On Cauty's example of a metric linear space without the extension property

Tadeusz Dobrowolski

Pittsburg State University

38th Summer Conference on Topology and its Applications

Coimbra, Portugal, July 8-12, 2024

Cauty's Example

(Cauty 1995)

There exists a metric linear space C which is not an absolute extensor for metric spaces.

Moreover, *C* is sigma-compact.

Definition

A space X is an absolute extensor for metric spaces if every mapping

$$f: A \rightarrow X,$$

where A is a closed subset of a metric space Z, extends to Z.

If every such f extends to a neighborhood of A in Z, X is called an absolute neighborhood extensor.

Cauty's Example

(Cauty 1995)

There exists a metric linear space C which is not an absolute extensor for metric spaces.

Moreover, *C* is sigma-compact.

Definition

A space X is an absolute extensor for metric spaces if every mapping

$$f: A \rightarrow X$$
,

where A is a closed subset of a metric space Z, extends to Z.

If every such f extends to a neighborhood of A in Z, X is called an absolute neighborhood extensor.

Dobrowolski (F	SU)
----------------	-----

Cauty's Example

(Cauty 1995)

There exists a metric linear space C which is not an absolute extensor for metric spaces.

Moreover, *C* is sigma-compact.

Definition

A space X is an absolute extensor for metric spaces if every mapping

$$f: A \rightarrow X$$
,

where A is a closed subset of a metric space Z, extends to Z.

If every such f extends to a neighborhood of A in Z, X is called an absolute neighborhood extensor.

Dobrowolski (PSU
200101010101	,

Every locally convex topological vector space is an absolute extensor.

Observation

Cauty's Example shows that the local convexity cannot be dropped.

Remark

For sigma-compact metric linear space *E*, the following are equivalent:

- (1) E is an absolute extensor for metric spaces,
- (2) *E* is an absolute extensor for (metric) compacta.

(3) For every compactum $A \subset E$, the identity map $id_A : A \to E$ can be approximated by maps

$$\phi: \mathbf{A}
ightarrow \mathbf{E}$$

so that $\phi(A)$ is finite-dimensional.

Every locally convex topological vector space is an absolute extensor.

Observation

Cauty's Example shows that the local convexity cannot be dropped.

Remark

For sigma-compact metric linear space E, the following are equivalent:

- (1) E is an absolute extensor for metric spaces,
- (2) *E* is an absolute extensor for (metric) compacta.

(3) For every compactum $A \subset E$, the identity map $id_A : A \to E$ can be approximated by maps

$$\phi: \mathbf{A} \to \mathbf{E}$$

Cauty's example

so that $\phi(A)$ is finite-dimensional.

Dobrowolski (PSU)

Every locally convex topological vector space is an absolute extensor.

Observation

Cauty's Example shows that the local convexity cannot be dropped.

Remark

For sigma-compact metric linear space E, the following are equivalent:

- (1) E is an absolute extensor for metric spaces,
- (2) *E* is an absolute extensor for (metric) compacta.

(3) For every compactum $A \subset E$, the identity map $id_A : A \to E$ can be approximated by maps

$$\phi: \mathbf{A} \to \mathbf{E}$$

so that $\phi(A)$ is finite-dimensional.

Every locally convex topological vector space is an absolute extensor.

Observation

Cauty's Example shows that the local convexity cannot be dropped.

Remark

For sigma-compact metric linear space *E*, the following are equivalent:

- (1) E is an absolute extensor for metric spaces,
- (2) *E* is an absolute extensor for (metric) compacta.

(3) For every compactum $A \subset E$, the identity map $id_A : A \to E$ can be approximated by maps

$$\phi: \mathcal{A}
ightarrow \mathcal{E}$$

so that $\phi(A)$ is finite-dimensional.

Dobrowolski ((PSU)
DODIOWOISKI	100)

Placing Cauty's space C in $C^*(K)$

• Identify the compactum K with

 $\{\delta_k : k \in K\}$

the set of Dirac measures in $C^*(K)$ with the weak* topology.

• For every n, let

$$L_n(K) = \{\sum_{i=1}^n t_i \delta_{k_i} : |t_1| + \cdots + |t_n| \le n, \ k_1, \dots, k_n \in K\}$$

be a compactum in $C^*(K)$.

Then

$$L(K) = \bigcup_{n=1}^{\infty} L_n(K) = \operatorname{span}(K)$$

is the required vector space.

Placing Cauty's space C in $C^*(K)$

• Identify the compactum K with

 $\{\delta_k: k \in K\}$

the set of Dirac measures in $C^*(K)$ with the weak* topology.

• For every n, let

$$L_n(K) = \{\sum_{i=1}^n t_i \delta_{k_i} : |t_1| + \cdots + |t_n| \le n, \ k_1, \dots, k_n \in K\}$$

be a compactum in $C^*(K)$.

Then

$$L(K) = \bigcup_{n=1}^{\infty} L_n(K) = \operatorname{span}(K)$$

is the required vector space.

Placing Cauty's space C in $C^*(K)$

• Identify the compactum K with

 $\{\delta_k : k \in K\}$

the set of Dirac measures in $C^*(K)$ with the weak* topology.

• For every n, let

$$L_n(K) = \{\sum_{i=1}^n t_i \delta_{k_i} : |t_1| + \cdots + |t_n| \le n, \ k_1, \dots, k_n \in K\}$$

be a compactum in $C^*(K)$.

Then

$$L(K) = \bigcup_{n=1}^{\infty} L_n(K) = \operatorname{span}(K)$$

is the required vector space.

Dobrowolski (PSU)

• *U* is open in $(L(K), \tau_0)$ iff, for every *n*,

 $U \cap L_n(K)$ is open in $L_n(K)$.

• By [Turpin, 1976], the sets

 $\overline{U}_0 \cap \bigcap \overline{L_n(K) + U_n},$

where U_n , $n \ge 0$, are weak^{*} open neighborhoods of 0 in $C^*(K)$ and $\overline{U_n}$ their weak^{*}-closures, form a base of neighborhoods of 0 in $(L(K), \tau_0)$.

• For any metric topology τ on *LK*), there exists a finer metric topology τ' so that the completion of $(L(K), \tau')$ has FDD ; in particular, has a sequence of continuous functionals separating points.

Here: FDD is f-d decomposition property, that is, for every $x \in L(K)$

• *U* is open in $(L(K), \tau_0)$ iff, for every *n*,

 $U \cap L_n(K)$ is open in $L_n(K)$.

• By [Turpin, 1976], the sets

$$\overline{U}_0\cap \bigcap \overline{L_n(K)+U_n},$$

where U_n , $n \ge 0$, are weak^{*} open neighborhoods of 0 in $C^*(K)$ and $\overline{U_n}$ their weak^{*}-closures, form a base of neighborhoods of 0 in $(L(K), \tau_0)$.

• For any metric topology τ on *LK*), there exists a finer metric topology τ' so that the completion of $(L(K), \tau')$ has FDD ; in particular, has a sequence of continuous functionals separating points.

Here: FDD is f-d decomposition property, that is, for every $x \in L(K)$

Dobrowolski (PSU)

 $x = \sum_{n=1}^{\infty} T_n(x),$ Cauty's example

• *U* is open in $(L(K), \tau_0)$ iff, for every *n*,

 $U \cap L_n(K)$ is open in $L_n(K)$.

• By [Turpin, 1976], the sets

$$\overline{U}_0\cap \bigcap \overline{L_n(K)+U_n},$$

where U_n , $n \ge 0$, are weak^{*} open neighborhoods of 0 in $C^*(K)$ and $\overline{U_n}$ their weak^{*}-closures, form a base of neighborhoods of 0 in $(L(K), \tau_0)$.

• For any metric topology τ on *LK*), there exists a finer metric topology τ' so that the completion of $(L(K), \tau')$ has FDD ; in particular, has a sequence of continuous functionals separating points.

Here: FDD is f-d decomposition property, that is, for every $x \in L(K)$ $x = \sum_{n=1}^{\infty} T_n(x),$ Combra, Portugal, July 8-12, 2024

• *U* is open in $(L(K), \tau_0)$ iff, for every *n*,

 $U \cap L_n(K)$ is open in $L_n(K)$.

• By [Turpin, 1976], the sets

$$\overline{U}_0\cap \bigcap \overline{L_n(K)+U_n},$$

where U_n , $n \ge 0$, are weak^{*} open neighborhoods of 0 in $C^*(K)$ and $\overline{U_n}$ their weak^{*}-closures, form a base of neighborhoods of 0 in $(L(K), \tau_0)$.

• For any metric topology τ on *LK*), there exists a finer metric topology τ' so that the completion of $(L(K), \tau')$ has FDD ; in particular, has a sequence of continuous functionals separating points.

Here: FDD is f-d decomposition property, that is, for every $x \in L(K)$

$$x=\sum_{n=1}^{\infty}T_n(x),$$

(1) Since vector operations are τ_0- continuous

 $(L(K), \tau_0)$ is a t.v.s.

(2) the original and τ_0 – topologies coincide on K and each $L_n(K)$; thus,

- K is a Hamel basis for L(K);
- L(K) is sigma-compact.

(3) L(K) is a free t.v.s. over K and (for nontrivial K) nonlocally convex. (4) For any continuous mapping $f : K \to F$, where F is a t.v.s., there is unique continuous linear operator

 $F: (L(K), \tau_0) \rightarrow F$ such that F|K =

in particular, such an operator $F : (L(M), \tau_0) \rightarrow (L(K), \tau_0)$ exists for a continuous surjection $f : M \rightarrow K$. Furthermore, F is open. Combra, Portugal, July 8-12, 2024

Dobrowolski (PSU)

(1) Since vector operations are τ_0- continuous

 $(L(K), \tau_0)$ is a t.v.s.

(2) the original and τ_0 – topologies coincide on *K* and each $L_n(K)$; thus,

- K is a Hamel basis for L(K);
- L(K) is sigma-compact.

(3) L(K) is a free t.v.s. over K and (for nontrivial K) nonlocally convex. (4) For any continuous mapping $f : K \to F$, where F is a t.v.s., there is unique continuous linear operator

 $F: (L(K), \tau_0) \rightarrow F$ such that F|K = f;

in particular, such an operator $F : (L(M), \tau_0) \rightarrow (L(K), \tau_0)$ exists for a continuous surjection $f : M \rightarrow K$. Furthermore, F is open. Combra, Portugal, July 8-12, 2024

Dobrowolski (PSU)

(1) Since vector operations are τ_0- continuous

 $(L(K), \tau_0)$ is a t.v.s.

(2) the original and τ_0 – topologies coincide on *K* and each $L_n(K)$; thus,

- K is a Hamel basis for L(K);
- L(K) is sigma-compact.

(3) L(K) is a free t.v.s. over K and (for nontrivial K) nonlocally convex.

(4) For any continuous mapping $f : K \to F$, where F is a t.v.s., there is unique continuous linear operator

 $F: (L(K), \tau_0) \rightarrow F$ such that F|K = f;

in particular, such an operator $F : (L(M), \tau_0) \rightarrow (L(K), \tau_0)$ exists for a continuous surjection $f : M \rightarrow K$. Furthermore, F is open. Combra, Portugal, July 8-12, 2024

Dobrowolski (PSU)

(1) Since vector operations are τ_0- continuous

 $(L(K), \tau_0)$ is a t.v.s.

(2) the original and τ_0 – topologies coincide on *K* and each $L_n(K)$; thus,

- K is a Hamel basis for L(K);
- L(K) is sigma-compact.

(3) L(K) is a free t.v.s. over K and (for nontrivial K) nonlocally convex.

(4) For any continuous mapping $f : K \to F$, where F is a t.v.s., there is unique continuous linear operator

 $F: (L(K), \tau_0) \rightarrow F$ such that F|K = f;

in particular, such an operator $F : (L(M), \tau_0) \to (L(K), \tau_0)$ exists for a continuous surjection $f : M \to K$. Furthermore, F is open. Combra, Portugal, July 8-12, 2024

Dobrowolski (PSU)

(1) Since vector operations are τ_0- continuous

 $(L(K), \tau_0)$ is a t.v.s.

(2) the original and τ_0 – topologies coincide on *K* and each $L_n(K)$; thus,

- K is a Hamel basis for L(K);
- L(K) is sigma-compact.

(3) L(K) is a free t.v.s. over K and (for nontrivial K) nonlocally convex.

(4) For any continuous mapping $f : K \to F$, where F is a t.v.s., there is unique continuous linear operator

$$F: (L(K), \tau_0) \rightarrow F$$
 such that $F|K = f$;

in particular, such an operator $F : (L(M), \tau_0) \to (L(K), \tau_0)$ exists for a continuous surjection $f : M \to K$. Furthermore, F is open.

Dobrowolski (PSU)

Cauty' Example - a precise version

(Cauty 1995)

There exists a compactum *K* and a metric linear topology τ on L(K) such that:

For any metric linear topology τ' on L(K), $\tau_0 \subset \tau' \subset \tau$,

 $(L(K), \tau')$ is not an absolute extensor for compacta.

Additionally, the map $id_{\mathcal{K}} : \mathcal{K} \to (\mathcal{L}(\mathcal{K})), \tau')$ cannot be approximated by maps

 $\phi: K \to (L(K)), \tau')$

so that $\phi(K)$ is finite-dimensional.

Dobrowolski (PSI

		Coimbra, Portugal, July 8-12, 2024
U)	Cauty's example	7/19

Cauty' Example - a precise version

(Cauty 1995)

There exists a compactum *K* and a metric linear topology τ on L(K) such that:

For any metric linear topology τ' on L(K), $\tau_0 \subset \tau' \subset \tau$,

 $(L(K), \tau')$ is not an absolute extensor for compacta.

Additionally, the map $id_{\mathcal{K}} : \mathcal{K} \to (\mathcal{L}(\mathcal{K})), \tau')$ cannot be approximated by maps

$$\phi: \mathbf{K} \to (\mathbf{L}(\mathbf{K})), \tau')$$

Cauty's exami

so that $\phi(K)$ is finite-dimensional.

 Coimbra, Portugal, July 8-12
7/19

• [Dranishnikov, 1988]

 $M =: S^7$ has a partition \mathcal{P} into CE compacta so that the quotient space

 $M/\mathcal{P} =: K$ is an infinite-dimensional compactum.

• [Walsh, 1976]

The partition \mathcal{P} can be further enhanced so that the quotient map

 $f: M \to K$ is an open mapping.

• Each pre-image $f^{-1}(x), x \in K$, is a CE compactum, meaning

 $B^{k-1}(x) = \bigcap B_k, \ B_{k+1} \subset B_k, \ B_k$ is a copy of Euclidean ball.

Remark

The topological sine curve is a nontrivial CE compactum.

Dobrowolski (PSU)	(PSU)
-------------------	-------

• [Dranishnikov, 1988]

 $M =: S^7$ has a partition \mathcal{P} into CE compacta so that the quotient space

 $M/\mathcal{P} =: K$ is an infinite-dimensional compactum.

• [Walsh, 1976]

The partition \mathcal{P} can be further enhanced so that the quotient map

 $f: M \to K$ is an open mapping.

• Each pre-image $f^{-1}(x)$, $x \in K$, is a CE compactum, meaning

 $f^{-1}(x) = \bigcap B_k, \ B_{k+1} \subset B_k, \ B_k$ is a copy of Euclidean ball.

Remark

The topological sine curve is a nontrivial CE compactum.

Dobrowolski (F	SU
----------------	----

• [Dranishnikov, 1988]

 $M =: S^7$ has a partition \mathcal{P} into CE compacta so that the quotient space

 $M/\mathcal{P} =: K$ is an infinite-dimensional compactum.

• [Walsh, 1976]

The partition \mathcal{P} can be further enhanced so that the quotient map

 $f: M \to K$ is an open mapping.

• Each pre-image $f^{-1}(x)$, $x \in K$, is a CE compactum, meaning

 $f^{-1}(x) = \bigcap B_k, \ B_{k+1} \subset B_k, \ B_k$ is a copy of Euclidean ball.

Remark

The topological sine curve is a nontrivial CE compactum.

Dobrowolski (PSU)

• [Dranishnikov, 1988]

 $M =: S^7$ has a partition \mathcal{P} into CE compacta so that the quotient space

 $M/\mathcal{P} =: K$ is an infinite-dimensional compactum.

• [Walsh, 1976]

The partition \mathcal{P} can be further enhanced so that the quotient map

 $f: M \to K$ is an open mapping.

• Each pre-image $f^{-1}(x)$, $x \in K$, is a CE compactum, meaning

 $f^{-1}(x) = \bigcap B_k, B_{k+1} \subset B_k, B_k$ is a copy of Euclidean ball.

Remark

The topological sine curve is a nontrivial CE compactum.

Dobrowolski (F	PSU)
----------------	------

The operator $F : L(M) \rightarrow L(K)$

• For $M = S^7$, consider span $(M) \subset C^*(M)$ and let

 $L(M) =: (\operatorname{span}(M), \tau_0),$

where τ_0 is the finest vector topology.

• Since *M* and *K* are Hamel basis of L(M) and L(X), $f : M \to K$ there exists a unique continuous open operator

 $F: L(M) \rightarrow L(X)$ such that F|M = f.

• If, for some metrics d', d, and an open set $U \subset (L(K), d)$,

(i) $F : (F^{-1}(U), d') \rightarrow (U, d)$ is continuous and

(ii) (L(K), d) is an absolute extensor

then homotopy types of $F^{-1}(U)$ and U are the same.

The operator $F : L(M) \rightarrow L(K)$

• For $M = S^7$, consider span $(M) \subset C^*(M)$ and let

 $L(M) =: (\operatorname{span}(M), \tau_0),$

where τ_0 is the finest vector topology.

• Since *M* and *K* are Hamel basis of L(M) and L(X), $f : M \to K$ there exists a unique continuous open operator

 $F: L(M) \rightarrow L(X)$ such that F|M = f.

• If, for some metrics d', d, and an open set $U \subset (L(K), d)$,

(i) $F : (F^{-1}(U), d') \rightarrow (U, d)$ is continuous and

(ii) (L(K), d) is an absolute extensor

then homotopy types of $F^{-1}(U)$ and U are the same.

The operator $F : L(M) \rightarrow L(K)$

• For $M = S^7$, consider span $(M) \subset C^*(M)$ and let

 $L(M) =: (\operatorname{span}(M), \tau_0),$

where τ_0 is the finest vector topology.

• Since *M* and *K* are Hamel basis of L(M) and L(X), $f : M \to K$ there exists a unique continuous open operator

$$F: L(M) \rightarrow L(X)$$
 such that $F|M = f$.

• If, for some metrics d', d, and an open set $U \subset (L(K), d)$,

(i) $F : (F^{-1}(U), d') \rightarrow (U, d)$ is continuous and

(ii) (L(K), d) is an absolute extensor

then homotopy types of $F^{-1}(U)$ and U are the same.

• Both L(M) and L(K) are sigma-compact.

• While *L*(*K*) is not, *L*(*M*) is a countable union of f-d compacta. Conclusion: *L*(*M*) is an absolute extensor in any metric linear topology.

• For each *n*, define $H_n(K) \subset L(K)$ (and similarly $H_n(M) \subset L(M)$) by

$$H_n(K) = \big\{ \sum_{i=1}^n t_i x_i : x_i \in K, \{x_i\} \text{ distinct, and } t_i \neq 0 \big\}.$$

• We have $\bigcup_{n=1}^{\infty} H_n(K) = L(K) \setminus \{0\}$ and $\bigcup_{n=1}^{\infty} H_n(M) = L(M) \setminus \{0\}$.

• Both $H_n(M)$ and $H_n(K)$ are metric local compacta (in the free topologies).

• While each $H_n(K)$ is not, $H_n(M)$ is an absolute **neighborhood** extensor.

Dobrowolski (PSU)

- Both L(M) and L(K) are sigma-compact.
- While *L*(*K*) is not, *L*(*M*) is a countable union of f-d compacta. Conclusion: *L*(*M*) is an absolute extensor in any metric linear topology.

• For each *n*, define $H_n(K) \subset L(K)$ (and similarly $H_n(M) \subset L(M)$) by

$$H_n(K) = \big\{ \sum_{i=1}^n t_i x_i : x_i \in K, \{x_i\} \text{ distinct, and } t_i \neq 0 \big\}.$$

- We have $\bigcup_{n=1}^{\infty} H_n(K) = L(K) \setminus \{0\}$ and $\bigcup_{n=1}^{\infty} H_n(M) = L(M) \setminus \{0\}$.
- Both $H_n(M)$ and $H_n(K)$ are metric local compacta (in the free topologies).
- While each $H_n(K)$ is not, $H_n(M)$ is an absolute **neighborhood** extensor.

Dobrowolski (PSU)

Cauty's example

Coimbra, Portugal, July 8-12, 2024 10/19

- Both L(M) and L(K) are sigma-compact.
- While *L*(*K*) is not, *L*(*M*) is a countable union of f-d compacta. Conclusion: *L*(*M*) is an absolute extensor in any metric linear topology.
- For each *n*, define $H_n(K) \subset L(K)$ (and similarly $H_n(M) \subset L(M)$) by

$$H_n(K) = \big\{ \sum_{i=1}^n t_i x_i : x_i \in K, \{x_i\} \text{ distinct, and } t_i \neq 0 \big\}.$$

- We have $\bigcup_{n=1}^{\infty} H_n(K) = L(K) \setminus \{0\}$ and $\bigcup_{n=1}^{\infty} H_n(M) = L(M) \setminus \{0\}$.
- Both $H_n(M)$ and $H_n(K)$ are metric local compacta (in the free topologies).
- While each $H_n(K)$ is not, $H_n(M)$ is an absolute **neighborhood** extensor.

Dobrowolski (PSU)

- Both L(M) and L(K) are sigma-compact.
- While *L*(*K*) is not, *L*(*M*) is a countable union of f-d compacta. Conclusion: *L*(*M*) is an absolute extensor in any metric linear topology.
- For each *n*, define $H_n(K) \subset L(K)$ (and similarly $H_n(M) \subset L(M)$) by

$$H_n(K) = \big\{ \sum_{i=1}^n t_i x_i : x_i \in K, \{x_i\} \text{ distinct, and } t_i \neq 0 \big\}.$$

• We have $\bigcup_{n=1}^{\infty} H_n(K) = L(K) \setminus \{0\}$ and $\bigcup_{n=1}^{\infty} H_n(M) = L(M) \setminus \{0\}$.

• Both $H_n(M)$ and $H_n(K)$ are metric local compacta (in the free topologies).

• While each $H_n(K)$ is not, $H_n(M)$ is an absolute **neighborhood** extensor.

Dobrowolski (PSU)

Cauty's example

Coimbra, Portugal, July 8-12, 2024 10/19

- Both L(M) and L(K) are sigma-compact.
- While *L*(*K*) is not, *L*(*M*) is a countable union of f-d compacta. Conclusion: *L*(*M*) is an absolute extensor in any metric linear topology.
- For each *n*, define $H_n(K) \subset L(K)$ (and similarly $H_n(M) \subset L(M)$) by

$$H_n(K) = \big\{ \sum_{i=1}^n t_i x_i : x_i \in K, \{x_i\} \text{ distinct, and } t_i \neq 0 \big\}.$$

- We have $\bigcup_{n=1}^{\infty} H_n(K) = L(K) \setminus \{0\}$ and $\bigcup_{n=1}^{\infty} H_n(M) = L(M) \setminus \{0\}$.
- Both $H_n(M)$ and $H_n(K)$ are metric local compacta (in the free topologies).
- While each $H_n(K)$ is not, $H_n(M)$ is an absolute **neighborhood** extensor.

- Both L(M) and L(K) are sigma-compact.
- While *L*(*K*) is not, *L*(*M*) is a countable union of f-d compacta. Conclusion: *L*(*M*) is an absolute extensor in any metric linear topology.
- For each *n*, define $H_n(K) \subset L(K)$ (and similarly $H_n(M) \subset L(M)$) by

$$H_n(K) = \big\{ \sum_{i=1}^n t_i x_i : x_i \in K, \{x_i\} \text{ distinct, and } t_i \neq 0 \big\}.$$

- We have $\bigcup_{n=1}^{\infty} H_n(K) = L(K) \setminus \{0\}$ and $\bigcup_{n=1}^{\infty} H_n(M) = L(M) \setminus \{0\}$.
- Both $H_n(M)$ and $H_n(K)$ are metric local compacta (in the free topologies).
- While each $H_n(K)$ is not, $H_n(M)$ is an absolute **neighborhood** extensor.

Key facts validating the choice of K

• Write 2^M for the hyperspace of all compacta in M with the Hausdorff topology. The set-valued function

$$K \to 2^M$$
 given by $x \to f^{-1}(x)$

has CE images and, due to openness of *f*, is continuous.

• More generally, the set-valued function $\phi_n : H_n(X) \to 2^{H_n(M)}$ defined by

$$\phi_n(t_1x_1 + \dots + t_nx_n) = t_1f^{-1}(x_1) + \dots + t_nf^{-1}(x_n)$$

is continuous and has CE images.

Remark

$$t_1 f^{-1}(x_1) + \cdots + t_n f^{-1}(x_n)$$

is homeomorphic to $f^{-1}(x_1) \times \cdots \times f^{-1}(x_n)$, which is CE because each $f^{-1}(x_i)$ is.

Dobrowolski (PSU)

Key facts validating the choice of K

• Write 2^M for the hyperspace of all compacta in M with the Hausdorff topology. The set-valued function

$$K \to 2^M$$
 given by $x \to f^{-1}(x)$

has CE images and, due to openness of *f*, is continuous.

• More generally, the set-valued function $\phi_n : H_n(X) \to 2^{H_n(M)}$ defined by

$$\phi_n(t_1x_1 + \dots + t_nx_n) = t_1f^{-1}(x_1) + \dots + t_nf^{-1}(x_n)$$

is continuous and has CE images.

Remark

$$t_1 f^{-1}(x_1) + \cdots + t_n f^{-1}(x_n)$$

is homeomorphic to $f^{-1}(x_1) \times \cdots \times f^{-1}(x_n)$, which is CE because each $f^{-1}(x_i)$ is.

Dobrowolski (PSU)

Key facts validating the choice of K

• Write 2^M for the hyperspace of all compacta in M with the Hausdorff topology. The set-valued function

$$K o 2^M$$
 given by $x o f^{-1}(x)$

has CE images and, due to openness of *f*, is continuous.

• More generally, the set-valued function $\phi_n : H_n(X) \to 2^{H_n(M)}$ defined by

$$\phi_n(t_1x_1 + \cdots + t_nx_n) = t_1f^{-1}(x_1) + \cdots + t_nf^{-1}(x_n)$$

is continuous and has CE images.

Remark

$$t_1 f^{-1}(x_1) + \cdots + t_n f^{-1}(x_n)$$

is homeomorphic to $f^{-1}(x_1) \times \cdots \times f^{-1}(x_n)$, which is CE because each $f^{-1}(x_i)$ is.

Near-selection Theorem, [Haver, 1978]

Let

- (i) Z be a metric space which is a countable union of f-d compacta,
- (ii) T be a metric absolute neighborhood extensor.
- (iii) $\psi: Z \to 2^T$ be a set-valued mapping with CE images, and
- (iv) $\epsilon: Z \rightarrow (0, 1]$ be a continuous function.

Then there exists $\chi : Z \to T$ such that

 $\operatorname{dist}(\chi(Z)),\psi(Z))<\epsilon(Z), Z\in Z;$

 χ is called a continuous $\epsilon(z)$ – near-selection of the set-valued mapping $\psi(z)$.

Dob	orowol	lski (PSU)

Near-selection Theorem, [Haver, 1978]

Let

(i) Z be a metric space which is a countable union of f-d compacta,

(ii) T be a metric absolute neighborhood extensor.

(iii) $\psi: Z \to 2^T$ be a set-valued mapping with CE images, and

(iv) $\epsilon: Z \to (0, 1]$ be a continuous function.

Then there exists $\chi : Z \to T$ such that

 $\operatorname{dist}(\chi(\mathbf{Z})),\psi(\mathbf{Z}))<\epsilon(\mathbf{Z}),\mathbf{Z}\in\mathbf{Z};$

 χ is called a continuous $\epsilon(z)$ – near-selection of the set-valued mapping $\psi(z)$.

Corollary

We have

- $Z =: F^{-1}(H_n(K)) \subset L(M)$ is countable union of f-d compacta;
- $T =: H_n(M)$ is an absolute neighborhood retract

• $\psi =: \phi_n \circ F : F^{-1}(H_n(K)) \to 2^{H_n(M)}$ is continuous and has CE images.

By Near-selection Theorem, for every continuous function $\epsilon : F^{-1}(H_n(K)) \to (0, 1]$ there exists

 $\chi_n: F^{-1}(H_n(K)) \to H_n(M)$

with

 $\operatorname{dist}(\chi_n(y)), \phi_n(F(y))) < \epsilon(y), \quad y \in F^{-1}(H_n(K)).$

Dobrowolski (PSU	Do	browo	lski (PSU
------------------	----	-------	--------	-----

Corollary

We have

• $Z =: F^{-1}(H_n(K)) \subset L(M)$ is countable union of f-d compacta;

• $T =: H_n(M)$ is an absolute neighborhood retract

• $\psi =: \phi_n \circ F : F^{-1}(H_n(K)) \to 2^{H_n(M)}$ is continuous and has CE images.

By Near-selection Theorem, for every continuous function $\epsilon : F^{-1}(H_n(K)) \to (0, 1]$ there exists

 $\chi_n: F^{-1}(H_n(K)) \to H_n(M)$

with

 $\operatorname{dist}(\chi_n(y)), \phi_n(F(y))) < \epsilon(y), \quad y \in F^{-1}(H_n(K)).$

Dobrowolski	(PSU

Corollary

We have

• $Z =: F^{-1}(H_n(K)) \subset L(M)$ is countable union of f-d compacta;

• $T =: H_n(M)$ is an absolute neighborhood retract

• $\psi =: \phi_n \circ F : F^{-1}(H_n(K)) \to 2^{H_n(M)}$ is continuous and has CE images.

By Near-selection Theorem, for every continuous function $\epsilon : F^{-1}(H_n(K)) \to (0, 1]$ there exists

 $\chi_n: F^{-1}(H_n(K)) \to H_n(M)$

with

 $\operatorname{dist}(\chi_n(y)), \phi_n(F(y))) < \epsilon(y), \quad y \in F^{-1}(H_n(K)).$

Dobrowolski (P	SU
----------------	----

Corollary

We have

• $Z =: F^{-1}(H_n(K)) \subset L(M)$ is countable union of f-d compacta;

• $T =: H_n(M)$ is an absolute neighborhood retract

• $\psi =: \phi_n \circ F : F^{-1}(H_n(K)) \to 2^{H_n(M)}$ is continuous and has CE images.

By Near-selection Theorem, for every continuous function $\epsilon : F^{-1}(H_n(K)) \to (0, 1]$ there exists

 $\chi_n: F^{-1}(H_n(K)) \to H_n(M)$

with

 $\operatorname{dist}(\chi_n(y)), \phi_n(F(y))) < \epsilon(y), \quad y \in F^{-1}(H_n(K)).$

Dobrowolski (PSU)

• A classic test for infinite-dimensionaliy: For some closed set $A \in K[\subset I(K)]$ some ma

For some closed set $A \subset K[\subset L(K)]$ some mapping

$$g: A \rightarrow S^8$$

has no extension over K.

• However, *g* can be extended to

 $\bar{g}: W \to S^8,$

where W is a closed neighborhood of A in L(K).

• Since 8 > 7, $\bar{a} \in [f|f^{-1}(W)] \cdot f^{-1}(W) \to S^8$

extends to
$$h_0: M = S^7 o S^8$$
.

Additionally, since $M \cap F^{-1}(W) = f^{-1}(W)$, h_0 extends over $F^{-1}(W)$ to

 $h_0: M \cup F^{-1}(W) \to S^8$ and satisfies $h_0|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)].$

- A classic test for infinite-dimensionaliy:
- For some closed set $A \subset K[\subset L(K)]$ some mapping

$$g: A \to S^{\epsilon}$$

has no extension over K.

• However, g can be extended to

$$ar{g}: W
ightarrow S^8,$$

where W is a closed neighborhood of A in L(K).

Since 8 > 7,
$$ar{g} \circ [f|f^{-1}(W)] : f^{-1}(W) o S$$

extends to $h_0: M = S^7 \to S^8$.

Additionally, since $M \cap F^{-1}(W) = f^{-1}(W)$, h_0 extends over $F^{-1}(W)$ to

 $h_0: M \cup F^{-1}(W) \to S^8$ and satisfies $h_0|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)].$

• A classic test for infinite-dimensionaliy:

For some closed set $A \subset K[\subset L(K)]$ some mapping

$$g: A \to S^{\epsilon}$$

has no extension over K.

• However, g can be extended to

$$ar{g}: \mathit{W}
ightarrow \mathit{S}^{\mathsf{8}},$$

where W is a closed neighborhood of A in L(K).

• Since 8 > 7, $ar{g} \circ [f|f^{-1}(W)] : f^{-1}(W) o S^8$

extends to $h_0: M = S^7 \rightarrow S^8$.

Additionally, since $M \cap F^{-1}(W) = f^{-1}(W)$, h_0 extends over $F^{-1}(W)$ to

 $h_0: M \cup F^{-1}(W) \to S^8$ and satisfies $h_0|F^{-1}(W) = \overline{g} \circ [F|F^{-1}(W)].$

- A classic test for infinite-dimensionaliy:
- For some closed set $A \subset K[\subset L(K)]$ some mapping

$$g: A \rightarrow S^{\epsilon}$$

has no extension over K.

However, g can be extended to

$$ar{g}: \mathit{W}
ightarrow \mathit{S}^{\mathsf{8}},$$

- where W is a closed neighborhood of A in L(K).
- Since 8 > 7. $\bar{q} \circ [f|f^{-1}(W)] : f^{-1}(W) \to S^8$

extends to $h_0: M = S^7 \to S^8$.

Additionally, since $M \cap F^{-1}(W) = f^{-1}(W)$, h_0 extends over $F^{-1}(W)$ to

 $h_0: M \cup F^{-1}(W) \to S^8$ and satisfies $h_0|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)].$ pimbra, Portugal, July 8-12, 2024 14/19Dobrowolski (PSU)

• An open $U \subset L(K)$ ($K \subset U$) and $h : F^{-1}(U) \to S^8$ are inductively constructed such that

 $h|M \cup F^{-1}(W) = h_0$; hence, $h|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)]$.

• For X = M or K, write

 $G_n(X) = \{ z \in L(X) : z = t_1 x_1 + \dots + t_n x_n, x_i \in X, -\infty < t_i < \infty \}$ $H_n(X) = G_n(X) \setminus G_{n-1}(X); \text{ here, } G_0(X) = \{0\}.$

• Inductively, the open sets $U_n = U \cap G_n(K)$ are constructed. Finally, $U = \bigcup (U \cap G_n(K)).$

• Likewise, $h_n = h|F^{-1}(U_n \cup W)$ are constructed so that

 $h_n:F^{-1}(U_n\cup W) o S^8$ and $h_n|F^{-1}(W)=ar{g}\circ [F|F^{-1}(W)].$

• An open $U \subset L(K)$ ($K \subset U$) and $h : F^{-1}(U) \to S^8$ are inductively constructed such that

 $h|M \cup F^{-1}(W) = h_0$; hence, $h|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)]$.

• For X = M or K, write

 $G_n(X) = \{ z \in L(X) : z = t_1 x_1 + \dots + t_n x_n, x_i \in X, -\infty < t_i < \infty \}$ $H_n(X) = G_n(X) \setminus G_{n-1}(X); \text{ here, } G_0(X) = \{0\}.$

• Inductively, the open sets $U_n = U \cap G_n(K)$ are constructed. Finally, $U = \bigcup (U \cap G_n(K)).$

• Likewise, $h_n = h|F^{-1}(U_n \cup W)$ are constructed so that

 $h_n:F^{-1}(U_n\cup W) o S^8$ and $h_n|F^{-1}(W)=ar{g}\circ [F|F^{-1}(W)].$

• An open $U \subset L(K)$ ($K \subset U$) and $h : F^{-1}(U) \to S^8$ are inductively constructed such that

 $h|M \cup F^{-1}(W) = h_0$; hence, $h|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)]$.

• For X = M or K, write

 $G_n(X) = \{ z \in L(X) : z = t_1 x_1 + \dots + t_n x_n, x_i \in X, -\infty < t_i < \infty \}$ $H_n(X) = G_n(X) \setminus G_{n-1}(X); \text{ here, } G_0(X) = \{0\}.$

• Inductively, the open sets $U_n = U \cap G_n(K)$ are constructed. Finally, $U = \bigcup (U \cap G_n(K)).$

• Likewise, $h_n = h|F^{-1}(U_n \cup W)$ are constructed so that

 $h_n: F^{-1}(U_n \cup W) \to S^8$ and $h_n|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)].$

• An open $U \subset L(K)$ ($K \subset U$) and $h : F^{-1}(U) \to S^8$ are inductively constructed such that

 $h|M \cup F^{-1}(W) = h_0$; hence, $h|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)]$.

• For X = M or K, write

 $G_n(X) = \{ z \in L(X) : z = t_1 x_1 + \dots + t_n x_n, x_i \in X, -\infty < t_i < \infty \}$ $H_n(X) = G_n(X) \setminus G_{n-1}(X); \text{ here, } G_0(X) = \{0\}.$

- Inductively, the open sets $U_n = U \cap G_n(K)$ are constructed. Finally, $U = \bigcup (U \cap G_n(K)).$
- Likewise, $h_n = h|F^{-1}(U_n \cup W)$ are constructed so that

 $h_n: F^{-1}(U_n \cup W) \to S^8$ and $h_n|F^{-1}(W) = \bar{g} \circ [F|F^{-1}(W)].$

Using U, W, and h to find τ on L(K) claimed by Cauty

• There are metric vector topologies τ on L(K) and τ' on L(M) (use Birkhoff–Kakutani technique) such that

(i) U,W are au-open and $ar{g}:(\textit{W}, au)
ightarrow\textit{S}^8$ is continuous, and

(ii) $F : (L(M), \tau') \to (L(K), \tau)$ and $h : (F^{-1}(U), \tau') \to S^8$ are continuous.

Assume (L(K, τ)) is an absolute extensor.

Then, (U, τ) is an absolute neighborhood extensor. Then, by linearity of *F*, there exists a fine homotopy inverse

 $\psi: (U, \tau) \rightarrow (F^{-1}(U), \tau')$ of

 ${\sf F}:({\sf F}^{-1}({\sf U}), au') o ({\sf U}, au), ext{ that is },$

 $F \circ \psi$ and $\psi \circ F$ are homotopic to id_U and id_{F⁻¹(U)}

via as small homotopies as we wish.

Dobrowolski (PSU)

Cauty's example

Coimbra, Portugal, July 8-12, 2024 16/19

Using U, W, and h to find τ on L(K) claimed by Cauty

• There are metric vector topologies τ on L(K) and τ' on L(M) (use Birkhoff–Kakutani technique) such that

(i) U,W are au-open and $ar{g}:(\textit{W}, au)
ightarrow \textit{S}^8$ is continuous, and

(ii) $F : (L(M), \tau') \to (L(K), \tau)$ and $h : (F^{-1}(U), \tau') \to S^8$ are continuous.

• Assume (L(K, τ)) is an absolute extensor.

Then, (U, τ) is an absolute neighborhood extensor. Then, by linearity of *F*, there exists a fine homotopy inverse

 $\psi: (U, \tau) \rightarrow (F^{-1}(U), \tau')$ of

 ${m F}:({m F}^{-1}({m U}), au') o ({m U}, au), ext{ that is },$

 $F \circ \psi$ and $\psi \circ F$ are homotopic to id_U and id_{F⁻¹(U)}

via as small homotopies as we wish.

Dobrowolski (PSU)

Cauty's example

Using U, W, and h to find τ on L(K) claimed by Cauty

• There are metric vector topologies τ on L(K) and τ' on L(M) (use Birkhoff–Kakutani technique) such that

(i) U,W are au-open and $ar{g}:(\textit{W}, au)
ightarrow \textit{S}^8$ is continuous, and

(ii) $F : (L(M), \tau') \to (L(K), \tau)$ and $h : (F^{-1}(U), \tau') \to S^8$ are continuous.

• Assume (L(K, τ)) is an absolute extensor.

Then, (U, τ) is an absolute neighborhood extensor. Then, by linearity of *F*, there exists a fine homotopy inverse

$$\psi: (\boldsymbol{U}, \tau) \rightarrow (\boldsymbol{F}^{-1}(\boldsymbol{U}), \tau')$$
 of

 $F: (F^{-1}(U), \tau') \rightarrow (U, \tau), \text{ that is },$

 $F \circ \psi$ and $\psi \circ F$ are homotopic to id_U and $\operatorname{id}_{F^{-1}(U)}$

via as small homotopies as we wish.

Dobrowolski (PSU)

Cauty's example

• Recall $g: A \to S^8$ has no extension over K.

By Borsuk's Homotopy Extension Thm,

<u>*g* extends over *K*</u> if for some $\alpha : K \to S^8$ and $H : A \times [0, 1] \to S^8$ we have

 $H(a,0) = \alpha(a)$ and $H(a,1) = g(a), a \in A$.

• If $\psi: U \to F^{-1}(U)$ is a homotopy inverse of $F: F^{-1}(U) \to U$, then

 $\alpha = \mathbf{h} \circ \psi | \mathbf{K}$ does the job.

• Proof: We have

 $\alpha = \alpha \circ [\mathsf{id}_U] \simeq \alpha \circ [F \circ \psi] = \underline{h \circ [\psi \circ F]} \circ \psi \simeq h \circ [\mathsf{id}_{F^{-1}(U)}] \circ \psi = h \circ \psi;$

hence

$$\alpha | \mathbf{A} \simeq \mathbf{h} \circ \psi | \mathbf{A} = \bar{\mathbf{g}} \circ [\mathbf{F} \circ \psi | \mathbf{A}] \simeq \bar{\mathbf{g}} \circ [\mathrm{id}_{\mathbf{A}}] = \mathbf{g}$$

b/c $\psi(a) \in F^{-1}(W)$, $a \in A$, should the homotopy $F \circ \psi \simeq \operatorname{id}_U$ be small. Combra. Portugal. July 8-12, 2024

- Recall $g: A \to S^8$ has no extension over K.
- By Borsuk's Homotopy Extension Thm,

<u>*g* extends over K</u> if for some $\alpha : K \to S^8$ and $H : A \times [0, 1] \to S^8$ we have

$$H(a,0) = \alpha(a)$$
 and $H(a,1) = g(a), a \in A$.

• If $\psi : U \to F^{-1}(U)$ is a homotopy inverse of $F : F^{-1}(U) \to U$, then

 $lpha = oldsymbol{h} \circ \psi |oldsymbol{K}|$ does the job.

• Proof: We have

 $\alpha = \alpha \circ [\mathsf{id}_U] \simeq \alpha \circ [F \circ \psi] = \underline{h \circ [\psi \circ F]} \circ \psi \simeq h \circ [\mathsf{id}_{F^{-1}(U)}] \circ \psi = h \circ \psi;$

hence

$$\alpha | \mathbf{A} \simeq \mathbf{h} \circ \psi | \mathbf{A} = \bar{\mathbf{g}} \circ [\mathbf{F} \circ \psi | \mathbf{A}] \simeq \bar{\mathbf{g}} \circ [\mathrm{id}_{\mathbf{A}}] = \mathbf{g}$$

b/c $\psi(a) \in F^{-1}(W)$, $a \in A$, should the homotopy $F \circ \psi \simeq \operatorname{id}_U$ be small. Combra. Portugal. July 8-12. 2024

- Recall $g: A \rightarrow S^8$ has no extension over K.
- By Borsuk's Homotopy Extension Thm,

<u>*g* extends over K</u> if for some $\alpha : K \to S^8$ and $H : A \times [0, 1] \to S^8$ we have

$$H(a,0) = \alpha(a)$$
 and $H(a,1) = g(a), a \in A$.

• If $\psi : U \to F^{-1}(U)$ is a homotopy inverse of $F : F^{-1}(U) \to U$, then

 $\alpha = h \circ \psi | K$ does the job.

• Proof: We have

 $\alpha = \alpha \circ [\mathsf{id}_U] \simeq \alpha \circ [F \circ \psi] = \underline{h \circ [\psi \circ F]} \circ \psi \simeq h \circ [\mathsf{id}_{F^{-1}(U)}] \circ \psi = h \circ \psi;$

hence

$$\alpha | \mathbf{A} \simeq \mathbf{h} \circ \psi | \mathbf{A} = \bar{\mathbf{g}} \circ [\mathbf{F} \circ \psi | \mathbf{A}] \simeq \bar{\mathbf{g}} \circ [\mathrm{id}_{\mathbf{A}}] = \mathbf{g}$$

b/c $\psi(a) \in F^{-1}(W)$, $a \in A$, should the homotopy $F \circ \psi \simeq \operatorname{id}_U$ be small. Combra. Portugal. July 8-12, 2024

- Recall $g: A \rightarrow S^8$ has no extension over K.
- By Borsuk's Homotopy Extension Thm,

<u>*g* extends over K if for some $\alpha : K \to S^8$ and $H : A \times [0, 1] \to S^8$ we have</u>

$$H(a,0) = \alpha(a)$$
 and $H(a,1) = g(a), a \in A$.

• If $\psi : U \to F^{-1}(U)$ is a homotopy inverse of $F : F^{-1}(U) \to U$, then

 $\alpha = h \circ \psi | K$ does the job.

• Proof: We have

 $\alpha = \alpha \circ [\mathsf{id}_U] \simeq \alpha \circ [F \circ \psi] = \underline{h \circ [\psi \circ F]} \circ \psi \simeq h \circ [\mathsf{id}_{F^{-1}(U)}] \circ \psi = h \circ \psi;$

hence

$$\alpha | \mathbf{A} \simeq \mathbf{h} \circ \psi | \mathbf{A} = \bar{\mathbf{g}} \circ [\mathbf{F} \circ \psi | \mathbf{A}] \simeq \bar{\mathbf{g}} \circ [\mathrm{id}_{\mathbf{A}}] = \mathbf{g}$$

b/c $\psi(a) \in F^{-1}(W)$, $a \in A$, should the homotopy $F \circ \psi \simeq \operatorname{id}_U$ be small. Combra. Portugal. July 8-12, 2024

- Recall $g: A \to S^8$ has no extension over K.
- By Borsuk's Homotopy Extension Thm,

<u>*g* extends over K if for some $\alpha : K \to S^8$ and $H : A \times [0, 1] \to S^8$ we have</u>

$$H(a,0) = \alpha(a)$$
 and $H(a,1) = g(a), a \in A$.

• If $\psi : U \to F^{-1}(U)$ is a homotopy inverse of $F : F^{-1}(U) \to U$, then

 $\alpha = h \circ \psi | K$ does the job.

• Proof: We have

$$\alpha = \alpha \circ [\mathsf{id}_U] \simeq \alpha \circ [F \circ \psi] = \underline{h} \circ [\psi \circ F] \circ \psi \simeq h \circ [\mathsf{id}_{F^{-1}(U)}] \circ \psi = h \circ \psi;$$

hence

$$\alpha | \mathbf{A} \simeq \mathbf{h} \circ \psi | \mathbf{A} = \bar{\mathbf{g}} \circ [\mathbf{F} \circ \psi | \mathbf{A}] \simeq \bar{\mathbf{g}} \circ [\mathsf{id}_{\mathbf{A}}] = \mathbf{g}$$

b/c $\psi(a) \in F^{-1}(W)$, $a \in A$, should the homotopy $F \circ \psi \simeq \operatorname{id}_U$ be small. Combra, Portugal, July 8-12, 2024

• Recall: $h_0 : M \cup F^{-1}(W) \to S^8$. Extend h_0 over open P_0 in L(M), $M \cup F^{-1}(W) \subset P_0$, and call it also h_0 . • Define

$$M_1 = \{ z \in H_1(K) : \phi_1(z) \subset P_0 \},\$$

that is, for $z = tx, x \in K, t \neq 0, \phi_1(tx) = tf^{-1}(x)$ must be $\subset P_0$.

• $K \subset M_1$ and $M_1 \subset H_1(K)$ is open by continuity of

 $\phi_1:H_1(K) o 2^{H_1(M)}$

• Find open $U_1, U \subset H_1(X)$ with

 $K \cup (W \cap H_1(K)) \subset U_1 \subset \overline{U}_1 \subset U \subset \overline{U} \subset M_1.$

• By Near-selection Thm applied to $\psi_1 =: \phi_1 \circ [F|F^{-1}(U \setminus W)]$, get

 $\chi_1 : F^{-1}(U \setminus W) \rightarrow H_1(M)$ with $d_1(\chi_1(y), \psi_1(y) < d_1(y, F^{-1}(W))$.

• Recall: $h_0 : M \cup F^{-1}(W) \to S^8$. Extend h_0 over open P_0 in L(M), $M \cup F^{-1}(W) \subset P_0$, and call it also h_0 .

Define

$$M_1 = \{z \in H_1(K) : \phi_1(z) \subset P_0\},\$$

that is, for $z = tx, x \in K, t \neq 0, \phi_1(tx) = tf^{-1}(x)$ must be $\subset P_0$.

• $K \subset M_1$ and $M_1 \subset H_1(K)$ is open by continuity of

 $\phi_1:H_1(K)\to 2^{H_1(M)}$

• Find open $U_1, U \subset H_1(X)$ with

 $K \cup (W \cap H_1(K)) \subset U_1 \subset \overline{U}_1 \subset U \subset \overline{U} \subset M_1.$

• By Near-selection Thm applied to $\psi_1 =: \phi_1 \circ [F|F^{-1}(U \setminus W)]$, get

 $\chi_1 : F^{-1}(U \setminus W) \rightarrow H_1(M)$ with $d_1(\chi_1(y), \psi_1(y) < d_1(y, F^{-1}(W))$.

• Recall: $h_0 : M \cup F^{-1}(W) \to S^8$. Extend h_0 over open P_0 in L(M), $M \cup F^{-1}(W) \subset P_0$, and call it also h_0 .

Define

$$M_1 = \{z \in H_1(K) : \phi_1(z) \subset P_0\},\$$

that is, for $z = tx, x \in K, t \neq 0, \phi_1(tx) = tf^{-1}(x)$ must be $\subset P_0$.

• $K \subset M_1$ and $M_1 \subset H_1(K)$ is open by continuity of

 $\phi_1: H_1(K) \to 2^{H_1(M)}.$

• Find open $U_1, U \subset H_1(X)$ with

 $K \cup (W \cap H_1(K)) \subset U_1 \subset \overline{U}_1 \subset U \subset \overline{U} \subset M_1.$

• By Near-selection Thm applied to $\psi_1 =: \phi_1 \circ [F|F^{-1}(U \setminus W)]$, get

 $\chi_1 : F^{-1}(U \setminus W) \rightarrow H_1(M)$ with $d_1(\chi_1(y), \psi_1(y) < d_1(y, F^{-1}(W))$.

• Recall: $h_0 : M \cup F^{-1}(W) \to S^8$. Extend h_0 over open P_0 in L(M), $M \cup F^{-1}(W) \subset P_0$, and call it also h_0 .

Define

$$M_1 = \{z \in H_1(K) : \phi_1(z) \subset P_0\},\$$

that is, for $z = tx, x \in K, t \neq 0, \phi_1(tx) = tf^{-1}(x)$ must be $\subset P_0$.

• $K \subset M_1$ and $M_1 \subset H_1(K)$ is open by continuity of

$$\phi_1:H_1(K)\to 2^{H_1(M)}$$

• Find open $U_1, U \subset H_1(X)$ with

 $K \cup (W \cap H_1(K)) \subset U_1 \subset \overline{U}_1 \subset U \subset \overline{U} \subset M_1.$

• By Near-selection Thm applied to $\psi_1 =: \phi_1 \circ [F|F^{-1}(U \setminus W)]$, get

 $\chi_1 : F^{-1}(U \setminus W) \to H_1(M)$ with $d_1(\chi_1(y), \psi_1(y) < d_1(y, F^{-1}(W))$.

• Recall: $h_0 : M \cup F^{-1}(W) \to S^8$. Extend h_0 over open P_0 in L(M), $M \cup F^{-1}(W) \subset P_0$, and call it also h_0 .

Define

$$M_1 = \{z \in H_1(K) : \phi_1(z) \subset P_0\},\$$

that is, for $z = tx, x \in K, t \neq 0, \phi_1(tx) = tf^{-1}(x)$ must be $\subset P_0$.

• $K \subset M_1$ and $M_1 \subset H_1(K)$ is open by continuity of

$$\phi_1:H_1(K)\to 2^{H_1(M)}$$

• Find open $U_1, U \subset H_1(X)$ with

 $K \cup (W \cap H_1(K)) \subset U_1 \subset \overline{U}_1 \subset U \subset \overline{U} \subset M_1.$

• By Near-selection Thm applied to $\psi_1 =: \phi_1 \circ [F|F^{-1}(U \setminus W)]$, get

 $\chi_1 : F^{-1}(U \setminus W) \to H_1(M)$ with $d_1(\chi_1(y), \psi_1(y) < d_1(y, F^{-1}(W))$.

• **Remark**: Above use a continuous metric d_1 on L(M) such that $F^{-1}(W)$ is d_1 - closed and $h_0: F^{-1}(W) \to S^8$ is d_1 - continuous. • Write $[y_1, y_2] = \{ty_1 + (1 - t)y_2 : 0 \le t \le 1\}$ and let • Pick open $V \subset F^{-1}(H_1(K) \cup W)$ with • Let $\lambda : F^{-1}(H_1(K) \cup W \rightarrow [0, 1]$ such that • Define, for $y \notin V$, $h_1(y) = h_0((1 - \lambda(y))y + \lambda(y)\chi_1(y))$; clearly

• **Remark**: Above use a continuous metric d_1 on L(M) such that

 $F^{-1}(W)$ is d_1 - closed and $h_0: F^{-1}(W) \to S^8$ is d_1 - continuous.

• Write $[y_1, y_2] = \{ty_1 + (1 - t)y_2 : 0 \le t \le 1\}$ and let

$$\boldsymbol{R}_1 = \{\boldsymbol{y} \in \boldsymbol{F}^{-1}(\boldsymbol{M}_1 \setminus \boldsymbol{W}) : [\boldsymbol{y}, \chi_1(\boldsymbol{y})] \subset \boldsymbol{P}_0.\},\$$

- $R_1 \subset F^{-1}(H_1(K) \cup W)$ is open.
- Pick open $V \subset F^{-1}(H_1(K) \cup W)$ with

 $F^{-1}(W) \subset V \subset \overline{V} \subset R_1.$

• Let $\lambda : F^{-1}(H_1(K) \cup W \rightarrow [0, 1]$ such that

 $\lambda(\overline{V}) = 0$ and $\lambda(y) = 1$ if $y \notin R_1$.

- **Remark**: Above use a continuous metric *d*₁ on *L*(*M*) such that
 - $F^{-1}(W)$ is d_1 closed and $h_0: F^{-1}(W) \to S^8$ is d_1 continuous.
- Write $[y_1, y_2] = \{ty_1 + (1 t)y_2 : 0 \le t \le 1\}$ and let

$$R_1 = \{ y \in F^{-1}(M_1 \setminus W) : [y, \chi_1(y)] \subset P_0. \},$$

 $R_1 \subset F^{-1}(H_1(K) \cup W)$ is open.

• Pick open $V \subset F^{-1}(H_1(K) \cup W)$ with

 $F^{-1}(W) \subset V \subset \overline{V} \subset R_1.$

• Let $\lambda : F^{-1}(H_1(K) \cup W \to [0, 1]$ such that

 $\lambda(\overline{V}) = 0$ and $\lambda(y) = 1$ if $y \notin R_1$.

- **Remark**: Above use a continuous metric *d*₁ on *L*(*M*) such that
 - $F^{-1}(W)$ is d_1 closed and $h_0: F^{-1}(W) \to S^8$ is d_1 continuous.
- Write $[y_1, y_2] = \{ty_1 + (1 t)y_2 : 0 \le t \le 1\}$ and let

$$\boldsymbol{R}_1 = \{\boldsymbol{y} \in \boldsymbol{F}^{-1}(\boldsymbol{M}_1 \setminus \boldsymbol{W}) : [\boldsymbol{y}, \chi_1(\boldsymbol{y})] \subset \boldsymbol{P}_0.\},\$$

 $R_1 \subset F^{-1}(H_1(K) \cup W)$ is open.

• Pick open $V \subset F^{-1}(H_1(K) \cup W)$ with

$$F^{-1}(W) \subset V \subset \overline{V} \subset R_1.$$

• Let $\lambda : F^{-1}(H_1(K) \cup W \rightarrow [0, 1]$ such that

$$\lambda(\overline{V}) = 0$$
 and $\lambda(y) = 1$ if $y \notin R_1$.

- **Remark**: Above use a continuous metric d_1 on L(M) such that
 - $F^{-1}(W)$ is d_1 closed and $h_0: F^{-1}(W) \to S^8$ is d_1 continuous.
- Write $[y_1, y_2] = \{ty_1 + (1 t)y_2 : 0 \le t \le 1\}$ and let

$$\boldsymbol{R}_1 = \{\boldsymbol{y} \in \boldsymbol{F}^{-1}(\boldsymbol{M}_1 \setminus \boldsymbol{W}) : [\boldsymbol{y}, \chi_1(\boldsymbol{y})] \subset \boldsymbol{P}_0.\},\$$

 $R_1 \subset F^{-1}(H_1(K) \cup W)$ is open.

• Pick open $V \subset F^{-1}(H_1(K) \cup W)$ with

$$F^{-1}(W) \subset V \subset \overline{V} \subset R_1.$$

• Let $\lambda : F^{-1}(H_1(K) \cup W \rightarrow [0, 1]$ such that

$$\lambda(\overline{V}) = 0$$
 and $\lambda(y) = 1$ if $y \notin R_1$.