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Abstract:
Semitopogenous orders on a set X were introduced by Császár to
provide a unified approach to topology, proximity, and uniformity.
Given a topology τ on X , one of the motivating examples is the
semitopogenous order defined by A @ U if and only if A ⊆ intU.
Thus, A @ U may be used to model the idea that U is a
neighborhood of A. Four closure operators may now be defined
from a semitopogenous order using these ideas.

1 x ∈ clC (A) iff every neighborhood of x intersects A.
2 x ∈ cl@(A) iff every neighborhood of x is a neighborhood of

some point a ∈ A.
3 A topology T@ may be defined from @ using the idea that U

is open iff it is a neighborhood of each of its points, and this
topology gives a Kuratowski closure operator clT@ .
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4 as an analog of the kernel of A =
⋂
{U : A ⊂ U,U open},

cl@A =
⋂
{U : A @ U}.

We provide a systematic comparison of these closure operators.
Examples are presented to show their relative dependence and
independence.



Semitopogenous Orders
Consider the following conditions which a binary relation @ on the
power set P(X ) might satisfy:

(S1) ∅ @ ∅, X @ X .
(S2) A @ B implies A ⊆ B.
(S3) A ⊆ A′ @ B ′ ⊆ B implies A @ B.

(S4) A @ B and A′ @ B ′ implies A ∩ A′ @ B ∩ B ′, and (S4-∩)
A @ B and A′ @ B ′ implies A ∪ A′ @ B ∪ B ′. (S4-∪)

(S5) A @ B implies there exists C ⊆ X with A @ C @ B.

A relation @ on P(X ) satisfying (S1), (S2), and (S3) is a
semitopogenous order on X .

A relation @ on X satisfying (S1), (S2), (S3), and (S4) is a
topogenous order on X .

A relation satisfying (S5) is said to be interpolating.
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Motivating Example

If τ is a topology on X ,

A @τ B ⇐⇒ A ⊆ intB

gives a perfect interpolating topogenous order.

↖ satisfies an infinite version of (S4-∪)
A @ B will model “B is a neighborhood of A”.

Every (semi-)topogenous order @ has a complementary order @c :

A @c B ⇐⇒ X \ B @ X \ A.

If τ is a topology on X ,

A @c
τ B ⇐⇒ clA ⊆ B.
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Closure Operators

A closure operator on X is a function cl : P(X )→ P(X ) which is:

grounded: cl∅ = ∅,
extensive: A ⊆ clA for all A ⊆ X ,

monotone: A ⊆ B ⊆ X ⇒ clA ⊆ clB.
- E. Čech

If it also satisfies

additive: cl(A ∪ B) = clA ∪ clB for all A,B ⊆ X , and

idempotent: cl(cl(A)) = clA for all A ⊆ X

then it is a Kuratowski closure operator.

Recall that Kuratowski closure operators cl on a set X are just
those closure operators that are associated with topologies τ on X .
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The Closure Operators from a semitopogenous order @
(1) clC : P(X )→ P(X ) defined by

clC (A) = {x : x @ U ⇒ U ∩ A 6= ∅}
is grounded, extensive, and monotone.

-Császár (1963)

(2) cl@ : P(X )→ P(X ) defined by

cl@(A) = {x ∈ X : x @ U ⇒ a @ U for some a ∈ A}
is grounded, extensive, monotone, and idempotent.

-Richmond & Slapal (2024)

(3) cl@ : P(X )→ P(X ) defined by

cl@(A) =
⋂
{U ⊆ X : A @ U}

is grounded, extensive, and monotone.
-Maki (1986) Holgate, Iragi, Razafindrakoto (2016)

Slapal, Richmond, Iragi (2024)
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(4) If @ satisfies (S1), (S3), and (S4-∩), then

T@ = {U ⊆ X : x ∈ U ⇒ x @ U}

is a topology on X . -Császár (2000)

The associated Kuratowski closure operator is denoted clT@ ,
and this is simply the topological closure from T@.



Notation

The collection of cl@-closed of X is denoted F@.

If G is a collection, CG = {X − G : G ∈ G}.

Theorem

Suppose @ is a semitopogenous order on X .

(a) cl@ ≤ clC ≤ clT@ .

(b) T@ ⊆ CFC ⊆ CF@.

(c) CT @ ⊆ FC ⊆ F@.

cl@(A) = {x ∈ X : x @ U ⇒ a @ U for some a ∈ A}
(a @ U ⇒ a ∈ U)

⊆ clC (A) = {x : x @ U ⇒ U ∩ A 6= ∅}
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Notation

The collection of cl@-closed subsets of X is denoted F@.

If G is a collection, CG = {X − G : G ∈ G}.

Theorem

Suppose @ is a semitopogenous order on X .

(a) cl@≤ clC ≤ clT@ .

(b) T@ ⊆ CFC ⊆CF@.

(c) CT @ ⊆ FC ⊆F@.

cl@(A) = {x ∈ X : x @ U ⇒ a @ U for some a ∈ A}
(a @ U ⇒ a ∈ U)

⊆ clC (A) = {x : x @ U ⇒ U ∩ A 6= ∅}



Proof.

We will now show T@ ⊆ CFC . Suppose U ∈ T@. We want to show
X − U = clC (X − U). Suppose y ∈ clC (X − U) and y ∈ U. Now
U ∈ T@ implies y @ U. By the definition of clC , y ∈ clC (X − U)
and y @ U implies U ∩ (X − U) 6= ∅, which is a contradiction.
Thus, y ∈ clC (X − U) implies y ∈ X − U so X − U is clC -closed.
Thus, T@ ⊆ CFC .
Now we will show that clC (A) ⊆ clT@(A). From CT @ ⊆ FC and
the fact that clT@ is idempotent, we have clT@(A) ∈ CT @ ⊆ FC .
A ⊆ clT@(A) ∈ CT @ ⊆ FC so clC (A) ⊆ clC (clT@(A)) = clT@(A), as
needed.



Theorem

Suppose @ is a semitopogenous order on X .

(a) cl@ ≤ clC ≤ clT@ .

(b) T@ ⊆ CFC ⊆ CF@.

(c) CT @ ⊆ FC ⊆ F@.

These are the only relations which always hold.



A semitopogenous order @p from a closure operator p
Theorem

Suppose p : P(X )→ P(X ) is grounded, extensive, and monotone.
For A,B ⊆ X , define A @p B if and only if p(A) ⊆ B.

(a) @p is a coperfect semitopogenous order. In particular, T@p is
an Alexandroff topology.

(b) @p satisfies (S4-∪) if and only if p is additive.

(c) @p satisfies (S5) if and only if p is idempotent.

(d) cl@p = p.

Theorem

If @ is a semitopogenous order on X and p = cl@, then @⊆@p and
@=@p if and only if @ is coperfect.



Example 1: ε-fattening

For ε > 0 and A ⊆ R, put Aε =
⋃
{(a− ε, a + ε) : a ∈ A} and

A @ε B ⇐⇒ Aε ⊆ B.

For A ⊆ R, cl@ε(A) = A:
Suppose x ∈ cl@ε(A). Now x @ε (x − ε, x + ε).
By def of cl@ε , there exists a ∈ A with

a @ε (x − ε, x + ε)

(a− ε, a + ε) ⊆ (x − ε, x + ε)

x = a ∈ A

Hence cl@ε(A) ⊆ A, so equality follows since cl@ε is extensive.

F@ε = P(R)
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Example 1: ε-fattening

For A ⊆ R, clC (A) = Aε.

clC (A) = {x : (x − ε, x + ε) ⊆ U ⇒ ∃a ∈ A ∩ U}
= {x : (x − ε, x + ε) ∩ A 6= ∅}
= {x : ∃a ∈ A, x ∈ (a− ε, a + ε)}

=
⋃
a∈A

(a− ε, a + ε)

= Aε.

Since @ε has form @p for the closure operator p(A) = Aε,
cl@ε = p(A) = Aε by earlier theorem.

FC = F@ε = {∅,R}.
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Example 1: ε-fattening

T@ε = {U ⊆ X : x ∈ U ⇒ x @ε U}
= {∅,R}

cl@ cl@ clT@

clC
≥ Theorem
> @ε

≤ Theorem
< @ε

cl@ =
≤ Theorem
< @ε

cl@ =
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Example: A @S B iff A = ∅ or A ∪ S ⊆ B .

T@S
= {U ⊆ X : x ∈ U ⇒ x @S U}
= {U ⊆ X : S ⊆ U} ∪ {∅}
= Super(S).

It can be shown that

clC (A) = cl@(A) = clT@(A) =

{
A if A ∩ S = ∅

A ∪ S if A ∩ S 6= ∅.

In particular, with X = R and S = [0, 1],

clC ([2, 3]) = cl@([2, 3]) = clT@([2, 3]) = [2, 3].
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Example: @→

On R, define A @ B if and only if

A = ∅ or ∃b ∈ R such that A ∪ (b,∞) ⊆ B.

T@→ = {U : x ∈ U ⇒ x @→ U}
= {U ⊆ R : ∃b ∈ R, (b,∞) ⊆ U} ∪ {∅}.

Thus the complements of T@→-open sets are R, ∅, and the sets
which are bounded above and we have

clC (A) = cl@→(A) =

clT@→ (A) =


∅ if A = ∅
R if supA =∞
A if A is bounded above.
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cl@(A) = A for all A ⊆ R.
Suppose A is bounded above. For n ∈ N, let bn = maxA + n. Now
A @ A ∪ (bn,∞), so
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⋂
n∈N

(A ∪ (bn,∞)) = A.

Suppose A is unbounded above and an is a strictly increasing
sequence in A diverging to ∞. Now
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⋂
n∈N

(A ∪ (an,∞)) = A.

If supA =∞,

A = cl@(A) ⊂ clC (A) = cl@→(A) = clT@→ (A).



Example: @→

cl@(A) = A for all A ⊆ R.
Suppose A is bounded above. For n ∈ N, let bn = maxA + n. Now
A @ A ∪ (bn,∞), so

cl@(A) ⊆
⋂
n∈N

(A ∪ (bn,∞)) = A.

Suppose A is unbounded above and an is a strictly increasing
sequence in A diverging to ∞. Now

cl@(A) ⊆
⋂
n∈N

(A ∪ (an,∞)) = A.

If supA =∞,

A = cl@(A) ⊂ clC (A) = cl@→(A) = clT@→ (A).
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cl@ =
< @→



Example @∗

On X = R, define A @∗ B iff

A ⊆ B and A is finite or B = R.

It is routine to verify that for A ⊆ R,

clC (A) = cl@∗(A) = clT@∗ (A) = A

cl@
∗
(A) =

{
A if A is finite
R if A is infinite
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J. Šlapal, T. Richmond, and M. Iragi, Topogenous orders and
closure operators on posets. Turkish J. Math. 48 (2024)
469–476.


