

A Topological Bottlekneck in Quantum Information

by Stuart Wayland

A few disclaimers...

The Bloch Sphere

• A 2 dimensional quantum state ("qubit")

$$w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in \mathbb{C}^2$$

• Some helpful structure...

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \sim \begin{pmatrix} \lambda w_1 \\ \lambda w_2 \end{pmatrix}, \quad \lambda = r e^{i\theta} \in \mathbb{C}^*$$

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \sim \begin{pmatrix} \lambda w_1 \\ \lambda w_2 \end{pmatrix}, \lambda = r e^{i\theta}$$

• Let $E: \mathbb{C}^2 \to \mathbb{C}^2/\mathbb{C}^* \cong \mathbb{CP}^1$

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \sim \begin{pmatrix} \lambda w_1 \\ \lambda w_2 \end{pmatrix}, \lambda = r e^{i\theta}$$

- Let $E: \mathbb{C}^2 \to \mathbb{C}^2/\mathbb{C}^* \cong \mathbb{CP}^1$
- g establishes a convenient isomorphism to \mathbb{S}^2

• Lets look at our isomorphism $g : \mathbb{CP}^1 \to \mathbb{S}^2$

- Lets look at our isomorphism $g: \mathbb{CP}^1 \to \mathbb{S}^2$
- We may view \mathbb{CP}^1 as $\mathbb{C}\cup\infty$ under the bijective map

$$\begin{bmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \end{bmatrix} \mapsto \begin{cases} \infty & \text{if } w_2 = 0 \\ \frac{w_1}{w_2} & \text{o.w.} \end{cases}$$

- Lets look at our isomorphism $g : \mathbb{CP}^1 \to \mathbb{S}^2$
- We may view \mathbb{CP}^1 as $\mathbb{C}\cup\infty$ under the bijective map

$$\begin{bmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \end{bmatrix} \mapsto \begin{cases} \infty & \text{if } w_2 = 0 \\ \frac{w_1}{w_2} & \text{o.w.} \end{cases}$$

• Consider
$$\mathbb{S}^2 \subset \mathbb{R}^3$$
 and $(x, y, 0) \subset \mathbb{R}^3$ as \mathbb{C} .

- Lets look at our isomorphism $g: \mathbb{CP}^1 \to \mathbb{S}^2$
- We may view \mathbb{CP}^1 as $\mathbb{C}\cup\infty$ under the bijective map

$$\begin{bmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \end{bmatrix} \mapsto \begin{cases} \infty & \text{if } w_2 = 0 \\ \frac{w_1}{w_2} & \text{o.w.} \end{cases}$$

- Consider $\mathbb{S}^2 \subset \mathbb{R}^3$ and $(x, y, 0) \subset \mathbb{R}^3$ as \mathbb{C} .
- Take a point $\zeta \in \mathbb{C}$, and identify it with $s \in \mathbb{S}^2$, where s is intersection between ζ and (0, 0, 1).

- Lets look at our isomorphism $g: \mathbb{CP}^1 \to \mathbb{S}^2$
- We may view \mathbb{CP}^1 as $\mathbb{C}\cup\infty$ under the bijective map

$$\begin{bmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \end{bmatrix} \mapsto \begin{cases} \infty & \text{if } w_2 = 0 \\ \frac{w_1}{w_2} & \text{o.w.} \end{cases}$$

- Consider $\mathbb{S}^2 \subset \mathbb{R}^3$ and $(x, y, 0) \subset \mathbb{R}^3$ as \mathbb{C} .
- Take a point $\zeta \in \mathbb{C}$, and identify it with $s \in \mathbb{S}^2$, where s is intersection between ζ and (0, 0, 1).

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \sim \begin{pmatrix} \lambda w_1 \\ \lambda w_2 \end{pmatrix}, \lambda = r e^{i\theta}$$

• Let $E: \mathbb{C}^2 \to \mathbb{C}^2/\mathbb{C}^* \cong \mathbb{CP}^1$

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \sim \begin{pmatrix} \lambda w_1 \\ \lambda w_2 \end{pmatrix}, \lambda = r e^{i\theta}$$

- Let $E: \mathbb{C}^2 \to \mathbb{C}^2 / \mathbb{C}^* \cong \mathbb{CP}^1$
- Viewing \mathbb{C}^2 as \mathbb{R}^4 , π removes degree of freedom (r)

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \sim \begin{pmatrix} \lambda w_1 \\ \lambda w_2 \end{pmatrix}, \lambda = r e^{i\theta}$$

- Let $E: \mathbb{C}^2 \to \mathbb{C}^2 / \mathbb{C}^* \cong \mathbb{CP}^1$
- Viewing \mathbb{C}^2 as \mathbb{R}^4 , π removes degree of freedom (r)
- f removes degree of freedom (θ)

 $\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \sim \begin{pmatrix} \lambda w_1 \\ \lambda w_2 \end{pmatrix}, \lambda = r e^{i\theta}$

- Let $E: \mathbb{C}^2 \to \mathbb{C}^2/\mathbb{C}^* \cong \mathbb{CP}^1$
- Viewing \mathbb{C}^2 as \mathbb{R}^4 , π removes degree of freedom (r)
- f removes degree of freedom (θ)
- $H = g \circ f : \mathbb{S}^3 \to \mathbb{S}^2$ is the Hopf Fibration

• SU(2)-2 × 2 unitary matrices with determinant 1

- SU(2)-2 × 2 unitary matrices with determinant 1
- SU(2) acts on \mathbb{CP}^1

- SU(2)-2 × 2 unitary matrices with determinant 1
- SU(2) acts on \mathbb{CP}^1
- $SU(2) \leftrightarrow$ how quantum states change

 $SU(2) \cong SO(3)$

- SU(2)-2 × 2 unitary matrices with determinant 1
- SU(2) acts on \mathbb{CP}^1
- $SU(2) \leftrightarrow$ how quantum states change

 $SU(2) \cong SO(3)$

• The orbit of SU(2) on $w \in \mathbb{CP}^1$ generates our space

 $SU(2)/U(1)\cong \mathbb{S}^3/\mathbb{S}^1\cong \mathbb{CP}^1$

Why is this representation useful?

Spin Glass Systems

Spin Glass Systems

Spin Glass Systems

• This is (computationally) hard to solve!

- This is (computationally) hard to solve!
- Instead, we will use our representation and design a vector program
 - approximates the highest energy
 - **BUT** it returns $v_1, \ldots, v_n \in \mathbb{R}^n$ (here, *n* is the number of vertices in the graph)
 - We need $\tilde{v}_1, \ldots, \tilde{v}_n \in \mathbb{S}^2$!

- This is (computationally) hard to solve!
- Instead, we will use our representation and design a vector program
 - approximates the highest energy
 - **BUT** it returns $v_1, \ldots, v_n \in \mathbb{R}^n$ (here, *n* is the number of vertices in the graph)
 - We need $\tilde{v}_1, \ldots, \tilde{v}_n \in \mathbb{S}^2$!
- Getting back to the space of Quantum States is called Rounding
 - we need to preserve inner products:

$$v_i \cdot v_j \approx \tilde{v}_i \cdot \tilde{v}_j$$

- Hyperplane rounding (getting to S^2)
 - $\mathbf{Z} \sim \mathcal{N}(0,1)^{3 \times n}$

R³

• Then, we may define

$$\tilde{\mathbf{v}}_i := \frac{Z\mathbf{v}_i}{||Z\mathbf{v}_i||}$$

• This lands \tilde{v}_i right on S^2 , and $\theta \approx \tilde{\theta}$. We are back to the land of quantum states!

1 the best we can do on our spin glass problem is 50%

1 the best we can do on our spin glass problem is 50%

1 the best we can do on our spin glass problem is 50%

Entanglement!

1 the best we can do on our spin glass problem is 50%

Entanglement!

2 its required in the standard model

 $SU(3) \iff$ strong interaction

1 the best we can do on our spin glass problem is 50%

Entanglement!

2 its required in the standard model

 $SU(3) \iff$ strong interaction

3 interesting complexity implications (take my word for it)

So what am I doing at a topology conference?

The Challenge of Qudits (d>2)

$$\mathbf{w} \sim \lambda \mathbf{w}, \quad \lambda = r e^{i\theta}$$

• $w \in \mathbb{C}^d$ represent d dimensional quantum states

The Challenge of Qudits (d>2)

$$\mathbf{w} \sim \lambda \mathbf{w}, \quad \lambda = r e^{i\theta}$$

- $w \in \mathbb{C}^d$ represent d dimensional quantum states
- The orbit of SU(d) on an element $w \in \mathbb{CP}^1$ generates our space

 $SU(d)/U(1) \cong \mathbb{CP}^{d-1}$

The Challenge of Qudits (d>2)

$$\mathbf{w} \sim \lambda \mathbf{w}, \quad \lambda = r e^{i\theta}$$

- $w \in \mathbb{C}^d$ represent d dimensional quantum states
- The orbit of SU(d) on an element $w \in \mathbb{CP}^1$ generates our space

 $SU(d)/U(1) \cong \mathbb{CP}^{d-1}$

The space of Quantum states - \mathbb{CP}^{d-1}

What we know

- homeomorphic to $\mathbb{S}^{2d-1}/\mathbb{S}^1$
- has real dimension 2d-2 and is a submanifold of \mathbb{R}^{d^2-1}
- is a compact and connected Hausdorff space
- is generated by SU(d)

What we need

• A good representation of \mathbb{CP}^{d-1}

Thank you!

