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Dynamical system

Topological dynamical system

X - a compact metric space, T : X → X is continuous.

MT (X) - the set of all T -invariant probability measures.

What is a Choquet simplex?

A simplex is a compact convex subset K of a locally convex metric space.

Every k ∈ K is a unique generalized convex combination of its extreme
points.

MT (X) is a Choquet simplex with ergodic measures as extreme points.
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Motivation

What class of dynamical systems can realise every Choquet simplex as a set of
its invariant measures?

Theorem (Downarowicz 1991)
For every Choquet simplex K there exists a minimal subshift (X, T ) such
that MT (X) ≈ K.

Here, A ≈ B means A is affinely homeomorphic to B.

Given a Choquet simplex K, can we realise it as a set of invariant measures
for minimal homeomorphism on a manifold?
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Main theorem

Theorem A (B., Činč, Hauser, Kwietniak, Oprocha)
Let M be a compact manifold of dimension d ≥ 2 with a minimal and uniquely
ergodic homeomorphism F and K be a Choquet simplex. Then there exists a
minimal homeomorphism fK : M → M such that MfK

(M) ≈ K.

µ ∈ MT (X) is ergodic if every T -invariant Borel subset B ⊆ X has
measure 0 or 1.

(X, T ) is a minimal system if X is the only non-empty closed
T -invariant subset of X.
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Black Box theorem

Theorem (Beguin, Crovisier, Le Roux)
Let F be a minimal and uniquely ergodic homeomorphism on a compact
manifold M of dimension d ≥ 2 and G be a homeomorphism on some Cantor
space C. Then there exists a minimal homeomorphism F̃ : M → M which is
universally isomorphic to F × G.

In particular MF̃ (M) ≈ MF ×G(M × C)
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Reduced theorem

Theorem B (B., Činč, Hauser, Kwietniak, Oprocha)
For every Choquet simplex K and α /∈ Q, there exists a Cantor
homeomorphism G such that

(C, G) is a topological extension of the irrational rotation Rα,

MG(C) ≈ K,

For every µ ∈ Me
G(C), the measure preserving systems (C, G, µ) and

(T, Rα, λT) are isomorphic.

Definition

(X, T ) is a topological extension of (Y, S) if there exists φ : X
onto−−−−−−−→

continuous
Y

such that φ ◦ T = S ◦ φ.
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How Black Box works?

Choose an irrational α /∈ Spec(M, F, ν).

Using Theorem B construct the topological extension of Rα.

For every µ ∈ Me
G(C) the systems (C, G, µ) and (M, F, ν) are disjoint.

Hence MF̃ (M) ≈ MF ×G(M × C) ≈ MF (M) × MG(C)≈ K.
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Ingredients for the construction

An irrational rotation Rα on the circle.

Definition (Marked semicocycles)
A marked semicocycle f : T → {0, 1, 2} is a function such that

f−1({2}) = [γ, 1),
has at most countably many discontinuities.

Minimal and uniquely ergodic subshift Xf over {0, 1, 2}.
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Ingredients for the construction

Theorem (Edwards 1975)
Every Choquet simplex is affinely homeomorphic to the intersection of a
decreasing sequence of Bauer simplices in some locally convex linear space.

K is Bauer simplex if ext(K) is closed.

Hence we get a decreasing sequence Kn such that K = ∩n∈NKn.

If Kn is a Bauer simplex then Kn ≈ M(ext(Kn)).

Sejal Babel Choquet simplices 9 / 12



Ingredients for the construction

Theorem (Edwards 1975)
Every Choquet simplex is affinely homeomorphic to the intersection of a
decreasing sequence of Bauer simplices in some locally convex linear space.

K is Bauer simplex if ext(K) is closed.

Hence we get a decreasing sequence Kn such that K = ∩n∈NKn.

If Kn is a Bauer simplex then Kn ≈ M(ext(Kn)).

Sejal Babel Choquet simplices 9 / 12



Ingredients for the construction

Theorem (Edwards 1975)
Every Choquet simplex is affinely homeomorphic to the intersection of a
decreasing sequence of Bauer simplices in some locally convex linear space.

K is Bauer simplex if ext(K) is closed.

Hence we get a decreasing sequence Kn such that K = ∩n∈NKn.

If Kn is a Bauer simplex then Kn ≈ M(ext(Kn)).

Sejal Babel Choquet simplices 9 / 12



Idea for the construction

The main idea is to construct a sequence (πn)n∈N such that

πn : Kn → Mσ({0, 1, 2}Z) is a continuous embedding,

For a sequence εn → 0, πn(z) is ϵn close to πn+1(z) for every
z ∈ Kn+1 ⊆ Kn.

Hence ∀ z ∈ K
lim

n→∞
πn(z) = π∞(z)

exist and is a continuous embedding from K → Mσ({0, 1, 2}Z).
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The limit of this inductive construction π∞ is an affine embedding into
Mσ({0, 1, 2}Z.

At every step n we also construct Xn such that Mσ(Xn) ≈ Kn.

Then we prove that there exists a subshift X∞ ⊆ {0, 1, 2}Z defined by

X∞ =
∞⋂

N=1
(

∞⋃
n=N

Xn)

such that Mσ(X∞) ≈ K.

(X∞, σ) is a topological extension of Rα.

∀µ ∈ Me
σ(X∞) the system (X∞, σ, µ) is isomorphic to (T, Rα, λT).
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Thank you for your attention
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