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Cauty’s Example

(Cauty 1995)
There exists a metric linear space C which is not an absolute extensor
for metric spaces.

Moreover, C is sigma-compact.

Definition
A space X is an absolute extensor for metric spaces if every mapping

f : A → X ,

where A is a closed subset of a metric space Z , extends to Z .

If every such f extends to a neighborhood of A in Z , X is called an
absolute neighborhood extensor.
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Fact
Every locally convex topological vector space is an absolute extensor.

Observation
Cauty’s Example shows that the local convexity cannot be dropped.

Remark
For sigma-compact metric linear space E , the following are equivalent:

(1) E is an absolute extensor for metric spaces,

(2) E is an absolute extensor for (metric) compacta.

(3) For every compactum A ⊂ E , the identity map idA : A → E can be
approximated by maps

ϕ : A → E

so that ϕ(A) is finite-dimensional.
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Placing Cauty’s space C in C∗(K )

• Identify the compactum K with

{δk : k ∈ K}

the set of Dirac measures in C∗(K ) with the weak∗ topology.

• For every n, let

Ln(K ) = {
n∑

i=1

tiδki : |t1|+ ·+ |tn| ≤ n, k1, . . . , kn ∈ K}

be a compactum in C∗(K ).

• Then

L(K ) =
∞⋃

n=1

Ln(K ) = span(K )

is the required vector space.
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The finest vector topology τ0 on L(K )

• U is open in (L(K ), τ0) iff, for every n,

U ∩ Ln(K ) is open in Ln(K ).

• By [Turpin, 1976], the sets

U0 ∩
⋂

Ln(K ) + Un,

where Un, n ≥ 0, are weak∗ open neighborhoods of 0 in C∗(K ) and Un
their weak∗−closures, form a base of neighborhoods of 0 in (L(K ), τ0).

• For any metric topology τ on LK ), there exists a finer metric topology
τ ′ so that the completion of (L(K ), τ ′) has FDD ; in particular, has a
sequence of continuous functionals separating points.

Here: FDD is f-d decomposition property, that is, for every x ∈ L(K )

x =
∑∞

n=1 Tn(x),
where Tn are f-d operators, Tn ◦ Tm = 0 for n ̸= m.Dobrowolski (PSU) Cauty’s example

Coimbra, Portugal, July 8-12, 2024
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Fact
(1) Since vector operations are τ0− continuous

(L(K ), τ0) is a t.v.s.

(2) the original and τ0− topologies coincide on K and each Ln(K );
thus,

• K is a Hamel basis for L(K );

• L(K ) is sigma-compact.

(3) L(K ) is a free t.v.s. over K and (for nontrivial K ) nonlocally convex.

(4) For any continuous mapping f : K → F , where F is a t.v.s., there is
unique continuous linear operator

F : (L(K ), τ0) → F such that F |K = f ;

in particular, such an operator F : (L(M), τ0) → (L(K ), τ0) exists for a
continuous surjection f : M → K . Furthermore, F is open.
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Cauty’ Example - a precise version

(Cauty 1995)
There exists a compactum K and a metric linear topology τ on L(K )
such that:
For any metric linear topology τ ′ on L(K ), τ0 ⊂ τ ′ ⊂ τ ,

(L(K ), τ ′) is not an absolute extensor for compacta.

Additionally, the map idK : K → (L(K )), τ ′) cannot be approximated by
maps

ϕ : K → (L(K )), τ ′)

so that ϕ(K ) is finite-dimensional.
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The compactum K
• [Dranishnikov, 1988]
M =: S7 has a partition P into CE compacta so that the quotient space

M/P =: K is an infinite-dimensional compactum.

• [Walsh, 1976]
The partition P can be further enhanced so that the quotient map

f : M → K is an open mapping.

• Each pre-image f−1(x), x ∈ K , is a CE compactum, meaning

f−1(x) =
⋂

Bk , Bk+1 ⊂ Bk , Bk is a copy of Euclidean ball.

Remark
The topological sine curve is a nontrivial CE compactum.
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The operator F : L(M) → L(K )

• For M = S7, consider span(M) ⊂ C∗(M) and let

L(M) =: (span(M), τ0),

where τ0 is the finest vector topology.

• Since M and K are Hamel basis of L(M) and L(X ), f : M → K there
exists a unique continuous open operator

F : L(M) → L(X ) such that F |M = f .

• If, for some metrics d ′, d , and an open set U ⊂ (L(K ),d),

(i) F : (F−1(U),d ′) → (U,d) is continuous and

(ii) (L(K ),d) is an absolute extensor

then homotopy types of F−1(U) and U are the same.
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Similarities and differences between L(M) and L(K )

• Both L(M) and L(K ) are sigma-compact.

• While L(K ) is not, L(M) is a countable union of f-d compacta.
Conclusion: L(M) is an absolute extensor in any metric linear topology.

• For each n, define Hn(K ) ⊂ L(K ) (and similarly Hn(M) ⊂ L(M)) by

Hn(K ) =
{ n∑

i=1

tixi : xi ∈ K , {xi} distinct, and ti ̸= 0
}
.

• We have
⋃∞

n=1 Hn(K ) = L(K ) \ {0} and
⋃∞

n=1 Hn(M) = L(M) \ {0}.

• Both Hn(M) and Hn(K ) are metric local compacta (in the free
topologies).

• While each Hn(K ) is not, Hn(M) is an absolute neighborhood
extensor.
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Key facts validating the choice of K
• Write 2M for the hyperspace of all compacta in M with the Hausdorff
topology. The set-valued function

K → 2M given by x → f−1(x)

has CE images and, due to openness of f , is continuous.

• More generally, the set-valued function ϕn : Hn(X ) → 2Hn(M) defined
by

ϕn(t1x1 + · · ·+ tnxn) = t1f−1(x1) + · · ·+ tnf−1(xn)

is continuous and has CE images.

Remark
t1f−1(x1) + · · ·+ tnf−1(xn)

is homeomorphic to f−1(x1)× · · · × f−1(xn), which is CE because each
f−1(xi) is.
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Near-selection Theorem, [Haver, 1978]

Let

(i) Z be a metric space which is a countable union of f-d compacta,

(ii) T be a metric absolute neighborhood extensor.

(iii) ψ : Z → 2T be a set-valued mapping with CE images, and

(iv) ϵ : Z → (0,1] be a continuous function.

Then there exists χ : Z → T such that

dist(χ(z)), ψ(z)) < ϵ(z), z ∈ Z ;

χ is called a continuous ϵ(z)− near-selection of the set-valued
mapping ψ(z).
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Near-selection Theorem at work

Corollary
We have

• Z =: F−1(Hn(K )) ⊂ L(M) is countable union of f-d compacta;

• T =: Hn(M) is an absolute neighborhood retract

• ψ =: ϕn ◦ F : F−1(Hn(K )) → 2Hn(M) is continuous and has CE
images.

By Near-selection Theorem, for every continuous function
ϵ : F−1(Hn(K )) → (0,1] there exists

χn : F−1(Hn(K )) → Hn(M)

with
dist(χn(y)), ϕn(F (y))) < ϵ(y), y ∈ F−1(Hn(K )).
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Infinite-dimensionality of the compactum K in use
• A classic test for infinite-dimensionaliy:
For some closed set A ⊂ K [⊂ L(K )] some mapping

g : A → S8

has no extension over K .

• However, g can be extended to

ḡ : W → S8,

where W is a closed neighborhood of A in L(K ).

• Since 8 > 7,
ḡ ◦ [f |f−1(W )] : f−1(W ) → S8

extends to h0 : M = S7 → S8.

Additionally, since M ∩ F−1(W ) = f−1(W ), h0 extends over F−1(W ) to

h0 : M ∪ F−1(W ) → S8 and satisfies h0|F−1(W ) = ḡ ◦ [F |F−1(W )].
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Goal: Extend h0 to h on F−1(U ∪ W ), K ⊂ U ⊂ L(K )

• An open U ⊂ L(K ) (K ⊂ U) and h : F−1(U) → S8 are inductively
constructed such that

h|M ∪ F−1(W ) = h0; hence, h|F−1(W ) = ḡ ◦ [F |F−1(W )].

• For X = M or K , write

Gn(X ) = {z ∈ L(X ) : z = t1x1 + · · · tnxn, xi ∈ X ,−∞ < ti <∞}

Hn(X ) = Gn(X ) \ Gn−1(X ); here, G0(X ) = {0}.

• Inductively, the open sets Un = U ∩ Gn(K ) are constructed. Finally,

U =
⋃
(U ∩ Gn(K )).

• Likewise, hn = h|F−1(Un ∪ W ) are constructed so that

hn : F−1(Un ∪ W ) → S8 and hn|F−1(W ) = ḡ ◦ [F |F−1(W )].
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Using U,W , and h to find τ on L(K ) claimed by Cauty
• There are metric vector topologies τ on L(K ) and τ ′ on L(M)
(use Birkhoff–Kakutani technique) such that

(i) U,W are τ−open and ḡ : (W , τ) → S8 is continuous, and

(ii) F : (L(M), τ ′) → (L(K ), τ) and h : (F−1(U), τ ′) → S8 are
continuous.

• Assume (L(K, τ)) is an absolute extensor.

Then, (U, τ) is an absolute neighborhood extensor. Then, by linearity
of F , there exists a fine homotopy inverse

ψ : (U, τ) → (F−1(U), τ ′) of

F : (F−1(U), τ ′) → (U, τ), that is ,

F ◦ ψ and ψ ◦ F are homotopic to idU and idF−1(U)

via as small homotopies as we wish.
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• Recall g : A → S8 has no extension over K .

• By Borsuk’s Homotopy Extension Thm,

g extends over K if for some α : K → S8 and H : A × [0,1] → S8 we
have

H(a,0) = α(a) and H(a,1) = g(a), a ∈ A.

• If ψ : U → F−1(U) is a homotopy inverse of F : F−1(U) → U, then

α = h ◦ ψ|K does the job.

• Proof: We have

α = α ◦ [idU ] ≃ α ◦ [F ◦ ψ] = h ◦ [ψ ◦ F ] ◦ ψ ≃ h ◦ [idF−1(U)] ◦ ψ = h ◦ ψ;

hence
α|A ≃ h ◦ ψ|A = ḡ ◦ [F ◦ ψ|A] ≃ ḡ ◦ [idA] = g

b/c ψ(a) ∈ F−1(W ), a ∈ A, should the homotopy F ◦ ψ ≃ idU be small.
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(Construction of h1)

• Recall: h0 : M ∪ F−1(W ) → S8.
Extend h0 over open P0 in L(M), M ∪F−1(W ) ⊂ P0, and call it also h0.

• Define
M1 = {z ∈ H1(K ) : ϕ1(z) ⊂ P0},

that is, for z = tx , x ∈ K , t ̸= 0, ϕ1(tx) = tf−1(x) must be ⊂ P0.

• K ⊂ M1 and M1 ⊂ H1(K ) is open by continuity of

ϕ1 : H1(K ) → 2H1(M).

• Find open U1,U ⊂ H1(X ) with

K ∪ (W ∩ H1(K )) ⊂ U1 ⊂ U1 ⊂ U ⊂ U ⊂ M1.

• By Near-selection Thm applied to ψ1 =: ϕ1 ◦ [F|F−1(U \ W)], get

χ1 : F−1(U \ W ) → H1(M) with d1(χ1(y), ψ1(y) < d1(y ,F−1(W )).
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• Remark: Above use a continuous metric d1 on L(M) such that

F−1(W ) is d1 − closed and h0 : F−1(W ) → S8 is d1 − continuous.

• Write [y1, y2] = {ty1 + (1 − t)y2 : 0 ≤ t ≤ 1} and let

R1 = {y ∈ F−1(M1 \ W ) : [y , χ1(y)] ⊂ P0.},

R1 ⊂ F−1(H1(K ) ∪ W ) is open.

• Pick open V ⊂ F−1(H1(K ) ∪ W ) with

F−1(W ) ⊂ V ⊂ V ⊂ R1.

• Let λ : F−1(H1(K ) ∪ W → [0,1] such that

λ(V ) = 0 and λ(y) = 1 ify /∈ R1.

• Define, for y /∈ V , h1(y) = h0
(
(1 − λ(y))y + λ(y)χ1(y)

)
; clearly

h1|V = h0.
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