Endpoint-homogeneous smooth fans

Rene Gril Rogina Joint work with Will Brian, UNC Charlotte

> University of Maribor, Slovenia Research supported by J1-4632

Definition

Let *F* be a fan and *n* be a positive integer. We say that *F* is $\frac{1}{n}$ -homogeneous if the action of its homeomorphism group has exactly *n* distinct orbits.

Cantor fan

Lelek fan

Harmonic fan

Acosta, Hoehn, Juárez give a full classification of $\frac{1}{3}$ -homogeneous smooth fans. They also prove that there is no $\frac{1}{4}$ -homogeneous smooth fan.

Definition

Let *F* be a fan and E(F) denote the set of its endpoints. We say that *F* is *endpoint-homogeneous* if for any $e, e' \in E(F)$ there exists a homeomorphism $h : F \to F$ such that h(e) = e'.

Cantor fan

Lelek fan

Harmonic fan

Endpoint-generated fans

Definition

Let F be a fan with top v.

- For any two distinct points $x, y \in F$ we use B[x, y] to denote the unique arc in F with endpoints x and y.
- **2** For any endpoint $e \in E(F)$, we call B[v, e] a blade of the fan F.
- We use B(F) = {B[v, e] | e ∈ E(F)} to denote the set of all blades of the fan F.

Definition

Let *F* be a fan and $X \subseteq [0, 1]$. We say that *F* is *X*-endpoint-generated (*X*-EPG) if for any blade $B = B[v, e] \in \mathcal{B}(F)$ there exists a homeomorphism $\varphi : [0, 1] \rightarrow B[v, e]$ such that

$$\mathbf{O} \varphi(\mathbf{0}) = \mathbf{v} \text{ and } \mathbf{v}$$

$$\varphi(X) = B \cap \overline{(E(F) \setminus B)}$$

Endpoint-generated fans

Cantor fan

Lelek fan

Harmonic fan

For which $X \subseteq [0, 1]$ does there exist an X-EPG smooth fan? What can be said about the relationship between $\frac{1}{n}$ -homogeneity, endpoint-homogeneity and endpoint-generation?

Endpoint-generated

Endpoint-homogeneous

 $\frac{1}{n}$ -homogeneous

• • • • • • • • • • • •

Problem

For which $X \subseteq [0, 1]$ does there exist an X-EPG smooth fan? What can be said about the relationship between $\frac{1}{n}$ -homogeneity, endpoint-homogeneity and endpoint-generation?

Endpoint-generated

Endpoint-homogeneous

 $\frac{1}{n}$ -homogeneous

Let $X \subseteq [0, 1]$, $X \neq \emptyset$, and suppose F is an X-EPG smooth fan.

- If $1 \notin X$, then E(F) is countable.
- If $0 \notin X$, then E(F) is uncountable.

Theorem

If $X \subseteq [0, 1]$, and there is an X-EPG smooth fan, then either $X = \emptyset$, or else $0 \in X$ or $1 \in X$ (or both).

Note that there are examples of *X*-EPG fans for sets *X* satisfying each of the four possibilities:

< □ > < //>

- **()** $X = \emptyset$: The simple *n*-od, for any $n \ge 3$, is \emptyset -EPG.
- **2** $0, 1 \in X$: The Lelek fan is [0, 1]-EPG.
- $1 \in X$: The Cantor fan is {1}-EPG.
- $0 \in X$: The star is {0}-EPG.

The classification of X-EPG smooth fans

Suppose $X \subseteq [0, 1]$ and there is an X-EPG fan. Then one of the following must hold:

- **1** $X = \emptyset, \{1\}, \text{ or } [0, 1], \text{ or }$
- 2 X is a closed subset of [0, 1] with $0 \in X$ and $1 \notin X$, or
- 3 X is a closed subset of [0, 1] with $0, 1 \in X$, and 1 is an isolated point of X (previous case \cup {1}).

Theorem

Suppose $X \subseteq [0, 1]$ and there is an X-EPG smooth fan. If $0 \notin X$ and $1 \in X$, then $X = \{1\}$.

Theorem

Suppose $X \subseteq [0, 1]$ with $1 \in X$, and there is an X-EPG smooth fan. Then either 1 is an isolated point of X, or X = [0, 1].

Fences and combs of fans

Let $A \subseteq [0, 1]^2$ and $y \in [0, 1]$. We use A_y to denote the set $A_y = \pi_1(A \cap ([0, 1] \times \{y\})) \subseteq [0, 1]$.

Definition

Let *F* be a smooth fan with top *v* and $A \subseteq [0, 1]^2$.

- We say that A is a fence if

 - **2** For each $y \in (0, 1]$, A_y is totally disconnected.
 - **③** For each $y_1, y_2 \in (0, 1]$, if $y_1 ≤ y_2$, then $A_{y_2} ⊆ A_{y_1}$.

We say that A is a *fence of the fan F* if A is homeomorphic to F \ {v}.

Definition

Let *F* be a fan and let *A* be a fence of the fan *F*. We call $A \cup ([0, 1] \times \{0\})$ a *comb of the fan F*.

Suppose $X \subseteq [0, 1]$ and there is an X-EPG smooth fan. If $0 \notin X$ and $1 \in X$, then $X = \{1\}$.

Comb for $X \cap \{0, 1\} = \{0\}$

Let $X \subseteq [0, 1]$ be s.t. $X \cap \{0, 1\} = \{0\}$. Let (y_n) be a sequence in [0, 1] s.t. its set of limit points is either X or $X \setminus \{0\}$.

イロト イポト イヨト イヨト

Let $X \subseteq [0, 1]$ be s.t. 1 is isolated in *X*. Construct the *Y*-EPG fan for $Y = X \setminus \{1\}$ using the given construction.

Let $X \subseteq [0, 1]$ be s.t. 1 is isolated in *X*. Construct the *Y*-EPG fan for $Y = X \setminus \{1\}$ using the given construction.

イロト イロト イヨト イ

Result

Theorem

Let $X \subseteq [0, 1]$ s.t. there exists an X-EPG smooth fan. Then there exists an endpoint-homogeneous X-EPG smooth fan.

Let $X \subseteq [0, 1]$ s.t. there exists an X-EPG smooth fan. Then there exists an endpoint-homogeneous X-EPG smooth fan.

Let $X \subseteq [0, 1]$ s.t. there exists an X-EPG smooth fan. Then there exists an endpoint-homogeneous X-EPG smooth fan.

Theorem

Let $X \subseteq [0, 1]$ s.t. there exists an X-EPG smooth fan and $X \notin \{\emptyset, \{0\}, \{1\}, \{0, 1\}, [0, 1]\}$. Then there exists a non-endpoint-homogeneous X-EPG smooth fan.

Theorem

Let $X \in \{\{0\}, \{1\}, \{0, 1\}, [0, 1]\}$. The X-EPG smooth fan is unique up to homeomorphism.

Problem

For which $X \subseteq [0, 1]$ does there exist an X-EPG smooth fan? What can be said about the relationship between $\frac{1}{n}$ -homogeneity, endpoint-homogeneity and endpoint-generation?

Endpoint-generated

Endpoint-homogeneous

 $\frac{1}{n}$ -homogeneous

$\frac{1}{n}$ -homogeneity

• There exist $\frac{1}{n}$ -homogeneous smooth fans that are not endpoint-homogeneous (and therefore not EPG):

2 There exist EPG (both endpoint-homogeneous and non-endpoint-homogeneous) smooth fans that are not $\frac{1}{n}$ -homogeneous (choose *X* = { $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ } ∪ {0}).

We have examples of $\frac{1}{3}$ - and $\frac{1}{5}$ -homogeneous smooth fans, we know that $\frac{1}{4}$ -homogeneous smooth fans do not exist. Can we give an example for each $n \ge 5$?

If a fan is endpoint-homogeneous, then each orbit from the action of the homeomorphism group must intersect each blade of the fan. With this in mind, it is simple to give examples of X such that the constructed X-EPG smooth fan is $\frac{1}{n}$ -homogeneous.

Example

For odd $n = 2k + 1 \ge 5$, we choose some $a_1, a_2, ..., a_k$ such that $0 < a_1 < \cdots < a_k < 1$, and let $X = \{0, a_1, ..., a_k\}$.

$$0 \quad a_1 \quad a_2 \quad a_3 \cdot \cdot \cdot a_k \qquad 1$$

Example

Let $\{p_i\}_{i\in\mathbb{Z}}$ be a subset of [0, 1] such that $p_i < p_j$ whenever i < j, and $\lim_{i\to\infty} p_i = 0$, and $\lim_{i\to\infty} p_i < 1$. Let $a_1 = \lim_{i\to\infty} p_i$, and if $n \ge 8$ fix some $a_2 < \cdots < a_m < 1$, where $m = \frac{n-4}{2}$. Let

$$X = \{p_i\}_{i \in \mathbb{Z}} \cup \{0, a_1\} \cup \{a_2, \dots, a_m\}.$$

This set X is illustrated below for n = 10.

For every $n \ge 5$ there exists a smooth fan that is $\frac{1}{n}$ -homogeneous, endpoint-homogeneous and EPG.

Theorem

For every $n \ge 5$ there exists a smooth fan that is $\frac{1}{n}$ -homogeneous, but is not endpoint-homogeneous (and therefore not EPG).

For larger *n* it becomes difficult to fully classify all $\frac{1}{n}$ -homogeneous smooth fans. Can anything be said for *n* = 5 or *n* = 6?

There exist non-smooth fans that are *X*-EPG for subsets *X* that do not appear in smooth fans (for example $[\frac{1}{2}, 1]$). Can we obtain a similar classification for non-smooth fans?

Thank you!

