)^2$ with $\operatorname{Leb}(\Lambda) = 0$ and $(e^{\lambda(1)}B \times \cdots \times e^{\lambda(d)}B)_{\lambda \in \Lambda}$ has no common hypercyclic vector.

Main Results III

Definition: Homogeneous box dimension

Let $\Lambda \subset \mathbb{R}^d$ be compact. We say that Λ has homogeneous box dimension at most $\gamma \in (0,d]$ if there exist $r \geq 2$, $C(\Lambda) > 0$ and, for all $m \geq 1$, a family $(\Lambda_{\mathbf{k}})_{\mathbf{k} \in \{1,\dots,r\}^m}$ of compact subsets of Λ such that for all $m \geq 1$,

- for all $\mathbf{k} \in \{1, \dots, r\}^m$, $\operatorname{diam}(\Lambda_{\mathbf{k}}) \leq C(\Lambda) \left(\frac{1}{r^{1/\gamma}}\right)^m$;
- $\Lambda \subset \bigcup_{\mathbf{k} \in \{1,...,r\}^m} \Lambda_{\mathbf{k}}$;
- for all $\mathbf{k} \in \{1, \dots, r\}^m$, $\Lambda_{k_1, \dots, k_m} \subset \Lambda_{k_1, \dots, k_{m-1}}$.

The homogeneous box dimension of Λ is defined as the infimum of the $\gamma \in (0, d]$ such that Λ has homogeneous box dimension at most γ and will be denoted $\dim_{HB}(\Lambda)$.

Theorem (Bayart, Costa Jr, M. 2022)

If $\Lambda \subset (0, +\infty)^d$ satisfies $\dim_{HB}(\Lambda) < 1$ then $(e^{\lambda(1)}B \times \cdots \times e^{\lambda(d)}B)_{\lambda \in \Lambda}$ admits a common hypercyclic vector.

Main Results IV

For every compact $\Lambda \subset \mathbb{R}^d$,

$$\dim_{\mathcal{H}}(\Lambda) \leq \dim_{\mathit{HB}}(\Lambda).$$

If Λ is selfsimilar with respect to r similarities with ratio ho then

$$\dim_{\mathcal{H}}(\Lambda) = \dim_{\mathit{HB}}(\Lambda) = \frac{-\log(r)}{\log(\rho)}.$$

In this context, it remains the case $\dim_{\mathcal{H}}(\Lambda) = 1$!

This case has begun to be studied by Costa Jr (2024) that gives a positive answer under some additional connectedness assumptions on Λ and a study of the non-connected case is in progress.

Main Results IV

For every compact $\Lambda \subset \mathbb{R}^d$,

$$\dim_{\mathcal{H}}(\Lambda) \leq \dim_{\mathit{HB}}(\Lambda).$$

If Λ is selfsimilar with respect to r similarities with ratio ho then

$$\dim_{\mathcal{H}}(\Lambda) = \dim_{\mathcal{HB}}(\Lambda) = \frac{-\log(r)}{\log(\rho)}.$$

In this context, it remains the case $\dim_{\mathcal{H}}(\Lambda) = 1$!

This case has begun to be studied by Costa Jr (2024) that gives a positive answer under some additional connectedness assumptions on Λ and a study of the non-connected case is in progress.

Warning: There exists a set $\Lambda \subset (0, +\infty)^2$ with $\dim_{\mathcal{H}}(\Lambda) = 1$ such that $(e^{\lambda(1)}B \times e^{\lambda(2)}B)_{\lambda \in \Lambda}$ does not admit a common hypercyclic vector.

Thank you for your attention.