Choquet simplex of invariant measures for minimal homeomorphisms on manifolds

Sejal Babel

Jagiellonian University

Based on joint work with Jernej Činč, Till Hauser, Dominik Kwietniak and Piotr Oprocha

イロト イヨト イヨト イヨト

Topological dynamical system

- X a compact metric space, $T\colon X\to X$ is continuous.
- $\mathcal{M}_T(X)$ the set of all *T*-invariant probability measures.

Topological dynamical system

- X a compact metric space, $T \colon X \to X$ is continuous.
- $\mathcal{M}_T(X)$ the set of all *T*-invariant probability measures.

What is a Choquet simplex?

イロト イロト イヨト イヨト 二日

Topological dynamical system

- X a compact metric space, $T \colon X \to X$ is continuous.
- $\mathcal{M}_T(X)$ the set of all *T*-invariant probability measures.

What is a Choquet simplex?

• A simplex is a compact convex subset K of a locally convex metric space.

イロト イヨト イヨト イヨト 一日

Topological dynamical system

- X a compact metric space, $T \colon X \to X$ is continuous.
- $\mathcal{M}_T(X)$ the set of all *T*-invariant probability measures.

What is a Choquet simplex?

- A simplex is a compact convex subset K of a locally convex metric space.
- Every $k \in K$ is a unique generalized convex combination of its extreme points.

イロト イヨト イヨト イヨト 三日

Topological dynamical system

- X a compact metric space, $T \colon X \to X$ is continuous.
- $\mathcal{M}_T(X)$ the set of all *T*-invariant probability measures.

What is a Choquet simplex?

- A simplex is a compact convex subset K of a locally convex metric space.
- Every $k \in K$ is a unique generalized convex combination of its extreme points.
- $\mathcal{M}_T(X)$ is a Choquet simplex with ergodic measures as extreme points.

(日)((四))((三)((三))((三))((三))((三)((三))((-)))((-))((-)))((-))((-)))((-))((-))((-))((-)))((-))(

Motivation

What class of dynamical systems can realise every Choquet simplex as a set of its invariant measures?

イロト イヨト イヨト イヨト 一日

What class of dynamical systems can realise every Choquet simplex as a set of its invariant measures?

Theorem (Downarowicz 1991)

For every Choquet simplex K there exists a **minimal subshift** (X,T) such that $\mathcal{M}_T(X) \approx K$.

Here, $A \approx B$ means A is affinely homeomorphic to B.

イロト イヨト イヨト イヨト

What class of dynamical systems can realise every Choquet simplex as a set of its invariant measures?

Theorem (Downarowicz 1991)

For every Choquet simplex K there exists a **minimal subshift** (X,T) such that $\mathcal{M}_T(X) \approx K$.

Here, $A \approx B$ means A is affinely homeomorphic to B.

Given a Choquet simplex K, can we realise it as a set of invariant measures for minimal homeomorphism on a manifold?

イロト イヨト イヨト イヨト

Theorem A (B., Činč, Hauser, Kwietniak, Oprocha)

Let \mathbb{M} be a compact manifold of dimension $d \geq 2$ with a minimal and uniquely ergodic homeomorphism F and K be a Choquet simplex. Then there exists a minimal homeomorphism $f_K : \mathbb{M} \to \mathbb{M}$ such that $\mathcal{M}_{f_K}(\mathbb{M}) \approx K$.

- $\mu \in \mathcal{M}_T(X)$ is **ergodic** if every *T*-invariant Borel subset $B \subseteq X$ has measure 0 or 1.
- (X,T) is a **minimal system** if X is the only non-empty closed T-invariant subset of X.

Black Box theorem

Theorem (Beguin, Crovisier, Le Roux)

Let F be a minimal and uniquely ergodic homeomorphism on a compact manifold \mathbb{M} of dimension $d \geq 2$ and G be a homeomorphism on some Cantor space C. Then there exists a minimal homeomorphism $\tilde{F} : \mathbb{M} \to \mathbb{M}$ which is universally isomorphic to $F \times G$.

• In particular $\mathcal{M}_{\tilde{F}}(\mathbb{M}) \approx \mathcal{M}_{F \times G}(\mathbb{M} \times C)$

5/12

Black Box Theorem

Black Box theorem

Theorem (Beguin, Crovisier, Le Roux)

Let F be a minimal and uniquely ergodic homeomorphism on a compact manifold \mathbb{M} of dimension $d \geq 2$ and G be a homeomorphism on some Cantor space C. Then there exists a minimal homeomorphism $\tilde{F} : \mathbb{M} \to \mathbb{M}$ which is universally isomorphic to $F \times G$.

Black Box Theorem

• In particular $\mathcal{M}_{\tilde{F}}(\mathbb{M}) \approx \mathcal{M}_{F \times G}(\mathbb{M} \times C) \approx K$.

Reduced theorem

Theorem B (B., Činč, Hauser, Kwietniak, Oprocha)

For every Choquet simplex K and $\alpha \notin \mathbb{Q}$, there exists a Cantor homeomorphism G such that

• (C,G) is a topological extension of the irrational rotation R_{α} ,

Definition

(X,T) is a **topological extension** of (Y,S) if there exists $\varphi : X \xrightarrow[continuous]{onto} Y$ such that $\varphi \circ T = S \circ \varphi$.

イロト イヨト イヨト イヨト 二百

Theorem B (B., Činč, Hauser, Kwietniak, Oprocha)

For every Choquet simplex K and $\alpha \notin \mathbb{Q}$, there exists a Cantor homeomorphism G such that

- (C,G) is a topological extension of the irrational rotation R_{α} ,
- $\mathcal{M}_G(C) \approx K$,

Theorem B (B., Činč, Hauser, Kwietniak, Oprocha)

For every Choquet simplex K and $\alpha \notin \mathbb{Q},$ there exists a Cantor homeomorphism G such that

- (C,G) is a topological extension of the irrational rotation R_{α} ,
- $\mathcal{M}_G(C) \approx K$,
- For every $\mu \in \mathcal{M}_{G}^{e}(C)$, the measure preserving systems (C, G, μ) and $(\mathbb{T}, R_{\alpha}, \lambda_{\mathbb{T}})$ are isomorphic.

- Choose an irrational $\alpha \notin \operatorname{Spec}(\mathbb{M}, F, \nu)$.
- Using Theorem B construct the topological extension of R_{α} .
- For every $\mu \in \mathcal{M}_{G}^{e}(C)$ the systems (C, G, μ) and (\mathbb{M}, F, ν) are disjoint.
- Hence $\mathcal{M}_{\tilde{F}}(\mathbb{M}) \approx \mathcal{M}_{F \times G}(\mathbb{M} \times C) \approx \mathcal{M}_F(\mathbb{M}) \times \mathcal{M}_G(C) \approx K$.

• An irrational rotation R_{α} on the circle.

イロト イロト イヨト イヨト 二日

• An irrational rotation R_{α} on the circle.

Definition (Marked semicocycles)

A marked semicocycle $f: \mathbb{T} \to \{0, 1, 2\}$ is a function such that

•
$$f^{-1}(\{2\}) = [\gamma, 1),$$

• has at most countably many discontinuities.

• An irrational rotation R_{α} on the circle.

Definition (Marked semicocycles)

A marked semicocycle $f: \mathbb{T} \to \{0, 1, 2\}$ is a function such that

•
$$f^{-1}(\{2\}) = [\gamma, 1),$$

• has at most countably many discontinuities.

• Minimal and uniquely ergodic subshift X_f over $\{0, 1, 2\}$.

イロト イヨト イヨト イヨト 二百

Theorem (Edwards 1975)

Every Choquet simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices in some locally convex linear space.

• K is Bauer simplex if ext(K) is closed.

イロト イヨト イヨト イヨト

Theorem (Edwards 1975)

Every Choquet simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices in some locally convex linear space.

- K is Bauer simplex if ext(K) is closed.
- Hence we get a decreasing sequence K_n such that $K = \bigcap_{n \in \mathbb{N}} K_n$.

イロト イヨト イヨト イヨト

Theorem (Edwards 1975)

Every Choquet simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices in some locally convex linear space.

- K is Bauer simplex if ext(K) is closed.
- Hence we get a decreasing sequence K_n such that $K = \bigcap_{n \in \mathbb{N}} K_n$.
- If K_n is a Bauer simplex then $K_n \approx \mathcal{M}(ext(K_n))$.

(日) (종) (종) (종) (종)

Idea for the construction

The main idea is to construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ such that

The main idea is to construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ such that

• $\pi_n: K_n \to \mathcal{M}_{\sigma}(\{0, 1, 2\}^{\mathbb{Z}})$ is a continuous embedding,

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 -

Idea for the construction

The main idea is to construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ such that

- $\pi_n: K_n \to \mathcal{M}_{\sigma}(\{0, 1, 2\}^{\mathbb{Z}})$ is a continuous embedding,
- For a sequence $\varepsilon_n \to 0$, $\pi_n(z)$ is ϵ_n close to $\pi_{n+1}(z)$ for every $z \in K_{n+1} \subseteq K_n$.

(日) (四) (注) (注) (注) (三)

The main idea is to construct a sequence $(\pi_n)_{n\in\mathbb{N}}$ such that

- $\pi_n: K_n \to \mathcal{M}_{\sigma}(\{0, 1, 2\}^{\mathbb{Z}})$ is a continuous embedding,
- For a sequence $\varepsilon_n \to 0$, $\pi_n(z)$ is ϵ_n close to $\pi_{n+1}(z)$ for every $z \in K_{n+1} \subseteq K_n$.

Hence $\forall z \in K$

$$\lim_{n \to \infty} \pi_n(z) = \pi_\infty(z)$$

exist and is a continuous embedding from $K \to \mathcal{M}_{\sigma}(\{0, 1, 2\}^{\mathbb{Z}})$.

▲ロト ▲園 ト ▲ ヨト ▲ ヨト ― ヨー つくで

- The limit of this inductive construction π_∞ is an affine embedding into *M*_σ({0,1,2}^Z.
- At every step n we also construct X_n such that $\mathcal{M}_{\sigma}(X_n) \approx K_n$.
- Then we prove that there exists a subshift $X_{\infty} \subseteq \{0, 1, 2\}^{\mathbb{Z}}$ defined by

$$X_{\infty} = \bigcap_{N=1}^{\infty} \overline{\left(\bigcup_{n=N}^{\infty} X_n\right)}$$

such that $\mathcal{M}_{\sigma}(X_{\infty}) \approx K$.

- (X_{∞}, σ) is a topological extension of R_{α} .
- $\forall \mu \in \mathcal{M}^{e}_{\sigma}(X_{\infty})$ the system $(X_{\infty}, \sigma, \mu)$ is isomorphic to $(\mathbb{T}, R_{\alpha}, \lambda_{\mathbb{T}})$.

Thank you for your attention