Semi-topological properties of the *K*-topological version of the Jordan curve theorem and its applications

Sang-Eon Han, Jeonbuk National University, Korea (Republic of) sehan@jbnu.ac.kr Homepage:https://sehan.jbnu.ac.kr

July 8-12, 2024

(1) S.-E. Han, Covering rough set structures for a locally finite covering approximation space, *Information Sciences* **480**(2019) 420-437.

(2) S.-E. Han, Roughness measures of locally finite covering rough sets, *Int. Jour. Approximate Reasoning.* 105(2019) 368-385.
(3) S.-E. Han, Jordan surface theorem for simple closed *SST*-surfaces, *Topol. Appl.* 272(2020) 106953.
(4) S.-E. Han, Digital topological rough set structures and topological operators, *Topol. Appl.* 301(2021) 107507.
(5) S.-E. Han, Wei Yao, Semi-topological properties of the *K*-topological version of the Jordan curve theorem, *Results in Mathematics*, 79(7) (2024), 1-20.

伺 ト イヨト イヨト

Aims of the talk

Let C'_{K} be a simple closed Khalimsky (K-, for brevity) curve with *l*-elements in (\mathbb{Z}^2, κ^2) .

• Investigation of the semi-topological properties of the Khalimsky (K-, for brevity) topological version of the classical Jordan curve theorem.

On the K-topological plane, i.e., (\mathbb{Z}^2, κ^2) , consider a simple closed K-curve with *I* elements, denoted by C'_K . Then

- every C'_K separates (\mathbb{Z}^2, κ^2) into exactly two nonempty components that may be neither open nor closed in (\mathbb{Z}^2, κ^2) . Based on these features, we need to investigate semi-topological features of C'_K and $\mathbb{Z}^2 \smallsetminus C'_K$ in (\mathbb{Z}^2, κ^2) . We first show that
- Not every $C_{\mathcal{K}}^{l}$ is always semi-open or semi-closed in $(\mathbb{Z}^{2}, \kappa^{2})$.
- We find a condition for C_K^l to be either semi-open or semi-closed in (\mathbb{Z}^2, κ^2) .

- After establishing a continuous analog of $C'_{\mathcal{K}}$ denoted by $\mathcal{A}(C'_{\mathcal{K}}) (\subset \mathbb{R}^2)$, we show that $\mathcal{A}(C'_{\mathcal{K}})$ is both semi-open and semi-closed in $(\mathbb{R}^2, \mathcal{U})$ that is the 2-dimensional real plane with the usual topology.
- We show that $\mathcal{A}(C'_{K})$ always separates $(\mathbb{R}^{2}, \mathcal{U})$ into two non-empty components, denoted by *C* and *D*, that are both semi-open and semi-closed to obtain a partition of \mathbb{R}^{2} , i.e., $\{C, D, \mathcal{A}(C'_{K})\}$.
- Finally, given C'_K , we obtain a partition of \mathbb{Z}^2 , i.e., $\{I(C'_K), O(C'_K), C'_K\}$ and prove that each of $I(C'_K)$ and $O(C'_K)$ is semi-closed and it need not be semi-open, where $I(C'_K)$ and $O(C'_K)$ are called an inside and outside of C'_K , respectively.

• For $a, b \in \mathbb{Z}$, $[a, b]_{\mathbb{Z}} := \{t \in \mathbb{Z} \mid a \le t \le b\}.$

• *n*-dimensional *K*-topological space, $n \ge 1:(\mathbb{Z}^n, \kappa^n)$ *Khalimsky line topology* κ on \mathbb{Z} , denoted by (\mathbb{Z}, κ) , is induced by the set

$$\{[2n-1,2n+1]_{\mathbb{Z}} \mid n \in \mathbb{Z}\}$$
 as a subbase.

Furthermore, the product topology on \mathbb{Z}^n induced by (\mathbb{Z}, κ) is called the *n*-dimensional *K*-topological space, denoted by (\mathbb{Z}^n, κ^n) . • For a point $p := (x, y) \in \mathbb{Z}^2$, we take the notations $N_4(p) := \{(x \pm 1, y), p, (x, y \pm 1)\},$ $N_8(p) := \{(x \pm 1, y), p, (x, y \pm 1), (x \pm 1, y \pm 1).$ Let us now recall some structures of (\mathbb{Z}^n, κ^n) .

• A point $x = (x_i)_{i \in [1,n]_{\mathbb{Z}}} \in \mathbb{Z}^n$ is *pure open* if all coordinates are odd, and *pure closed* if each of the coordinates is even and the other points in \mathbb{Z}^n are called *mixed*. These points are shown like the following symbols: The symbol \blacksquare (*resp.* •) means a pure closed point (*resp.* a mixed point) (see Figure 1) and further, a black jumbo dot represents a pure open point.

• $(\mathbb{Z}^n)_o$ (*resp.* $(\mathbb{Z}^n)_e$) indicates the set of all pure open (*resp.* pure closed) points of (\mathbb{Z}^n, κ^n) .

・ 同 ト ・ ヨ ト ・ ヨ ト

• $(\mathbb{Z}^n)_m = \mathbb{Z}^n \smallsetminus ((\mathbb{Z}^n)_e \cup (\mathbb{Z}^n)_o)$ stands for the set of all mixed points of $(\mathbb{Z}^n, \kappa^n), n \in \mathbb{N} \smallsetminus \{1\}.$

• For $X \subset \mathbb{Z}^n$, $SN_K(p)$:= the smallest open set of the point p in (X, κ_X^n) . Besides, in (X, κ_X^n) we will take the notation $Cl(\{p\})$ for the closure of the given singleton $\{p\}$.

• Given a topological space (X, T), a subset A of (X, T) is semi-open if and only if $A \subset Cl(Int(A))$ (Levine (1963)) and a subset B of (X, T) is semi-closed if and only if $Int(Cl(B)) \subset B$ (Crosseley et al. (1978, 1971)), where "Int" means the interior of the given set B under (X, T). Hence it is clear that each of an empty set and the total set is both semi-open and semi-closed.

Definition 1

We say that a simple closed K-curve with I elements in $(\mathbb{Z}^2, \kappa^2), l \in \mathbb{N}_e \setminus \{2, 6\}$, denoted by $C_K^{2,l}, l \ge 4$, is a finite sequence $(x_i)_{i \in [0,l-1]_{\mathbb{Z}}} \subset \mathbb{Z}^2$ such that x_i and x_j are K-adjacent if and only if $|i - j| = \pm 1 \pmod{l}$ (see Figures 1, 2, 5, and 8), where we say that x_i and x_j are K-adjacent if $x_i \in SN_K(x_j)$ or $x_j \in SN_K(x_i)$.

Figure 1

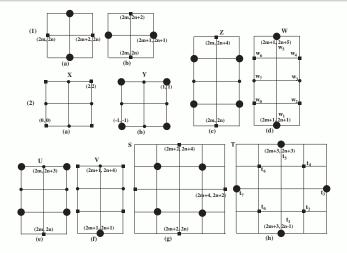


Figure: (1) Each of (a) and (b) is C_{K}^{4} . (2) Configuration of the several kinds of C_{K}^{8} in (a)-(h) as examples.

38th-SumTopo-2024-Coimbra-Han

Figure 2

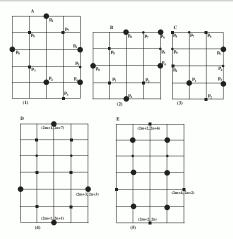


Figure: Configuration of several types of C_{K}^{10} as examples. Furthermore, A is not semi-closed but semi-open (see (1)). B is both semi-closed and semi-open (see (2)). C is neither semi-open nor semi-closed (see (3)). D

Some properties of simple closed *K*-curves with respect to the semi-openness and semi-closedness

Lemma 3.1

(Han et al.(2023)) and Nada (2004)) In (\mathbb{Z}^n, κ^n) , a non-empty set $X(\subset \mathbb{Z}^n)$ is semi-open if and only if for each $x \in X$, $SN_{\mathcal{K}}(x) \cap X_{op} \neq \emptyset$.

Using Lemma 3.1 and the notions of semi-open and semi-closed, we obtain the following (see Lemma 3.2).

Lemma 3.1

(Han et al. (2023)) In (\mathbb{Z}^n, κ^n) , $X (\subset \mathbb{Z}^n)$ is semi-closed if and only if for each $y \in \mathbb{Z}^n \smallsetminus X$, $SN_K(y) \cap (\mathbb{Z}^n \smallsetminus X)_{op} \neq \emptyset$.

Some properties of simple closed *K*-curves with respect to the semi-openness and semi-closedness

Lemma 3.1

(Han et al.(2023)) and Nada (2004)) In (\mathbb{Z}^n, κ^n) , a non-empty set $X(\subset \mathbb{Z}^n)$ is semi-open if and only if for each $x \in X$, $SN_{\mathcal{K}}(x) \cap X_{op} \neq \emptyset$.

Using Lemma 3.1 and the notions of semi-open and semi-closed, we obtain the following (see Lemma 3.2).

Lemma 3.1

(Han et al. (2023)) In (\mathbb{Z}^n, κ^n) , $X(\subset \mathbb{Z}^n)$ is semi-closed if and only if for each $y \in \mathbb{Z}^n \setminus X$, $SN_K(y) \cap (\mathbb{Z}^n \setminus X)_{op} \neq \emptyset$.

Theorem 3.2 (Results in Math, 2024, Han)

Let $C'_{\mathcal{K}} := (c_i)_{i \in [0, l-1]_{\mathbb{Z}}}$ with the following condition (1) or (2). (1) There is a subsequence

$$X_1 := \{c_{t-1(mod \ l)}, c_t, c_{t+1(mod \ l)}\}$$
(3.2)

of C'_K such that (1-1) each of $c_{t-1(mod \ l)}$ and $c_{t+1(mod \ l)}$ is a pure open point, (1-2) c_t is a pure closed point, and (1-3) there is a mixed point $c \in \mathbb{Z}^2 \setminus C'_K$ such that $\{c_{t-1(mod \ l)}, c_{t+1(mod \ l)}\} \subset SN_K(c).$

Theorem 3.2-continued (Results in Math, 2024, Han)

(2) There is a subsequence

$$\begin{cases} X_2 := \{c_{t-3(mod \ l)}, c_{t-2(mod \ l)}, c_{t-1(mod \ l)}, c_t, \\ c_{t+1(mod \ l)}, c_{t+2(mod \ l)}, c_{t+3(mod \ l)}\} \end{cases}$$
(3.3)

of C_K^l such that

$$\begin{cases} A := \{c_{t-3(mod \ l)}, c_{t-1(mod \ l)}, c_{t+1(mod \ l)}, \\ c_{t+3(mod \ l)}\} \subset (\mathbb{Z}^2)_o, A \subset N_8(c), \\ \text{where } c \in \mathbb{Z}^2 \smallsetminus C'_K \text{ and } c \in (\mathbb{Z}^2)_e. \end{cases}$$
(3.4)

Then $C'_{\mathcal{K}}$ is not semi-closed in (\mathbb{Z}^2, κ^2) .

Example 3.5, (2024)

(1) Consider the C_K^4 in Figure 1(1)(a) and (b). Based on the cases, by Lemmas 3.1 and 3.2, it is clear that each C_K^4 in Figure 1(1) is not semi-closed but only semi-open in (\mathbb{Z}^2, κ^2) (see the condition (1) of Theorem 3.6). (2) Consider the $C_K^8 := (y_i)_{i \in [0,7]_{\mathbb{Z}}}$ in Figure 1(2)(b). Then, owing to the given four points $y_0 := (1, 1), y_2 := (-1, 1), y_4 := (-1, -1), y_6 := (1, -1)$ in C_K^8 as in Figure 1(2)(b), it is not semi-closed but semi-open in (\mathbb{Z}^2, κ^2)

(see the condition (1) of Theorem 3.6).

Figure 3

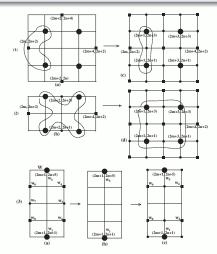


Figure: (1) and (2) The process of being the non-semi-closedness of the given C_{K}^{8} . (3) The proof of the non-semi-openness of the given C_{K}^{8} .

38th-SumTopo-2024-Coimbra-Han

Theorem 3.6, Results in Math, 2024, Han

There are three types of C'_K according to the number I of C'_K , as follows:

(*1) Either semi-open (not semi-closed) or semi-closed (not semi-open);

(*2) Both semi-open and semi-closed; or

(*3) Neither semi-open nor semi-closed.

To be precise,

(1) in the case of I = 4, C_{K}^{4} is semi-open (not semi-closed), (2) in the case of I = 8, C_{K}^{8} appears with one of the types of (*1) and (*2), and

(3) in the case of $I \notin \{4, 8\}$, the semi-openness and somi closedness of C' depends on the situation

semi-closedness of C'_K depends on the situation.

Note that C'_{K} may be neither semi-open nor semi-closed in $(\mathbb{Z}^{2}, \kappa^{2})$ if $10 \leq l \in \mathbb{N}_{e}$, i.e., $l \notin \{4, 8\}$.

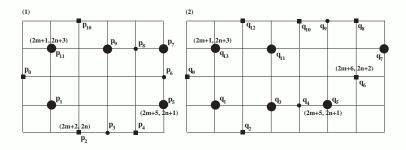


Figure: As mentioned in Theorem 3.6, in the case of C'_{K} with $l \in [10, \infty)_{\mathbb{Z}} \cap \mathbb{N}_{e}$, the semi-openness and semi-closedness of C'_{K} depends on the situation, as follows: (1) Configuration of both the non-semi-openness and non-semi-closedness of the given C^{12}_{K} . (2) Configuration of both the non-semi-openness and non-semi-openness of the given C^{14}_{K} .

< □ > < 同 > < 回 >

Proposition 3.7 (Results in Math, 2024, Han)

 C'_{K} is not semi-closed in $(\mathbb{Z}^{2}, \kappa^{2})$ if and only if it has a subset X_{1} of (3.2) satisfying the properties of (1-1)–(1-3) of Theorem 3.2 or $X_{2}(\subset C'_{K})$ of (3.3) satisfying the properties of (3.4) of Theorem 3.2.

Thoerem 3.8

A subset $X \subset \mathbb{Z}^2$ is not semi-closed in (\mathbb{Z}^2, κ^2) if and only if there is a point $p \in \mathbb{Z}^2 \setminus X$ such that

$$\left\{ \begin{array}{l} (1) \ p \in (\mathbb{Z}^2)_m \ \text{and} \ N_4(p) \cap (\mathbb{Z}^2)_o \subset X \ \text{or} \\ (2) \ p \in (\mathbb{Z}^2)_e \ \text{and} \ N_8(p) \setminus N_4(p) \subset X. \end{array} \right\}$$
(3.6)

Establishment of an operator transforming a subspace of (\mathbb{Z}^2, κ^2) into a subspace of $(\mathbb{R}^2, \mathcal{U})$

Definition 2, (Comput. Appl. Math., 2017, Han)

For $p := (p_1, p_2) \in (\mathbb{Z}^2, \kappa^2)$, the continuous analog of the point p, denoted by K_p , is defined as follows (see Figure 6);

$$\begin{cases} \{(t_1, t_2) \mid t_i \in [2x_i - 0.5, 2x_i + 0.5], i \in \{1, 2\}\}, \\ \text{if } p = (2x_1, 2x_2); \\ \{(t_1, t_2) \mid t_i \in (2x_i + 0.5, 2x_i + 1.5), i \in \{1, 2\}\}, \\ \text{if } p = (2x_1 + 1, 2x_2 + 1); \\ \{(t_1, t_2) \mid t_1 \in (2x_1 + 0.5, 2x_1 + 1.5), t_2 \in [2x_2 - 0.5, 2x_2 + 0.5]\}, \\ \text{if } p = (2x_1 + 1, 2x_2); \text{ and} \\ \{(t_1, t_2) \mid t_1 \in [2x_1 - 0.5, 2x_1 + 0.5], t_2 \in (2x_2 + 0.5, 2x_2 + 1.5)\}, \\ \text{if } p = (2x_1, 2x_2 + 1). \end{cases}$$

Figure 6

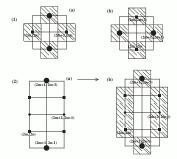


Figure: Configuration of an $\mathcal{A}(C_{\mathcal{K}}^4)$ (see (1)) and an $\mathcal{A}(C_{\mathcal{K}}^8)$ (see the process from (a) to (b) in (2)) that are both semi-open and semi-closed in $(\mathbb{R}^2, \mathcal{U})$.

Definition 3 (Results in Math, 2024, Han)

For $X \subset \mathbb{Z}^2$, using $K_p, p \in X \subset \mathbb{Z}^2$, an operator (or continuous analog) is defined as

$$\begin{cases} \mathcal{A}: P(\mathbb{Z}^2) \to P(\mathbb{R}^2) \text{ such that} \\ \mathcal{A}(X) = \bigcup_{p \in X} K_p \subset \mathbb{R}^2, \text{ e.g.} \\ \mathcal{A}(\mathbb{Z}^2) = \bigcup_{p \in \mathbb{Z}^2} K_p = \mathbb{R}^2. \end{cases}$$

$$(4.2)$$

In (4.2), P(T) means the power set of the given set T, where $T \in \{\mathbb{Z}^2, \mathbb{R}^2\}$. Then we assume $\mathcal{A}(X)$ to be $(\mathcal{A}(X), \mathcal{U}_{\mathcal{A}(X)})$ that is a subspace of the usual topology $(\mathbb{R}^2, \mathcal{U})$.

Lemma 4.1

For distinct points $x_1, x_2 \in X \subset (\mathbb{Z}^2, \kappa^2)$, we obtain the following: (1) If x_1 is *K*-adjacent to x_2 , then the set $K_{x_1} \cup K_{x_2}$ is connected in $(\mathbb{R}^2, \mathcal{U})$. The converse also holds. (2) If x_1 is not *K*-adjacent to x_2 , then the set $K_{x_1} \cup K_{x_2}$ is

disconnected in $(\mathbb{R}^2, \mathcal{U})$. The converse also holds.

_emma 4.4

The operator $\mathcal A$ of (4.2) preserves both the connectedness and disconnectedness.

Theorem 4.5

For any C_K^l , $\mathcal{A}(C_K^l)$ is both semi-open and semi-closed in $(\mathbb{R}^2, \mathcal{U})$.

A (1) > A (2) > A

Lemma 4.1

For distinct points $x_1, x_2 \in X \subset (\mathbb{Z}^2, \kappa^2)$, we obtain the following: (1) If x_1 is *K*-adjacent to x_2 , then the set $K_{x_1} \cup K_{x_2}$ is connected in $(\mathbb{R}^2, \mathcal{U})$. The converse also holds. (2) If x_1 is not *K*-adjacent to x_2 , then the set $K_{x_1} \cup K_{x_2}$ is

disconnected in $(\mathbb{R}^2, \mathcal{U})$. The converse also holds.

Lemma 4.4

The operator \mathcal{A} of (4.2) preserves both the connectedness and disconnectedness.

Theorem 4.5

For any C_K^l , $\mathcal{A}(C_K^l)$ is both semi-open and semi-closed in $(\mathbb{R}^2, \mathcal{U})$.

・ 同 ト ・ ヨ ト ・ ヨ

Lemma 4.1

For distinct points $x_1, x_2 \in X \subset (\mathbb{Z}^2, \kappa^2)$, we obtain the following: (1) If x_1 is *K*-adjacent to x_2 , then the set $K_{x_1} \cup K_{x_2}$ is connected in $(\mathbb{R}^2, \mathcal{U})$. The converse also holds. (2) If x_1 is not *K*-adjacent to x_2 , then the set $K_{x_1} \cup K_{x_2}$ is

disconnected in $(\mathbb{R}^2, \mathcal{U})$. The converse also holds.

Lemma 4.4

The operator \mathcal{A} of (4.2) preserves both the connectedness and disconnectedness.

Theorem 4.5

For any $C'_{\mathcal{K}}$, $\mathcal{A}(C'_{\mathcal{K}})$ is both semi-open and semi-closed in $(\mathbb{R}^2, \mathcal{U})$.

(日本) (日本) (日本)

Proposition 4.6

 $\mathcal{A}(C'_{K})$ separates $(\mathbb{R}^{2}, \mathcal{U})$ into exactly two non-empty components that are both semi-open and semi-closed. Namely, there is a partition $\{\mathcal{A}(C'_{K}), C, D\}$ of \mathbb{R}^{2} , where *C* and *D* are non-empty components of $\mathbb{R}^{2} \setminus \mathcal{A}(C'_{K})$ and one of them is bounded and the other is unbounded under the Euclidean metric.

Semi-topological properties of the K-topological version of the Jordan curve theorem

Remark 5.1

While C'_K separates (\mathbb{Z}^2, κ^2) into exactly two components (Kiselman (2000) and Šlapal (2006, 2008)), each of the two components is neither closed nor open in (\mathbb{Z}^2, κ^2) . For instance, consider the set $Z := C^8_K$ in Figure 1(2)(c). Then the finite component of $\mathbb{Z}^2 \setminus Z$ may be neither closed nor open in (\mathbb{Z}^2, κ^2) . Besides, the infinite component of $\mathbb{Z}^2 \setminus Z$ is neither closed nor open in (\mathbb{Z}^2, κ^2) .

Definition 4 (Results in Math, 2024, Han)

Given a C'_K , consider $\mathcal{A}(C'_K)$. Then, we define the following two notions.

(1)
$$I(C_K^l) := B(\mathbb{R}^2 \smallsetminus \mathcal{A}(C_K^l)) \cap \mathbb{Z}^2$$
, where $B(\mathbb{R}^2 \smallsetminus \mathcal{A}(C_K^l))$ means the bounded component of $\mathbb{R}^2 \searrow \mathcal{A}(C_K^l)$

38th-SumTopo-2024-Coimbra-Han

Semi-topological properties of the K-topological version of the Jordan curve theorem

Remark 5.1

While C'_K separates (\mathbb{Z}^2, κ^2) into exactly two components (Kiselman (2000) and Šlapal (2006, 2008)), each of the two components is neither closed nor open in (\mathbb{Z}^2, κ^2) . For instance, consider the set $Z := C^8_K$ in Figure 1(2)(c). Then the finite component of $\mathbb{Z}^2 \setminus Z$ may be neither closed nor open in (\mathbb{Z}^2, κ^2) . Besides, the infinite component of $\mathbb{Z}^2 \setminus Z$ is neither closed nor open in (\mathbb{Z}^2, κ^2) .

Definition 4 (Results in Math, 2024, Han)

Given a C'_K , consider $\mathcal{A}(C'_K)$. Then, we define the following two notions. (1) $U(C'_K) = \mathcal{B}(\mathbb{T}^2 - \mathcal{A}(C'_K)) \oplus \mathbb{T}^2$

(1)
$$I(C'_{K}) := B(\mathbb{R}^{2} \smallsetminus \mathcal{A}(C'_{K})) \cap \mathbb{Z}^{2}$$
, where $B(\mathbb{R}^{2} \smallsetminus \mathcal{A}(C'_{K}))$ means the bounded component of $\mathbb{R}^{2} \searrow \mathcal{A}(C')$

38th-SumTopo-2024-Coimbra-Han

Remark 5.2

(1) Both of $I(C_{K}^{l})$ and $O(C_{K}^{l})$ are connected subsets in $(\mathbb{Z}^{2}, \kappa^{2})$. (2) $I(C_{K}^{l}) \cap O(C_{K}^{l}) = \emptyset$. (3) Each of $I(C_{K}^{l})$ and $O(C_{K}^{l})$ is connected with C_{K}^{l} .

_emma 5.3

 $I(C_K^4)$ is not semi-open but it is semi-closed.

Lemma 5.4

In the case of I = 8 (see Figure 1(2)(a)–(h)), we consider the following: For the objects X, Y, Z, S, T, U, V, W in (\mathbb{Z}^2, κ^2) in Figure 1(2), we obtain the following. (1) Each of I(X), I(V), I(W), and I(T) is both semi-open and semi-closed in (\mathbb{Z}^2, κ^2) . (2) Each of I(Y), I(Z), I(U), and I(S) is not semi-open but semi-closed in (\mathbb{Z}^2, κ^2) .

Remark 5.2

(1) Both of $I(C_K^l)$ and $O(C_K^l)$ are connected subsets in (\mathbb{Z}^2, κ^2) . (2) $I(C_K^l) \cap O(C_K^l) = \emptyset$. (3) Each of $I(C_K^l)$ and $O(C_K^l)$ is connected with C_K^l .

Lemma 5.3

 $I(C_K^4)$ is not semi-open but it is semi-closed.

Lemma 5.4

In the case of I = 8 (see Figure 1(2)(a)–(h)), we consider the following: For the objects X, Y, Z, S, T, U, V, W in (\mathbb{Z}^2, κ^2) in Figure 1(2), we obtain the following. (1) Each of I(X), I(V), I(W), and I(T) is both semi-open and semi-closed in (\mathbb{Z}^2, κ^2) . (2) Each of I(Y), I(Z), I(U), and I(S) is not semi-open but semi-closed in (\mathbb{Z}^2, κ^2) .

Remark 5.2

(1) Both of $I(C_K^l)$ and $O(C_K^l)$ are connected subsets in (\mathbb{Z}^2, κ^2) . (2) $I(C_K^l) \cap O(C_K^l) = \emptyset$. (3) Each of $I(C_K^l)$ and $O(C_K^l)$ is connected with C_K^l .

Lemma 5.3

 $I(C_{K}^{4})$ is not semi-open but it is semi-closed.

Lemma 5.4

In the case of I = 8 (see Figure 1(2)(a)–(h)), we consider the following: For the objects X, Y, Z, S, T, U, V, W in (\mathbb{Z}^2, κ^2) in Figure 1(2), we obtain the following. (1) Each of I(X), I(V), I(W), and I(T) is both semi-open and semi-closed in (\mathbb{Z}^2, κ^2) . (2) Each of I(Y), I(Z), I(U), and I(S) is not semi-open but semi-closed in (\mathbb{Z}^2, κ^2) .

Lemma 5.5

(1) $I(C_K^4)$ is not semi-open but it is semi-closed. (2) In the case of I = 8 (see Figure 1(2)(a)–(h)), we consider the following: For the objects X, Y, Z, S, T, U, V, W in (\mathbb{Z}^2, κ^2) in Figure 1(2), we obtain the following. (2-1) Each of I(X), I(V), I(W), and I(T) is both semi-open and semi-closed in (\mathbb{Z}^2, κ^2) . (2-2) Each of I(Y), I(Z), I(U), and I(S) is not semi-open but semi-closed in (\mathbb{Z}^2, κ^2) .

Motivated by Lemma 5.3, 5.4, and 5.5, we obtain the following:

Proposition 5.6 (Results in Math, 2024, Han)

Given $C'_{\mathcal{K}}$, $I(C'_{\mathcal{K}})$ is semi-closed in (\mathbb{Z}^2, κ^2) .

Lemma 5.7

(1) For any *l* ∈ {4, 8, 10}, *O*(*C*^{*l*}_K) is both semi-open and semi-closed.
(2) If 12 ≤ *l* ∈ N_e, then *O*(*C*^{*l*}_K) need not be semi-open but it is semi-closed.

Motivated by Lemma 5.3, 5.4, and 5.5, we obtain the following:

Proposition 5.6 (Results in Math, 2024, Han)

Given $C'_{\mathcal{K}}$, $I(C'_{\mathcal{K}})$ is semi-closed in (\mathbb{Z}^2, κ^2) .

Lemma 5.7

(1) For any $l \in \{4, 8, 10\}$, $O(C'_K)$ is both semi-open and semi-closed. (2) If $12 \leq l \in \mathbb{N}_e$, then $O(C'_K)$ need not be semi-open but it is semi-closed.

Figure 8

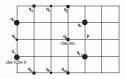


Figure: Given C_{κ}^{12} , we obtain that $O(C_{\kappa}^{12})$ is not semi-open in (\mathbb{Z}^2, κ^2) (see the point p).

・日・ ・ ヨ・・

B> B

Theorem 5.8 (Results in Math, 2024, Han)

In (\mathbb{Z}^2, κ^2) , given C'_K , we have the partition $\{C'_K, I(C'_K), O(C'_K)\}$ such that each of $I(C'_K)$ and $O(C'_K)$ is semi-closed in (\mathbb{Z}^2, κ^2) .

Proof.

By Proposition 5.6 and Lemma 5.8, the proof is completed.

Theorem 5.8 (Results in Math, 2024, Han)

In (\mathbb{Z}^2, κ^2) , given C'_K , we have the partition $\{C'_K, I(C'_K), O(C'_K)\}$ such that each of $I(C'_K)$ and $O(C'_K)$ is semi-closed in (\mathbb{Z}^2, κ^2) .

Proof.

By Proposition 5.6 and Lemma 5.8, the proof is completed. \square

Thanks for your attention!