Inverse limits and Cook continua

FANS OF COOK CONTINUA

Teja Kac

Joint work with Iztok Banič and Matevž Črepnjak

University of Maribor

Research supported by J1-4632

DEFINITION

An inverse sequence is a double sequence $\{X_n, f_n\}_{n=1}^{\infty}$ of metric spaces X_n and functions $f_n: X_{n+1} \to X_n$. The spaces X_n are called the coordinate spaces and the functions f_n are called the bonding functions. The inverse limit of an inverse sequence $\{X_n, f_n\}_{n=1}^{\infty}$ is the subspace of the product space $\prod_{n=1}^{\infty} X_n$ that consists of all points $\mathbf{x} = (x_1, x_2, x_3, \ldots) \in \prod_{n=1}^{\infty} X_n$ such that $x_n = f_n(x_{n+1})$ for each positive integer n:

$$\varprojlim \{X_n, f_n\}_{n=1}^\infty = \left\{ (x_1, x_2, x_3, \ldots) \in \prod_{n=1}^\infty X_n \mid x_n = f_n(x_{n+1}) \text{ for each } n \right\}.$$

DEFINITION

Let n be a positive integer. A nondegenerate continuum X is $\frac{1}{n}$ -rigid, if

$$f^n = 1_X$$

for any continuous surjective function $f:X\to X$. If a continuum X is not $\frac{1}{n}$ -rigid for any positive integer n, then we say that X is 0-rigid. If a continuum X is $\frac{1}{1}$ -rigid, then we also say that X is 1-rigid or rigid.

DEFINITION

Let X be a continuum. We define the degree of rigidity, $\operatorname{degrig}(X)$, of the continuum X as follows:

$$\operatorname{degrig}(X) = \min \left(\{ n \in \mathbb{N} \mid X \text{ is } (1/n) \text{-rigid} \} \cup \{ \infty \} \right).$$

DEFINITION

Let n be a positive integer. A nondegenerate continuum X is $\frac{1}{n}$ -rigid, if

$$f^n = 1_X$$

for any continuous surjective function $f:X\to X$. If a continuum X is not $\frac{1}{n}$ -rigid for any positive integer n, then we say that X is 0-rigid. If a continuum X is $\frac{1}{1}$ -rigid, then we also say that X is 1-rigid or rigid.

DEFINITION

Let X be a continuum. We define the degree of rigidity, $\operatorname{degrig}(X)$, of the continuum X as follows:

$$\operatorname{degrig}(X) = \min \left(\{ n \in \mathbb{N} \mid X \text{ is } (1/n) \text{-rigid} \} \cup \{ \infty \} \right).$$

COOK CONTINUUM

DEFINITION

A nondegenerate continuum X is a Cook continuum if for any nondegenerate subcontinuum S of X and any non-constant continuous function $f:S\to X$, it follows that

$$f(x) = x$$

for any $x \in S$.

Properties of Cook continua

- Let X be a Cook continuum and let $x_0 \in X$ be any point. Then x_0 is a non-cut point for X.
- Let X be a Cook continuum and let S be a nondegenerate subcontinuum of X. Then S is a Cook continuum.
- Let X and Y be any Cook continua, let S be a nondegenerate subcontinuum of X, and let $\varphi:X\to Y$ be a homeomorphism. Then

$$f = \varphi|_S$$

for any non-constant continuous function $f: S \rightarrow Y$.

PROPERTIES OF COOK CONTINUA

- Let X be a Cook continuum and let $x_0 \in X$ be any point. Then x_0 is a non-cut point for X.
- Let X be a Cook continuum and let S be a nondegenerate subcontinuum of X. Then S is a Cook continuum.
- Let X and Y be any Cook continua, let S be a nondegenerate subcontinuum of X, and let $\varphi:X\to Y$ be a homeomorphism. Then

$$f = \varphi|_S$$

for any non-constant continuous function $f: S \rightarrow Y$.

PROPERTIES OF COOK CONTINUA

- Let X be a Cook continuum and let $x_0 \in X$ be any point. Then x_0 is a non-cut point for X.
- Let X be a Cook continuum and let S be a nondegenerate subcontinuum of X. Then S is a Cook continuum.
- Let X and Y be any Cook continua, let S be a nondegenerate subcontinuum of X, and let $\varphi:X\to Y$ be a homeomorphism. Then

$$f = \varphi|_{\mathcal{S}}$$

for any non-constant continuous function $f: S \to Y$.

PROPERTIES OF COOK CONTINUA

- Let X be a Cook continuum and let $x_0 \in X$ be any point. Then x_0 is a non-cut point for X.
- Let X be a Cook continuum and let S be a nondegenerate subcontinuum of X. Then S is a Cook continuum.
- Let X and Y be any Cook continua, let S be a nondegenerate subcontinuum of X, and let $\varphi:X\to Y$ be a homeomorphism. Then

$$f = \varphi|_{\mathcal{S}}$$

for any non-constant continuous function $f: S \to Y$.

$$X_1 \times \{1\}$$

$$\begin{array}{c}
\bullet \\
X_1
\end{array}$$

$$\begin{array}{c}
X_1 \times \{1\} \\
\bullet \\
X_2
\end{array}$$

$$\begin{array}{c}
X_2 \times \{2\} \\
\bullet \\
X_3
\end{array}$$

$$\begin{array}{c}
X_3 \times \{3\} \\
\end{array}$$

Inverse limits and Cook continua

STARS OF COOK CONTINUA

LEMMA

Let m be a positive integer and for each $k \in \{1, 2, 3, ..., m\}$ let X_k be a Cook continuum and let $x_k \in X_k$ be any point. Then x_0 is the only cut point for $\star_{k=1}^m(X_k, x_k)$.

THEOREM

Let m be a positive integer and let X_0 be a Cook continuum. For each $k \in \{1, 2, 3, \ldots, m\}$, let X_k be a Cook continuum, which is homeomorphic to X_0 , let $\varphi_k : X_0 \to X_k$ be the homeomorphism from X_0 to X_k , and let $x_k \in X_k$ be any point. Also, let

$$f: X_0 \to \star_{k=1}^m (X_k, x_k)$$

be any non-constant continuous function. Then there is $k \in \{1, 2, 3, ..., m\}$ such that $f(x) = \varphi_k(x)$ for each $x \in X_0$.

STARS OF COOK CONTINUA

LEMMA

Let m be a positive integer and for each $k \in \{1, 2, 3, ..., m\}$ let X_k be a Cook continuum and let $x_k \in X_k$ be any point. Then x_0 is the only cut point for $\star_{k=1}^m(X_k, x_k)$.

THEOREM

Let m be a positive integer and let X_0 be a Cook continuum. For each $k \in \{1, 2, 3, \ldots, m\}$, let X_k be a Cook continuum, which is homeomorphic to X_0 , let $\varphi_k : X_0 \to X_k$ be the homeomorphism from X_0 to X_k , and let $x_k \in X_k$ be any point. Also, let

$$f: X_0 \to \star_{k=1}^m (X_k, x_k)$$

be any non-constant continuous function. Then there is $k \in \{1, 2, 3, ..., m\}$ such that $f(x) = \varphi_k(x)$ for each $x \in X_0$.

COROLLARY

Inverse limits and Cook continua

Let m be a positive integer and let X_0 be a Cook continuum. For each $k \in \{1, 2, 3, \dots, m\}$, let X_k be a Cook continuum, which is homeomorphic to X_0 , let $\varphi_k: X_0 \to X_k$ be the homeomorphism from X_0 to X_k , and let $x_k \in X_k$ be any point. Also, let

$$f:\star_{k=1}^m(X_k,x_k)\to\star_{k=1}^m(X_k,x_k)$$

be any non-constant continuous function. Then for each $n \in \{1, 2, 3, ..., m\}$ there is $k \in \{1, 2, 3, ..., m\}$ such that $f(x) = (\varphi_k \circ \varphi_n^{-1})(x)$ for each $x \in X_n$.

Let m be a positive integer, let X_0 be a Cook continuum, and let $x_0 \in X_0$ be any point. For each $k \in \{1, 2, 3, ..., m\}$, let X_k be a Cook continuum, which is homeomorphic to X_0 , let $\varphi_k: X_0 \to X_k$ be the homeomorphism from X_0 to X_k , and let $x_k = \varphi_k(x_0)$. Then

$$\operatorname{degrig}(\star_{k=1}^{m}(X_{k},x_{k})) = \operatorname{lcm}(1,2,\ldots,m).$$

Inverse limits and Cook continua

Let m be a positive integer and for each $k \in \{1, 2, 3, ..., m\}$ let X_k be a Cook continuum and let $x_k \in X_k$ be any point such that for each $k, n \in \{1, 2, 3, \dots, m\}$ holds that X_k is homeomorphic to X_n if and only if k = n. Also, let

$$f: \star_{k=1}^m(X_k, x_k) \to \star_{k=1}^m(X_k, x_k)$$

be any non-constant continuous function. Then $f = 1_{\star_{k-1}^m}(X_k, x_k)$. Therefore, $\star_{k=1}^m(X_k, x_k)$ is rigid and $\operatorname{degrig}(\star_{k=1}^m(X_k, x_k)) = 1$.

Inverse limits and Cook continua

Let X be a continuum such that $\operatorname{degrig}(X) \neq \infty$. For each positive integer n let

$$f_n: X \to X$$

be any continuous surjective function. Then for each positive integer n the function f_n is a homeomorphism. Moreover, the inverse limit $\lim_{n \to \infty} \{X, f_n\}_{n=1}^{\infty}$ is homeomorphic to X.

Inverse limits and Cook continua

SIMPLE FANS OF COOK CONTINUA

$$t_0 ullet$$
 $\mathcal{K} = \mathcal{K}_1$

SIMPLE FANS OF COOK CONTINUA

Let X be a simple fan of Cook continua and let $f: X \to X$ be any surjective continuous function.

- 1. x_0 is the only cut point for X.

Inverse limits and Cook continua

$$f(K_n^p) = K_n^r$$

Let X be a simple fan of Cook continua and let $f: X \to X$ be any surjective continuous function.

- 1. x_0 is the only cut point for X.
- 2. $f(x_0) = x_0$.

Inverse limits and Cook continua

$$f(K_n^p) = K_n^r$$

Let X be a simple fan of Cook continua and let $f: X \to X$ be any surjective continuous function.

- 1. x_0 is the only cut point for X.
- 2. $f(x_0) = x_0$.
- 3. For each positive integer n and for each $p \in \{1, 2, 3, ..., n\}$ there exist uniquely determined $r \in \{1, 2, 3, ..., n\}$ such that

$$f(K_n^p)=K_n^r.$$

4. The function f is a homeomorphism.

Let X be a simple fan of Cook continua and let $f: X \to X$ be any surjective continuous function.

- 1. x_0 is the only cut point for X.
- 2. $f(x_0) = x_0$.
- 3. For each positive integer n and for each $p \in \{1, 2, 3, ..., n\}$ there exist uniquely determined $r \in \{1, 2, 3, ..., n\}$ such that

$$f(K_n^p)=K_n^r.$$

4. The function f is a homeomorphism.

Let X be any simple fan of Cook continua. Then X is 0-rigid and $\operatorname{degrig}(X) = \infty$.

THEOREM

Let X be any simple fan of Cook continua. Then $\varprojlim \{X, f_n\}$ is homeomorphic to X for any sequence $(f_n)_{n=1}^{\infty}$ of continuous surjective functions.

Inverse limits and Cook continua

Let X be any simple fan of Cook continua. Then X is 0-rigid and $\operatorname{degrig}(X) = \infty$.

THEOREM

Let X be any simple fan of Cook continua. Then $\varprojlim \{X, f_n\}$ is homeomorphic to X for any sequence $(f_n)_{n=1}^{\infty}$ of continuous surjective functions.

HARMONIC FAN OF COOK CONTINUUM

DEFINITION

Let X be a Cook continuum, $x_0 \in X$, and let $A = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$. The harmonic fan of a Cook continuum X is defined to be the quotient

$$(X \times A)|_{\sim}$$

where \sim is the equivalence relation on $X \times A$, defined by $(x,a) \sim (x,a)$ for each $x \in X$ and for each $a \in A$ and $(x_0,a) \sim (x_0,b)$ for each $a,b \in A$.

PROPERTIES OF HARMONIC FANS

Let X be a Cook continuum. Y be a harmonic fan of Cook continuum X and let $f: Y \to Y$ be a continuous surjective function.

- 1. x_0 is the only cut point for Y.
- 2. $f(x_0) = x_0$.
- 3. For each $a \in A$ there is $b \in A$ such that $f(X \times \{a\}) \subseteq X \times \{b\}$. Moreover, either $f(X \times \{a\})$ is homeomorphic to X either $f(X \times \{a\}) = \{x_0\}.$
- 4. $f(X \times \{0\}) = X \times \{0\}.$
- 5. Y is 0-rigid and degrig(Y) = ∞ .

Inverse limits and Cook continua

Let X be a Cook continuum and Y be a harmonic fan of Cook continuum X. Then there is a sequence $(f_n)_{n=1}^{\infty}$ of continuous surjective functions from Y to Y such the inverse limit $\underline{\lim}\{Y, f_n\}$ is not homeomorphic to Y.

CANTOR FAN OF COOK CONTINUUM

DEFINITION

Let X be a Cook continuum, $x_0 \in X$, and let C be a Cantor set. Cantor fan of Cook continuum X is defined to be the quotient

$$(X \times C)|_{\sim}$$

where \sim is the equivalence relation on $X \times C$, defined by $(x,c) \sim (x,c)$ for each $x \in X$ and for each $c \in C$, and $(x_0,c) \sim (x_0,d)$ for each $c,d \in C$.

CONSTRUCTION

CONSTRUCTION

PROPERTIES OF CANTOR FANS

Let X be a Cook continuum, Y be a Cantor fan of Cook continuum X and let $f: Y \to Y$ be a continuous surjective function.

- 1. x_0 is the only cut point for Y.
- 2. $f(x_0) = x_0$.
- 3. For each $c \in C$ there is $d \in C$ such that $f(X \times \{c\}) \subseteq X \times \{c\}$. Moreover, either $f(X \times \{c\})$ is homeomorphic to X either $f(X \times \{c\}) = \{x_0\}$.
- 4. Y is 0-rigid and degrig(Y) = ∞ .

Let X be a Cook continuum and Y be a Cantor fan of Cook continuum X. Then there is a sequence $(f_n)_{n=1}^{\infty}$ of continuous surjective functions from Y to Y such the inverse limit $\underline{\lim}\{Y, f_n\}$ is not homeomorphic to Y.