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Polarities a la Birkhoff

A polarity is P = (X, Y, Z) with Z C X x Y. It induces

p

T = X . X
O(x) O(Y)  with p(M) ={y | Vx € M. xZy}
1\(}/ q(N) ={x|Vy € N. xZy}

The complete lattice of Galois closed sets

G(P) =fix(qop) = {M € £(X) | q(p(M)) = M}
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A polarity is P = (X, Y, Z) with Z C X x Y. It induces

p

T = X . X
O(x) O(Y)  with p(M) ={y | Vx € M. xZy}
1\?/ q(N) ={x|Vy € N. xZy}

The complete lattice of Galois closed sets

G(P) =fix(qop) = {M € £(X) | q(p(M)) = M}

Theorem (folklore)

The induced mappings X i G(P) vy unique such that

e im(ix) \/-generates and im(iy) /\-generates G(P)
o ix(x) < ivly) iff xZy



Canonical extensions of lattices

For a bounded distributive lattice D,

D’ = G(Filt(D),IdI(D), Z) where FZI < FNI#0

Theorem
For the Priestley dual X of D, D’ = Up(X).



Canonical extensions of lattices

For a bounded distributive lattice D,
D% = G(Filt(D),IdI(D),Z) where FZI <= FNIl#

Theorem
For the Priestley dual X of D, D’ = Up(X).

Further facts

e D’ is a frame & coframe.
o The embedding e : D — IdI(D) — D° uniquely identifies D?,
by properties: compactness and density

Duality between X and D recovered algebraically from e.
Extensions of (monotone) maps D — E to D° — E?°

Preservations of equations, e.g. if D is Boolean then so is D?.



Frame theory in 2 minutes

A frame L is a complete lattice such that, forany AC L, be L

(VA Ab=\/(anb)

acA

Consequently: aAb<ciffa<b—c

Example: for a space X, its lattice of opens Q(X) is a frame.



Frame theory in 2 minutes

A frame L is a complete lattice such that, forany AC L, be L

(VA Ab=\/(anb)

acA

Consequently: aAb<ciffa<b—c
Example: for a space X, its lattice of opens Q(X) is a frame.

Conversely, every frame L gives a space (L) = (CP(L), ) where

o CP(L)={filters PC L|\/ A€ P implies ANP #0}
e 7 generated by {P € CP(L) | a€ P} foreveryae L

Q
T This identifies spacial
Top Frm
X~ frames and sober spaces.

>



well... another 2 minutes: Sublocales
For every frame L,
S(L)
is the coframe of sublocales, i.e. subsets
SClL
such that

e S is closed under A and
e x€ Lands €S impliesx »>s€S.



well... another 2 minutes: Sublocales
For every frame L,
S(L)
is the coframe of sublocales, i.e. subsets
SClL
such that

e S is closed under A and
e x€ Lands €S impliesx »>s€S.

For a € L, special sublocales:

e open sublocale o(a) ={x € L | a— x = x} (representing a)

¢ closed sublocale ¢(a) = Ta (its complement)



Canonical extensions of frames [JakI'20]

For frame L = IdI(D),
Filt(D) =2 SO(L) (i.e. Scott-open filters on L).
Therefore,

D° = 59 := G(SO(L),L,Z) where FZa < F>a
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Works for any frame L:

The induced mapping e : L — L59 is a pre-frame homo.

It is frame embedding iff L pre-spacial.

L stably locally compact = LS50 frame & coframe (constructively)
L=1dI(B) = L3° = S.(L)



Canonical extensions of frames [JakI'20]

For frame L = IdI(D),
Filt(D) =2 SO(L) (i.e. Scott-open filters on L).
Therefore,

D° = 59 := G(SO(L),L,Z) where FZa < F>a

Works for any frame L:

The induced mapping e : L — L59 is a pre-frame homo.

It is frame embedding iff L pre-spacial.

L stably locally compact = LS50 frame & coframe (constructively)
L=1dI(B) = L3° = S.(L)

Question: What if we replace Scott-open filters?



Filters on frames

The geometric picture behind G(SO(L), L, 3):

— su(F) = () o(a)
Filt(L) S(L)  where acF

— fi(S)={a|S Co(a)}
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Filters on frames

The geometric picture behind G(SO(L), L, 3):

— su(F) = () o(a)
Filt(L) S(L)  where acF
— fi(S) = {a] 5 C ofa)}

fi

Our intuition: Filters approximate sublocales = order them by

FC G iff FOG = Filt(L) is a coframel!

Monotone adjunction:

fi(S)C F < S Csu(F)



Classes of filters

Fixpoints of fi 4 su, i.e. filters F C L such that
su(F)Co(a) <= F>a

are precisely the strongly exact filters SE(L) C Filt(L).
[Moshier—Pultr-Suarez’20]



Classes of filters

Fixpoints of fi 4 su, i.e. filters F C L such that
su(F)Co(a) <= F>a

are precisely the strongly exact filters SE(L) C Filt(L).
[Moshier—Pultr-Suarez’20]

B(Filt(L)) — E(L)

SE(L) — Filt(L)

[Johnstone’85]

J(CP(L)) — J(SO(L))

Here B(—) is the co-Booleanization operation,
E(L) = exact filters, CP(L) = completely prime filters.



Filter extensions

Given a class F C Filt(L) define

L7 =G(F,L,3) (order denoted L)

A

[su(F)go(a) = Faa}




Filter extensions

Given a class F C Filt(L) define

L7 =G(F,L,3) (order denoted L)

Theory of polarities = the induced maps
Fs17 &1
uniquely determined by:
(density) im(k) | |-generates and im(e) []-generates L7

(compact.) k(F)C e(a) iff F>a

e is enough as k(F) =[],cr e(a).



Properties of filter extensions

Basic facts

e k: F — L7 order embedding
e e: L — L7 preserves 0,1, A
e e order embedding iff e injective iff L is F-separable:

a=b iff VFeF ac€cF < beF
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Properties of filter extensions

Basic facts

e k: F — L7 order embedding
e e: L — L7 preserves 0,1, A
e e order embedding iff e injective iff L is F-separable:

a=b iff VFeF ac€cF < beF

Observation: L7 = J(F)={ |M|MC F}
by the way | |[M =M

Theorem

L7 C Filt(L) is a subcolocale inclusion if, YF € F Va€ L,
F~ta={x|xVaeF} € F



Classes of sublocales corresponding to filters

Subcolocale inclusions (by the previous theorem)

SE(L) — Filt(L)

N

1%
=h
wn
c

SO(L) co S(L)

|

[SO(L) = {intersections of opens}}

10



Classes of sublocales corresponding to filters

Subcolocale inclusions (by the previous theorem)

E(L)

exact filters: A M-closed for SE(L) — Filt(L)
(AM) Vb = Nem(aV b)

1%

fi su

fit[Sp(L

/ ~
So(L) <= S(L)

{Sb(L) = J({complemented sublocales})

= J({ey) No(x) | x.y € L})
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Classes of sublocales corresponding to filters

Subcolocale inclusions (by the previous theorem)

B(Filt(L)) — E(L)
A ~

S i
[regular filters: {1} ~ F} E(L) — Filt(L)

1%

fi su

fit[Sc(L)] — fit[Sb(L)]

[Sc(L) = J({closed sublocales})] So(L) <--» S(L)
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Classes of sublocales corresponding to filters

Subcolocale inclusions (by the previous theorem)

SE(L) —> Filt(L)

"

J(SO(L))

1R

fi su

[Sk(L) = J({compact sublocales}) ]

\ SO(L) 7 S(L)
/

£it[Sy(L)]
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Classes of sublocales corresponding to filters

Subcolocale inclusions (by the previous theorem)

SE(L) —> Filt(L)

7

J(CP(L)) < J(SO(L))

Il

fi su

[SSP(L) = {spatial sublocales} }

SO(L) cm2 S(L)
/

£1t[Sep(L)] — £it[Sk(L)]

10



Classes of sublocales corresponding to filters

Subcolocale inclusions (by the previous theorem)

B(Filt(L)) — E(L)
\ |

SE(L) — Filt(L)

/

J(CP(L)) — J(SO(L))

IR

fi su

£1t[Sc(L)] — £it[Sp(L)]

~,
"

SO(L) o7 S(L)

£1t[Sp(L)] —> £it[Si(L)] 10



Remarks

The proof of B(Filt(L)) = £it[Sc(L)] uses
e B(Filt(L)) = J(C(L)) where C(L) = {fi(c(a)) | a € L}
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Remarks

The proof of B(Filt(L)) = £it[Sc(L)] uses
e B(Filt(L)) = J(C(L)) where C(L) = {fi(c(a)) | a € L}

The proof of E(L) = £it[Sp(L)] uses
e E(L) = J(LC(L)) where
LC(L) = {fi(o(y) N o(x)) [ x,y € L} = {Ty N x| x,y € L}

The proof that J(CP(L)) = £it[Ssp(L)] uses
o Sop(L) = T(S«(L)) where S, (L) = {{1,p} | prime p € L}

= LC G(c[L],0[L], C) = £fit[Sc(L)] = intep] [So(L)]
LP = G(S.(L), o[L], ©) = £1t[Syp(L)] = sp[So(L)]
11



Filt(L) as a geometric extension of L

Define

e of(a) =fi(o(a)) = Ta
o cf(a) =fi(c(a)) ={x | xVa=1}
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Define
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Filt(L) as a geometric extension of L

Define

¢ of(a) = fi(o(a)) = ta
¢ ¢f(a) =fi(c(a)) = {x | xvVa=1}

Observation: cf(a) = of(a)* and of(a) U cf(a) = {1}

Theorem

L subfit iff of(a) = | [{cf(x) | cf(x) C of(a)} iff of(a) = cf(a)”
Theorem

F € Filt(L) exact iff 3{x;,yi}i s.t. F =L1; (of(yi) ~ of(xi))

L subfit = E(L) Boolean since B(Filt(L)) = J(C(L)) € E(L) and

of(y) ~ of(x) T || (fb)~ofx) = || ei(bvx)

¢f(b)Eoi(y) cf(b)Eof(y) 12



Closing words

e New characterisations of subfitness

o New tools for working with Sc(L) resp. E(L) — the latter
described as joins of locally closed filters, universal properties
given by polarities.

e E(L) contains closed, open, locally closed filters — justifies

why it is a suitable (geometric) discretization of L?
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Closing words

e New characterisations of subfitness

o New tools for working with Sc(L) resp. E(L) — the latter
described as joins of locally closed filters, universal properties
given by polarities.

e E(L) contains closed, open, locally closed filters — justifies
why it is a suitable (geometric) discretization of L?

Open problems

o When is L7 a frame? (e.g. for F = E(L))
e Is there a natural simple class F such that SE(L) = J(F)?
e Theory of extensions of maps L — M to L7 — M7,

o Preservation of topological properties?
(e.g. L subfit = LE Boolean, when 0-dimensional like S(L)?)

13



Thank you!



