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Cauty’s Example

(Cauty 1995)

There exists a metric linear space C which is not an absolute extensor
for metric spaces.

Moreover, C is sigma-compact.

o
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Definition
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Cauty’s Example

(Cauty 1995)

There exists a metric linear space C which is not an absolute extensor
for metric spaces.

Moreover, C is sigma-compact.

Definition
A space X is an absolute extensor for metric spaces if every mapping

f:A— X,
where A is a closed subset of a metric space Z, extends to Z.

If every such f extends to a neighborhood of Ain Z, X is called an
absolute neighborhood extensor.

o
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Fact
Every locally convex topological vector space is an absolute extensor.

Dobrowolski (PSU) Cauty’s example



Fact
Every locally convex topological vector space is an absolute extensor.

V.

Observation
Cauty’s Example shows that the local convexity cannot be dropped.
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Fact
Every locally convex topological vector space is an absolute extensor.

v

Observation
Cauty’s Example shows that the local convexity cannot be dropped.

Remark
For sigma-compact metric linear space E, the following are equivalent:

(1) E is an absolute extensor for metric spaces,

(2) E is an absolute extensor for (metric) compacta.

=

v
“Coimbra, Portugal, July 8-12, 2024
Dobrowolski (PSU) Cauty’s example 3/19



Fact
Every locally convex topological vector space is an absolute extensor.

v

Observation
Cauty’s Example shows that the local convexity cannot be dropped.

Remark
For sigma-compact metric linear space E, the following are equivalent:

(1) E is an absolute extensor for metric spaces,
(2) E is an absolute extensor for (metric) compacta.

(3) For every compactum A C E, the identity map ids : A — E can be
approximated by maps
p:A—E

so that ¢(A) is finite-dimensional.
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Placing Cauty’s space C in C*(K)

e |dentify the compactum K with
{6k - k € K}

the set of Dirac measures in C*(K) with the weak* topology.

Coimbra, Portugal, July 8-12, 2024
Dobrowolski (PSU) Cauty’s example 4/19



Placing Cauty’s space C in C*(K)

e |dentify the compactum K with
{0k - k € K}
the set of Dirac measures in C*(K) with the weak* topology.

e For every n, let

n
Lo(K) ={D _ti : [t + + [t <1, Ky,... kn € K}
i=1

be a compactum in C*(K).
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Placing Cauty’s space C in C*(K)
e |dentify the compactum K with
{0k : k € K}
the set of Dirac measures in C*(K) with the weak* topology.

e For every n, let

n
Lo(K) ={D _ti : [t + + [t <1, Ky,... kn € K}
i=1

be a compactum in C*(K).

e Then -
L(K) = | J La(K) = span(K)
n=1
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The finest vector topology 7o on L(K)

e Uis openin (L(K), ) iff, for every n,

UnLy(K) isopenin Ly(K).
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The finest vector topology 7o on L(K)

e Uis openin (L(K), ) iff, for every n,

UnLy(K) isopenin Ly(K).

e By [Turpin, 1976], the sets
Uo N[ La(K) + Un,

where Uy, n > 0, are weak* open neighborhoods of 0 in C*(K) and U,
their weak* —closures, form a base of neighborhoods of 0 in (L(K), 7p).
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The finest vector topology 7o on L(K)

e Uis openin (L(K), ) iff, for every n,

UnLy(K) isopenin Ly(K).

e By [Turpin, 1976], the sets
Uo N[ La(K) + Un,
where Uy, n > 0, are weak* open neighborhoods of 0 in C*(K) and U,

their weak* —closures, form a base of neighborhoods of 0 in (L(K), 7p).

e For any metric topology 7 on LK), there exists a finer metric topology
7’ so that the completion of (L(K), ") has FDD ; in particular, has a
sequence of continuous functionals separating points.
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The finest vector topology 7o on L(K)

e Uis openin (L(K), ) iff, for every n,

UnLy(K) isopenin Ly(K).

e By [Turpin, 1976], the sets
Uo N () La(K) + Un,
where Uy, n > 0, are weak* open neighborhoods of 0 in C*(K) and U,

their weak* —closures, form a base of neighborhoods of 0 in (L(K), 7p).

e For any metric topology 7 on LK), there exists a finer metric topology
7’ so that the completion of (L(K), ") has FDD ; in particular, has a
sequence of continuous functionals separating points.

Here: FDD is f-d decomposition property, that is, for every x € L(K)

o)
X =321 Tn(x),
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Fact
(1) Since vector operations are 7o— continuous

(L(K), 1) isat.v.s.
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Fact
(1) Since vector operations are 7p— continuous

(L(K), 1) isat.v.s.

(2) the original and 79— topologies coincide on K and each L,(K);

thus,
e K is a Hamel basis for L(K);

e L(K) is sigma-compact.
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Fact
(1) Since vector operations are 7p— continuous

(L(K), 1) isat.v.s.

(2) the original and 79— topologies coincide on K and each L,(K);
thus,

e K is a Hamel basis for L(K);

e L(K) is sigma-compact.

(8) L(K) is a free t.v.s. over K and (for nontrivial K) nonlocally convex.
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Fact
(1) Since vector operations are 7p— continuous

(L(K), 1) isat.v.s.

(2) the original and 79— topologies coincide on K and each L,(K);
thus,
e K is a Hamel basis for L(K);

e L(K) is sigma-compact.

(8) L(K) is a free t.v.s. over K and (for nontrivial K) nonlocally convex.

(4) For any continuous mapping f : K — F, where F is at.v.s., there is
unique continuous linear operator

F : (L(K),70) — F suchthat F|K = f;
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Fact
(1) Since vector operations are 7p— continuous

(L(K), 1) isat.v.s.

(2) the original and 79— topologies coincide on K and each L,(K);
thus,
e K is a Hamel basis for L(K);

e L(K) is sigma-compact.

(8) L(K) is a free t.v.s. over K and (for nontrivial K) nonlocally convex.
(4) For any continuous mapping f : K — F, where F is at.v.s., there is
unigue continuous linear operator

F: (L(K),70) — F suchthat FIK =f;

in particular, such an operator F : (L(M), 19) — (L(K), 70) exists for a
continuous surjection f : M — K. Furthermore, F is open
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Cauty’ Example - a precise version

(Cauty 1995)

There exists a compactum K and a metric linear topology 7 on L(K)
such that:

For any metric linear topology 7" on L(K), o C 7' C 7,

(L(K), ') is not an absolute extensor for compacta.
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Cauty’ Example - a precise version

(Cauty 1995)

There exists a compactum K and a metric linear topology 7 on L(K)
such that:

For any metric linear topology 7" on L(K), o C 7' C 7,

(L(K),7') is not an absolute extensor for compacta.

Additionally, the map idx : K — (L(K)), ') cannot be approximated by
maps

¢: K= (L(K)), ™)
so that ¢(K) is finite-dimensional.
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The compactum K

e [Dranishnikov, 1988]
M =: S7 has a partition P into CE compacta so that the quotient space

M/P =: K is an infinite-dimensional compactum.
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The compactum K

e [Dranishnikov, 1988]
M =: S7 has a partition P into CE compacta so that the quotient space

M/P =: K is an infinite-dimensional compactum.

e [Walsh, 1976]
The partition P can be further enhanced so that the quotient map

f: M— K isan open mapping.
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The compactum K

e [Dranishnikov, 1988]
M =: S7 has a partition P into CE compacta so that the quotient space

M/P =: K is an infinite-dimensional compactum.

e [Walsh, 1976]
The partition P can be further enhanced so that the quotient map

f: M— K isan open mapping.
e Each pre-image f~'(x), x € K, is a CE compactum, meaning

f~'(x) =) B, Bx+1 C Bk, By is a copy of Euclidean ball.
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The compactum K

e [Dranishnikov, 1988]
M =: S7 has a partition P into CE compacta so that the quotient space

M/P =: K is an infinite-dimensional compactum.

e [Walsh, 1976]
The partition P can be further enhanced so that the quotient map

f:M— K isanopen mapping.
e Each pre-image f~'(x), x € K, is a CE compactum, meaning

f~'(x) =) B, Bx+1 C Bk, By is a copy of Euclidean ball.

Remark
The topological sine curve is a nontrivial CE compactum.

=TT - = = S pe -+
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The operator F : L(M) — L(K)
e For M = S7, consider span(M) ¢ C*(M) and let

L(M) =: (span(M), 7o),

where g is the finest vector topology.
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The operator F : L(M) — L(K)

e For M = S7, consider span(M) ¢ C*(M) and let
L(M) =: (span(M), 1p),

where g is the finest vector topology.

e Since M and K are Hamel basis of L(M) and L(X), f : M — K there
exists a unique continuous open operator

F:L(M)— L(X) suchthat FIM = f.

.
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The operator F : L(M) — L(K)

e For M = S7, consider span(M) ¢ C*(M) and let
L(M) =: (span(M), 1p),

where g is the finest vector topology.

e Since M and K are Hamel basis of L(M) and L(X), f : M — K there
exists a unique continuous open operator

F:L(M)— L(X) suchthat FIM = f.
e If, for some metrics d’, d, and an open set U C (L(K), d),

(i) F: (F~'(U),d") — (U, d) is continuous and

(i) (L(K), d) is an absolute extensor

then homotopy types of F~'(U) and U are the same.
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Similarities and differences between L(M) and L(K)
e Both L(M) and L(K) are sigma-compact.
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Similarities and differences between L(M) and L(K)

e Both L(M) and L(K) are sigma-compact.

e While L(K) is not, L(M) is a countable union of f-d compacta.
Conclusion: L(M) is an absolute extensor in any metric linear topology.
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Similarities and differences between L(M) and L(K)
e Both L(M) and L(K) are sigma-compact.

e While L(K) is not, L(M) is a countable union of f-d compacta.
Conclusion: L(M) is an absolute extensor in any metric linear topology.

e For each n, define Hy(K) C L(K) (and similarly H,(M) C L(M)) by

n
Hn(K) = {) tix;: x; € K, {x;} distinct, and #; # 0}

i=1
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Similarities and differences between L(M) and L(K)
e Both L(M) and L(K) are sigma-compact.

e While L(K) is not, L(M) is a countable union of f-d compacta.
Conclusion: L(M) is an absolute extensor in any metric linear topology.

e For each n, define Hy(K) C L(K) (and similarly H,(M) C L(M)) by

n
Hn(K) = {) tix;: x; € K, {x;} distinct, and #; # 0}

i=1

o We have |2, Ha(K) = L(K) \ {0} and U2, Hn(M) = L(M) \ {0}.
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Similarities and differences between L(M) and L(K)
e Both L(M) and L(K) are sigma-compact.

e While L(K) is not, L(M) is a countable union of f-d compacta.
Conclusion: L(M) is an absolute extensor in any metric linear topology.

e For each n, define Hy(K) C L(K) (and similarly H,(M) C L(M)) by

n
Hn(K) = {) tix;: x; € K, {x;} distinct, and #; # 0}

i=1
o We have |2, Ha(K) = L(K) \ {0} and U2, Hn(M) = L(M) \ {0}.

e Both H,(M) and Hy(K) are metric local compacta (in the free
topologies).
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Similarities and differences between L(M) and L(K)
e Both L(M) and L(K) are sigma-compact.

e While L(K) is not, L(M) is a countable union of f-d compacta.
Conclusion: L(M) is an absolute extensor in any metric linear topology.

e For each n, define H,(K) C L(K) (and similarly H,(M) c L(M)) by
Hn(K) = {) tix;: x; € K, {x;} distinct, and #; # 0}
i=1
e We have | J;7 ; Hi(K) = L(K) \ {0} and ;2 1 Ha(M) = L(M) \ {0}.

e Both H,(M) and Hy(K) are metric local compacta (in the free
topologies).

e While each Hy(K) is not, H,(M) is an absolute neighborhood
extensor.
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Key facts validating the choice of K

e Write 2M for the hyperspace of all compacta in M with the Hausdorff
topology. The set-valued function

K —2M givenby x — f1(x)

has CE images and, due to openness of f, is continuous.
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Key facts validating the choice of K

e Write 2M for the hyperspace of all compacta in M with the Hausdorff
topology. The set-valued function

K —2M givenby x — f1(x)
has CE images and, due to openness of f, is continuous.

o More generally, the set-valued function ¢, : Hy(X) — 2M (M) defined
by
¢n(t1X1 SF oo e tan) = t1 f_1(X1) AF oo qF tnf_1(xn)

is continuous and has CE images.
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Key facts validating the choice of K

e Write 2M for the hyperspace of all compacta in M with the Hausdorff
topology. The set-valued function

K —2M givenby x — f1(x)
has CE images and, due to openness of f, is continuous.

o More generally, the set-valued function ¢, : Hy(X) — 2M (M) defined
by
bn(tiXy + -+ toXn) = HF () + -« + taf 1 (Xn)

is continuous and has CE images.

Remark

is homeomorphic to f~'(xq) x --- x f~1(xp), which is CE because each
1 (X,') is.

=
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Near-selection Theorem, [Haver, 1978]

Let

(i) Z be a metric space which is a countable union of f-d compacta,
(i) T be a metric absolute neighborhood extensor.

(iii) ¢ : Z — 27 be a set-valued mapping with CE images, and

(iv) e : Z — (0, 1] be a continuous function.

v
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Near-selection Theorem, [Haver, 1978]
Let
(i) Z be a metric space which is a countable union of f-d compacta,
(i) T be a metric absolute neighborhood extensor.
(iii) ¢ : Z — 27 be a set-valued mapping with CE images, and
(iv) e : Z — (0, 1] be a continuous function.
Then there exists x : Z — T such that
dist(x(2)),%(2)) < €(2),z € Z;

x is called a continuous ¢(z)— near-selection of the set-valued
mapping (2).
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Near-selection Theorem at work

Corollary
We have

e Z = F~1(Hp(K)) C L(M) is countable union of f-d compacta;

v
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Near-selection Theorem at work

Corollary
We have

e Z = F~1(Hp(K)) C L(M) is countable union of f-d compacta;

e T =: Hp(M) is an absolute neighborhood retract

v
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Near-selection Theorem at work

Corollary
We have

e Z = F~1(Hp(K)) C L(M) is countable union of f-d compacta;
e T =: Hy(M) is an absolute neighborhood retract

o) = ppoF : F~1(Hp(K)) — 2H M) is continuous and has CE
images.

v
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Near-selection Theorem at work

Corollary
We have

e Z = F~1(Hp(K)) C L(M) is countable union of f-d compacta;
e T =: Hy(M) is an absolute neighborhood retract

o) = ppoF : F~1(Hp(K)) — 2H M) is continuous and has CE
images.

By Near-selection Theorem, for every continuous function
e : F~1(Hn(K)) — (0, 1] there exists

Xn : F71(Hn(K)) = Ha(M)

with

dist(xn(¥)). #n(F(¥))) < e(y), y € F~"(Hn(K)).
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Infinite-dimensionality of the compactum K in use

e A classic test for infinite-dimensionaliy:

For some closed set A ¢ K[C L(K)] some mapping
g:A— S8

has no extension over K.
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Infinite-dimensionality of the compactum K in use
e A classic test for infinite-dimensionaliy:
For some closed set A ¢ K[C L(K)] some mapping

g:A— S8
has no extension over K.

e However, g can be extended to
g:W— S8

where W is a closed neighborhood of A in L(K).
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Infinite-dimensionality of the compactum K in use

e A classic test for infinite-dimensionaliy:
For some closed set A ¢ K[C L(K)] some mapping

g:A— S8
has no extension over K.

e However, g can be extended to
g:W— S8

where W is a closed neighborhood of A in L(K).

e Since 8 > 7,
golflfF '(w): (W) — S8
extendsto hp: M= S’ — SB.

Coimbra; Por tugal;July8=12;7 4024
Dobrowolski (PSU) Cauty’s example 14/19



Infinite-dimensionality of the compactum K in use

e A classic test for infinite-dimensionaliy:
For some closed set A ¢ K[C L(K)] some mapping

g:A— S8
has no extension over K.

e However, g can be extended to
g:W— S8

where W is a closed neighborhood of A in L(K).

e Since 8 > 7,
golflf ' (W) : (W) — S8

extendsto hp: M= S’ — SB.
Additionally, since M 1 F~' (W) = 1 (W), hy extends over F~' (W) to

ho: MUF~Y (W) - S® and satisfies hy|F~'(W) =go [FIF1(W)].
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Goal: Extend hyto hon F-'(UU W), K c U C L(K)

e Anopen U C L(K) (K c Uyand h: F~'(U) — S® are inductively
constructed such that

hIMU F~Y(W) = hy; hence, h|F~ (W) = go[FIF~'(W)].
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Goal: Extend hyto hon F-{(Uu W), K c U c L(K)

e Anopen U C L(K) (K c Uyand h: F~'(U) — S® are inductively
constructed such that

hIMU F~Y(W) = hy; hence, h|F~ (W) = go[FIF~'(W)].
e For X = M or K, write
Gh(X)={zeLlX):z=Htx1+ - taXn, X; € X, —00 < t; < 00}

Hn(X) = Gn(X) \ Gn-1(X); here, Go(X) = {0}.
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Goal: Extend hyto hon F-{(Uu W), K c U c L(K)

e Anopen U C L(K) (K c Uyand h: F~'(U) — S® are inductively
constructed such that

hIMU F~Y(W) = hy; hence, h|F~ (W) = go[FIF~'(W)].
e For X = M or K, write
Gh(X)={zeL(X):z=Htx1+ - taxn, X; € X, —00 < lj < 0}
Hn(X) = Gn(X) \ Gn-1(X); here, Go(X) = {0}.

e Inductively, the open sets U, = U N Gu(K) are constructed. Finally,
U =U(U N Gn(K)).
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Goal: Extend hyto hon F-{(Uu W), K c U c L(K)

e Anopen U C L(K) (K c Uyand h: F~'(U) — S® are inductively
constructed such that

hIMU F~Y(W) = hy; hence, h|F~ (W) = go[FIF~'(W)].
e For X = M or K, write
Gh(X)={zeL(X):z=tx1+ - taxn, X; € X, —00 < t; < 00}
Hn(X) = Gn(X) \ Gp—1(X); here, Go(X) = {0}.
e Inductively, the open sets U, = U N Gu(K) are constructed. Finally,
U =U(UnN Gn(K)).
o Likewise, h, = h|F~"(U, U W) are constructed so that

hn: F'(UpU W) — S® and hp|F~ (W) =go [FIF'(W)].
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Using U, W, and hto find 7 on L(K) claimed by Cauty

e There are metric vector topologies 7 on L(K) and 7" on L(M)
(use Birkhoff—-Kakutani technique) such that

(i) U, W are r—open and g : (W, ) — S% is continuous, and

(i) F: (L(M), ") = (L(K),7)and h: (F~1(U),7") — S8 are
continuous.
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Using U, W, and hto find 7 on L(K) claimed by Cauty

e There are metric vector topologies 7 on L(K) and 7" on L(M)
(use Birkhoff—-Kakutani technique) such that

(i) U, W are r—open and g : (W, ) — S% is continuous, and

(i) F: (L(M), ") = (L(K),7)and h: (F~1(U),7") — S8 are
continuous.

e Assume (L(K, 7)) is an absolute extensor.
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Using U, W, and hto find 7 on L(K) claimed by Cauty

e There are metric vector topologies 7 on L(K) and 7" on L(M)
(use Birkhoff—-Kakutani technique) such that

(i) U, W are r—open and g : (W, ) — S% is continuous, and
(i) F: (L(M), ") = (L(K),7)and h: (F~1(U),7") — S8 are
continuous.

e Assume (L(K, 7)) is an absolute extensor.

Then, (U, 1) is an absolute neighborhood extensor. Then, by linearity
of F, there exists a fine homotopy inverse

¢ (U,7) = (F7Y(U),7) of
F:(F'(U),7") — (U,7), thatis ,

F o+ and o F are homotopic to idy and idg—+(y)

via as small homotopies as we wish.

Coimb Pori L8142 n924
Goimpra;-Fortugal; duly 8-12; 2

Dobrowolski (PSU) Cauty’s example 16/19



e Recall g : A — S® has no extension over K.
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e Recall g : A — S® has no extension over K.

e By Borsuk’s Homotopy Extension Thm,

g extends over K if for some o : K — S and H: A x [0,1] — S8 we
have

H(a,0) = a(a) and H(a,1) = g(a), ac A.
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e Recall g : A — S® has no extension over K.

e By Borsuk’s Homotopy Extension Thm,

g extends over K if for some o : K — S and H: A x [0,1] — S8 we
have

H(a,0) = a(a) and H(a,1) = g(a), ac A.
o If1): U— F~1(U) is a homotopy inverse of F : F~1(U) — U, then

a = hoy|K does the job.
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e Recall g : A — S® has no extension over K.

e By Borsuk’s Homotopy Extension Thm,

g extends over K if for some o : K — S and H: A x [0,1] — S8 we
have

H(a,0) = a(a) and H(a,1) = g(a), ac A.
o If1): U— F~1(U) is a homotopy inverse of F : F~1(U) — U, then

a = hoy|K does the job.

e Proof: We have

a=aofidy] = ao[Foy]=holpoFloy=holide ylov=hoy;
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e Recall g : A — S® has no extension over K.

e By Borsuk’s Homotopy Extension Thm,

g extends over K if for some o : K — S and H: A x [0,1] — S8 we
have

H(a,0) = a(a) and H(a,1) = g(a), ac A.
o If1): U— F~1(U) is a homotopy inverse of F : F~1(U) — U, then

a = hoy|K does the job.

e Proof: We have
azao[idu]ﬁao[/—_ow]:ho[zpoF]oqp:ho[id,:q(u)]oq/):how;

hence
alA~hoyp|A=go[Foy|Al~golida =g

b/c ¢(a) € F~'(W), a € A, should the homotopy F o ¢ =~ idy be small.
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(Construction of hy)

e Recall: hy : MU F~ (W) — S8.
Extend hy over open Py in L(M), MU F~1(W) C Py, and call it also hy.
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(Construction of hy)

e Recall: hy : MU F~ (W) — S8.
Extend hy over open Py in L(M), MU F~1(W) C Py, and call it also hy.

e Define
My = {z € Hi(K) : ¢1(2) C Py},

that is, for z = tx, x € K, t # 0, ¢1(tx) = tf~'(x) must be C Py.
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(Construction of hy)

e Recall: hy : MU F~ (W) — S8.
Extend hy over open Py in L(M), MU F~1(W) C Py, and call it also hy.

e Define
My = {z € Hi(K) : ¢1(2) C Py},

that is, for z = tx, x € K, t # 0, ¢1(tx) = tf~'(x) must be C Py.
e K C My and My C H;(K) is open by continuity of

¢1 : H1(K) — 2H‘(M).
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(Construction of hy)

e Recall: hy : MU F~ (W) — S8.
Extend hy over open Py in L(M), MU F~1(W) C Py, and call it also hy.

e Define
My = {z € Hi(K) : ¢1(2) C Py},

that is, for z = tx, x € K, t # 0, ¢1(tx) = tf~'(x) must be C Py.
e K C My and My C H;(K) is open by continuity of

¢1 : H1(K) — 2H‘(M).
e Find open U;, U C H¢(X) with

KUuWnH(K)cU cU cUcUc M.

=TT - = = S pe +
Coimbra, Portugal, July 8-12, 2024
Dobrowolski (PSU) Cauty’s example 18/19



(Construction of hy)

e Recall: hy : MU F~ (W) — S8.
Extend hy over open Py in L(M), MU F~1(W) C Py, and call it also hy.

e Define
My = {z € Hi(K) : ¢1(2) C Py},

that is, for z = tx, x € K, t # 0, ¢1(tx) = tf~'(x) must be C Py.
e K C My and My C H;(K) is open by continuity of

¢1 :H1(K)—>2H‘(M).
e Find open U;, U C H¢(X) with
KUuWnH(K)cU cU cUcUc M.

e By Near-selection Thm applied to 1y =: ¢4 o [F|[F~1(U\ W)], get

x1: F7I(U\ W) — Hy (M) with di (x1(y), ¥1(y) < di(y, F( 2) N
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e Remark: Above use a continuous metric dy on L(M) such that

F=1(W)is di — closed and hy: F~1(W) — S8 is d; — continuous.
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e Remark: Above use a continuous metric dy on L(M) such that
F=1(W)is di — closed and hy: F~1(W) — S8 is d; — continuous.
o Write [y1,yo] = {ty1 + (1 — 1)y : 0 <t < 1} and let
Ri={ye F\(M\W):[y.,xa(y)] C Po.},

Ry c F~'(Hi(K) U W) is open.
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e Remark: Above use a continuous metric dy on L(M) such that
F=1(W)is di — closed and hy: F~1(W) — S8 is d; — continuous.
o Write [y1,)2] = {ty1 + (1 — 1)y : 0 < t < 1} and let
Ri={ye F\(M\W):[y.,xa(y)] C Po.},

Ry c F~'(Hi(K) U W) is open.
e Pick open V ¢ F~'(H;(K) U W) with

F'(W)ycVcVcRh,.
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e Remark: Above use a continuous metric dy on L(M) such that
F=1(W)is di — closed and hy: F~1(W) — S8 is d; — continuous.
o Write [y, yo] = {tys + (1 —t)y2: 0 <t < 1} and let
Ri={ye F\(M\W):[y.,xa(y)] C Po.},

Ry c F~'(Hi(K) U W) is open.
e Pick open V ¢ F~'(H;(K) U W) with

F'(W)ycVcVcRh,.
eLet\: F~'(H;(K)uU W — [0, 1] such that

MV)=0 and A(y) =1ify ¢ Ry.
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e Remark: Above use a continuous metric dy on L(M) such that
F=1(W)is di — closed and hy: F~1(W) — S8 is d; — continuous.
o Write [y, yo] = {tys + (1 —t)y2: 0 <t < 1} and let
Ri={ye F\(M\W):[y.,xa(y)] C Po.},

Ry c F~'(Hi(K) U W) is open.
e Pick open V ¢ F~'(H;(K) U W) with

F'(W)ycVcVcRh,.
eLet\: F~'(H;(K)uU W — [0, 1] such that
MV)=0 and A(y) =1ify ¢ Ry.

o Define, for y ¢ V, hi(y) = ho((1 = A(¥))y + A(¥)x1(y)); clearly
hi|V = ho.
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