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Polarities à la Birkhoff

A polarity is P = (X ,Y ,Z ) with Z ⊆ X × Y . It induces

℘(X ) ℘(Y )

p

q

with
p(M) = {y | ∀x ∈ M. xZy}
q(N) = {x | ∀y ∈ N. xZy}

The complete lattice of Galois closed sets

G(P) = fix(q ◦ p) = {M ∈ ℘(X ) | q(p(M)) = M}

Theorem (folklore)

The induced mappings X
iX−−−→ G(P) iY←−−− Y unique such that

� im(iX )
∨
-generates and im(iY )

∧
-generates G(P)

� iX (x) ≤ iY (y) iff xZy
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Canonical extensions of lattices

For a bounded distributive lattice D,

Dδ = G(Filt(D), Idl(D),Z ) where FZI ⇐⇒ F ∩ I ̸= ∅

Theorem

For the Priestley dual X of D, Dδ ∼= Up(X ).

Further facts

� Dδ is a frame & coframe.

� The embedding e : D → Idl(D)→ Dδ uniquely identifies Dδ,

by properties: compactness and density

� Duality between X and D recovered algebraically from e.

� Extensions of (monotone) maps D → E to Dδ → E δ

� Preservations of equations, e.g. if D is Boolean then so is Dδ.

� . . .
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Frame theory in 2 minutes

A frame L is a complete lattice such that, for any A ⊆ L, b ∈ L

(
∨

A) ∧ b =
∨
a∈A

(a ∧ b)

Consequently: a ∧ b ≤ c iff a ≤ b → c

Example: for a space X , its lattice of opens Ω(X ) is a frame.

Conversely, every frame L gives a space Σ(L) = (CP(L), τL) where

� CP(L) = { filters P ⊆ L |
∨

A ∈ P implies A ∩ P ̸= ∅}
� τL generated by {P ∈ CP(L) | a ∈ P} for every a ∈ L

Top Frm

Ω

Σ

This identifies spacial

frames and sober spaces.
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well... another 2 minutes: Sublocales

For every frame L,

S(L)

is the coframe of sublocales, i.e. subsets

S ⊆ L

such that

� S is closed under
∧

and

� x ∈ L and s ∈ S implies x → s ∈ S .

For a ∈ L, special sublocales:

� open sublocale o(a) = {x ∈ L | a→ x = x} (representing a)

� closed sublocale c(a) = ↑a (its complement)
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Canonical extensions of frames [Jakl’20]

For frame L = Idl(D),

Filt(D) ∼= SO(L) (i.e. Scott-open filters on L).

Therefore,

Dδ ∼= LSO := G(SO(L), L,Z ) where FZa ⇐⇒ F ∋ a

Works for any frame L:

� The induced mapping e : L→ LSO is a pre-frame homo.

� It is frame embedding iff L pre-spacial.

� L stably locally compact ⇒ LSO frame & coframe (constructively)

� L = Idl(B) ⇒ LSO ∼= Sc(L)
� . . .

Question: What if we replace Scott-open filters?
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Filters on frames

The geometric picture behind G(SO(L), L,∋):

Filt(L) S(L)

su

fi

where

su(F ) =
⋂
a∈F

o(a)

fi(S) = {a | S ⊆ o(a)}

Our intuition: Filters approximate sublocales ⇒ order them by

F ⊑ G iff F ⊇ G ⇒ Filt(L) is a coframe!

Monotone adjunction:

fi(S) ⊑ F ⇐⇒ S ⊆ su(F )
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Classes of filters

Fixpoints of fi ⊣ su, i.e. filters F ⊆ L such that

su(F ) ⊆ o(a) ⇐⇒ F ∋ a

are precisely the strongly exact filters SE(L) ⊆ Filt(L).

[Moshier–Pultr–Suarez’20]

B(Filt(L)) E(L)

SE(L) Filt(L)

J (CP(L)) J (SO(L))
[Johnstone’85]

Here B(−) is the co-Booleanization operation,

E(L) = exact filters, CP(L) = completely prime filters.
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Filter extensions

Given a class F ⊆ Filt(L) define

LF = G(F , L,∋) (order denoted ⊑)

su(F ) ⊆ o(a) ⇐⇒ F ∋ a

Theory of polarities ⇒ the induced maps

F κ−−→ LF
e←−− L

uniquely determined by:

(density) im(κ)
⊔
-generates and im(e)

d
-generates LF

(compact.) κ(F ) ⊑ e(a) iff F ∋ a

e is enough as κ(F ) =
d

a∈F e(a).
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Properties of filter extensions

Basic facts

� κ : F → LF order embedding

� e : L→ LF preserves 0, 1,∧
� e order embedding iff e injective iff L is F-separable:

a = b iff ∀F ∈ F a ∈ F ⇐⇒ b ∈ F

Observation: LF ∼= J (F) = {
⊔
M | M ⊆ F}

by the way
⊔
M =

⋂
M

Theorem

LF ⊆ Filt(L) is a subcolocale inclusion if, ∀F ∈ F ∀a ∈ L,

F ∖ ↑a = {x | x ∨ a ∈ F} ∈ F

9
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Classes of sublocales corresponding to filters

Subcolocale inclusions (by the previous theorem)

SE(L) Filt(L)

So(L) S(L)

∼= sufi

regular filters: {1}∖ F

Sc(L) = J ({closed sublocales})

exact filters:
∧
M-closed for

(
∧
M) ∨ b =

∧
a∈M(a ∨ b)

Sb(L) = J ({complemented sublocales})
= J ({c(y) ∩ o(x) | x , y ∈ L})

Sk(L) = J ({compact sublocales})Ssp(L) = {spatial sublocales}

So(L) = {intersections of opens}
10
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Remarks

The proof of B(Filt(L)) ∼= fit[Sc(L)] uses

� B(Filt(L)) = J (C(L)) where C(L) = {fi(c(a)) | a ∈ L}

The proof of E(L) ∼= fit[Sb(L)] uses

� E(L) = J (LC(L)) where

LC(L) = {fi(o(y)∖ o(x)) | x , y ∈ L} = {↑y ∖ ↑x | x , y ∈ L}

The proof that J (CP(L)) ∼= fit[Ssp(L)] uses

� Ssp(L) = J (S∗(L)) where S∗(L) = {{1, p} | prime p ∈ L}

⇒ LC ∼= G(c[L], o[L],⊆) ∼= fit[Sc(L)] ∼= intc[L][So(L)]
LCP ∼= G(S∗(L), o[L],⊆) ∼= fit[Ssp(L)] ∼= sp[So(L)]
...
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Filt(L) as a geometric extension of L

Define

� of(a) = fi(o(a)) = ↑a
� cf(a) = fi(c(a)) = {x | x ∨ a = 1}

Observation: cf(a) = of(a)# and of(a) ⊔ cf(a) = {1}

Theorem

L subfit iff of(a) =
⊔
{cf(x) | cf(x) ⊑ of(a)} iff of(a) = cf(a)#

Theorem

F ∈ Filt(L) exact iff ∃ {xi , yi}i s.t. F =
⊔

i (of(yi )∖ of(xi ))

L subfit ⇒ E(L) Boolean since B(Filt(L)) = J (C(L)) ⊆ E(L) and

of(y)∖ of(x)
(sfit)
=

⊔
cf(b)⊑of(y)

(cf(b)∖ of(x)) =
⊔

cf(b)⊑of(y)

cf(b ∨ x)
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Closing words

� New characterisations of subfitness

� New tools for working with Sc(L) resp. E(L) – the latter

described as joins of locally closed filters, universal properties

given by polarities.

� E(L) contains closed, open, locally closed filters → justifies

why it is a suitable (geometric) discretization of L?

Open problems

� When is LF a frame? (e.g. for F = E(L))

� Is there a natural simple class F such that SE(L) = J (F)?
� Theory of extensions of maps L→ M to LF → MF .

� Preservation of topological properties?

(e.g. L subfit ⇒ LE Boolean, when 0-dimensional like S(L)?)
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Thank you!


