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Abstract:

Semitopogenous orders on a set X were introduced by Csaszar to
provide a unified approach to topology, proximity, and uniformity.
Given a topology 7 on X, one of the motivating examples is the
semitopogenous order defined by A U if and only if A C intU.
Thus, AC U may be used to model the idea that U is a
neighborhood of A. Four closure operators may now be defined
from a semitopogenous order using these ideas.
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Abstract:

Semitopogenous orders on a set X were introduced by Csaszar to
provide a unified approach to topology, proximity, and uniformity.
Given a topology 7 on X, one of the motivating examples is the
semitopogenous order defined by A U if and only if A C intU.
Thus, AC U may be used to model the idea that U is a
neighborhood of A. Four closure operators may now be defined
from a semitopogenous order using these ideas.
Q xe iff every neighborhood of x intersects A.
Q xe iff every neighborhood of x is a neighborhood of
some point a € A.
© A topology 7 may be defined from C using the idea that U
is open iff it is a neighborhood of each of its points, and this
topology gives a Kuratowski closure operator



© as an analog of the kernel of A= {U: A C U, U open},
=({U:AC U}

We provide a systematic comparison of these closure operators.
Examples are presented to show their relative dependence and
independence.
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Semitopogenous Orders

Consider the following conditions which a binary relation C on the

power set P(X) might satisfy:

(S1) 0 0, X C X.

(S2) AC B implies A C B.

(S3) ACA C B’ C Bimplies AC B.

(S4) AC Band A ' B implies ANA'C BN B, and (S4-n)
AC Band A C B implies AUA'C BUB'. (S4-v)

(S5) A C B implies there exists C C X with AC C C B.

A relation  on P(X) satisfying (S1), (S2), and (S3) is a
semitopogenous order on X.

A relation  on X satisfying (S1), (S2), (S3), and (S4) is a
topogenous order on X.

A relation satisfying (S5) is said to be interpolating.
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Motivating Example

If 7 is a topology on X,
AC, B < AC intB

gives a perfect interpolating topogenous order.

A C B will model “B is a neighborhood of A”.
Every (semi-)topogenous order  has a complementary order °:
AC°B < X\BLC X\A.
If 7 is a topology on X,

ACSB < cACB.
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grounded: cl() = (),
extensive: A C clA for all AC X,
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- E. Cech



Closure Operators

A closure operator on X is a function ¢/ : P(X) — P(X) which is:
grounded: cl() = 0,
extensive: A C clA for all AC X,
monotone: AC B C X = clAC clB.

If it also satisfies
additive: cl(AU B) = clAU cIB for all A,B C X, and
idempotent: cl(cl(A)) = clA for all AC X

then it is a Kuratowski closure operator.

Recall that Kuratowski closure operators ¢/ on a set X are just
those closure operators that are associated with topologies 7 on X.
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The Closure Operators from a semitopogenous order
(1) clc : P(X) — P(X) defined by
ce(A)={x:xcU=UnNA#0}

is grounded, extensive, and monotone. -Csészar (1963)

(2) cle : P(X) — P(X) defined by
cde(A)={xeX:xC U= arC U for some a € A}

is grounded, extensive, monotone, and idempotent.
-Richmond & Slapal (2024)
(3) <= : P(X) — P(X) defined by

d=(A)={UCX:AC U}

is grounded, extensive, and monotone.
-Maki (1986) Holgate, Iragi, Razafindrakoto (2016)

Slapal, Richmond, Iragi (2024)



(4) If C satisfies (S1), (S3), and (S4-N), then
To={UCX:xeU=xC U}

is a topology on X. -Csaszér (2000)

The associated Kuratowski closure operator is denoted clr_,
and this is simply the topological closure from 7.
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Notation
The collection of cl--closed subsets of X is denoted F-.

If G is a collection, CG ={X — G : G € G}.

Theorem

Suppose C is a semitopogenous order on X.
(a) cl=<clc < ch-.

(b) Tc CCFcCCFe.

(c) CT= C FcCFe.

cde(A)={xeX:xC U= arC U for some a € A}
(aCc U= ac )
Cceec(A)={x:xCU=UnNA#0}



Proof.

We will now show 7= C CF¢. Suppose U € T-. We want to show
X — U= clc(X — U). Suppose y € clc(X — U) and y € U. Now
U € 7= implies y T U. By the definition of cl¢c, y € clc(X — U)
and y C U implies U N (X — U) # 0, which is a contradiction.
Thus, y € clc(X — U) implies y € X — U so X — U is clc-closed.
Thus, 7T- CCFc.

Now we will show that c/c(A) C chr= (A). From CT- C F¢ and
the fact that cly_ is idempotent, we have cli— (A) € CT- C Fc.

A C cl=(A) € CT= C Fc so clc(A) C clc(ch=(A)) = cli—(A), as
needed. Ol
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Theorem

Suppose C is a semitopogenous order on X.
(@) c= <clc < cl-.

(b) Te CCFc CCFc.

(c) CT= C Fc C Fc.

These are the only relations which always hold.



A semitopogenous order C, from a closure operator p

Theorem

Suppose p : P(X) — P(X) is grounded, extensive, and monotone.
For A, B C X, define AT, B if and only if p(A) C B.

(a) Cp is a coperfect semitopogenous order. In particular, Tc, is
an Alexandroff topology.

(b) Cp satisfies (54-U) if and only if p is additive.
c) Cp satisfies (S5) if and only if p is idempotent.
d) cl~r = p.

Theorem

—_ o~
~— ~—
N

If C is a semitopogenous order on X and p = cl~, then CCC, and
C=C, if and only if C is coperfect.

v




Example 1: e-fattening

Fore >0and ACR, put A. =J{(a—¢,a+¢):a€ A} and
AC. B < A.CB.
For ACR, cl-_(A) = A:
Suppose x € cl-_(A). Now x C. (x —&,x +¢).
By def of cl-_, there exists a € A with

a I:g

(a—c,at+e) C (x—g,x+¢)

x = a€A
Hence cl-_(A) C A, so equality follows since cl-_ is extensive

(x —e,x+¢)
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AC. B < A.CB.
For ACR, cl-_(A) = A:
Suppose x € cl-_(A). Now x C. (x —&,x +¢).
By def of cl-_, there exists a € A with

a I:g

(a—c,at+e) C (x—g,x+¢)

x = a€A
Hence cl-_(A) C A, so equality follows since cl-_ is extensive

(x —e,x+¢)

Fe. = P(R)
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Example 1: e-fattening
For ACR, clc(A) = A..

ce(A)={x:(x—e,x+e)CU=3Fac ANU}
={x:(x—e,x+e)NA#0}
={x:JacAxec(a—¢ea+t+e)}

= U(a—a,a+a)

acA
= A..

Since C. has form T, for the closure operator p(A) = A,
cl~= = p(A) = A. by earlier theorem.
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C/C
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Example: ACsBiff A=0or AUS C B.

T-s = {UCX:xeU=xCs U}
= {UCX:SCU}U{D}
= Super(S).

It can be shown that

A if ANS =
C/C(A)_C/E(A)_CITE(A)_{ AUS :f AQS#g.

In particular, with X =R and S = [0, 1],

C/C([273]) = CIE([273]) = C/TE([273]) = [273]'



Example: ACsBiff A=0or AUS C B.

But with X =R and S = [0, 1],

c=5([2,3])

Z

(WU CSX:[231Cs U}
({UcXx:[23luf0,1] C U}

[0,1]U[2,3]

[2,3] = clc([2,3]) = cl=([2,3]) = ch=([2,3])



Example: ACsBiff A= or AUS C B.
But with X =R and S = [0, 1],
c=([2,3]) = [{UCX:[23]Cs U}
— ﬂ{ugx:[z,ss]u[o,l]gu}

= [0,1]uU[2,3]
Z [2,3] = clc([2,3]) = cl=([2,3]) = cl=([2,3])
cl- cl- cl
o > Theorem < Cs < Theorem
¢ > [:5 < EE
< LCs < Theorem
CII: =
< [
cl& =
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Example: C_,

cl=(A) = Aforall ACR.
Suppose A is bounded above. For n € N, let b, = maxA+ n. Now
ALC AU (b, ), so

c/=(A) € [ (AU (bn, 0)) = A.
neN

Suppose A is unbounded above and a, is a strictly increasing
sequence in A diverging to co. Now

c/=(A) € [ (AU (an, )

neN

A.

If sup A = o0,
A= cl~(A) C clc(A) = cl-_(A) = clr—_ (A).



cl- cl= cly
o > Theorem < Cs < Theorem
Cl > . > O < .
< Cs < Theorem
CII: =
> C < [
c < Co

cl
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Example —*
On X =R, define AC* B iff
AC B and Ais finite or B=R.
It is routine to verify that for A C R,
clc(A) = cher(A) = chr..(A) = A
* A if A is finite
o (A) = { R if A is infinite

cl- cl- clr
o > Theorem < Cs < Theorem
Cl > . > C., < C.
< Cs < Theorem
CIE =
> [C < [¢
cl= = N
> C*
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