Closure Operators for Semitopogenous Spaces

Tom Richmond* and Josef Šlapal

*Western Kentucky University

SUMTOPO 2024 Coimbra July 8–12, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Semitopogenous orders on a set X were introduced by Császár to provide a unified approach to topology, proximity, and uniformity. Given a topology τ on X, one of the motivating examples is the semitopogenous order defined by $A \sqsubset U$ if and only if $A \subseteq intU$. Thus, $A \sqsubset U$ may be used to model the idea that U is a neighborhood of A. Four closure operators may now be defined from a semitopogenous order using these ideas.

Semitopogenous orders on a set X were introduced by Császár to provide a unified approach to topology, proximity, and uniformity. Given a topology τ on X, one of the motivating examples is the semitopogenous order defined by $A \sqsubset U$ if and only if $A \subseteq intU$. Thus, $A \sqsubset U$ may be used to model the idea that U is a neighborhood of A. Four closure operators may now be defined from a semitopogenous order using these ideas.

• $x \in cl_C(A)$ iff every neighborhood of x intersects A.

Semitopogenous orders on a set X were introduced by Császár to provide a unified approach to topology, proximity, and uniformity. Given a topology τ on X, one of the motivating examples is the semitopogenous order defined by $A \sqsubset U$ if and only if $A \subseteq intU$. Thus, $A \sqsubset U$ may be used to model the idea that U is a neighborhood of A. Four closure operators may now be defined from a semitopogenous order using these ideas.

- $x \in cl_C(A)$ iff every neighborhood of x intersects A.

Semitopogenous orders on a set X were introduced by Császár to provide a unified approach to topology, proximity, and uniformity. Given a topology τ on X, one of the motivating examples is the semitopogenous order defined by $A \sqsubset U$ if and only if $A \subseteq intU$. Thus, $A \sqsubset U$ may be used to model the idea that U is a neighborhood of A. Four closure operators may now be defined from a semitopogenous order using these ideas.

- $x \in cl_C(A)$ iff every neighborhood of x intersects A.
- S A topology T_□ may be defined from □ using the idea that U is open iff it is a neighborhood of each of its points, and this topology gives a Kuratowski closure operator cl_{T_□}.

• as an analog of the kernel of $A = \bigcap \{U : A \subset U, U \text{ open}\},\ cl^{\sqsubset}A = \bigcap \{U : A \sqsubset U\}.$

We provide a systematic comparison of these closure operators. Examples are presented to show their relative dependence and independence.

Consider the following conditions which a binary relation \Box on the power set $\mathcal{P}(X)$ might satisfy:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(S1)
$$\emptyset \sqsubset \emptyset, X \sqsubset X.$$

(S2) $A \sqsubset B$ implies $A \subseteq B.$
(S3) $A \subseteq A' \sqsubset B' \subseteq B$ implies $A \sqsubset B.$

Consider the following conditions which a binary relation \Box on the power set $\mathcal{P}(X)$ might satisfy:

(S1)
$$\emptyset \sqsubset \emptyset$$
, $X \sqsubset X$.
(S2) $A \sqsubset B$ implies $A \subseteq B$.
(S3) $A \subseteq A' \sqsubset B' \subseteq B$ implies $A \sqsubset B$.

A relation \square on $\mathcal{P}(X)$ satisfying (S1), (S2), and (S3) is a *semitopogenous order* on X.

Consider the following conditions which a binary relation \Box on the power set $\mathcal{P}(X)$ might satisfy:

$$\begin{array}{l} (S1) \ \emptyset \sqsubset \emptyset, \ X \sqsubset X. \\ (S2) \ A \sqsubset B \ \text{implies} \ A \subseteq B. \\ (S3) \ A \subseteq A' \sqsubset B' \subseteq B \ \text{implies} \ A \sqsubset B. \\ (S4) \ A \sqsubset B \ \text{and} \ A' \sqsubset B' \ \text{implies} \ A \cap A' \sqsubset B \cap B', \ \text{and} \\ A \sqsubset B \ \text{and} \ A' \sqsubset B' \ \text{implies} \ A \cup A' \sqsubset B \cup B'. \end{array}$$

A relation \square on $\mathcal{P}(X)$ satisfying (S1), (S2), and (S3) is a *semitopogenous order on* X.

A relation \square on X satisfying (S1), (S2), (S3), and (S4) is a *topogenous order on* X.

Consider the following conditions which a binary relation \Box on the power set $\mathcal{P}(X)$ might satisfy:

(S1)
$$\emptyset \sqsubset \emptyset, X \sqsubset X.$$

(S2) $A \sqsubset B$ implies $A \subseteq B.$
(S3) $A \subseteq A' \sqsubset B' \subseteq B$ implies $A \sqsubset B.$
(S4) $A \sqsubset B$ and $A' \sqsubset B'$ implies $A \cap A' \sqsubset B \cap B'$, and (S4- $\cap A' \sqcup B \cup B'$).
 $A \sqsubset B$ and $A' \sqsubset B'$ implies $A \cup A' \sqsubset B \cup B'$.
(S5) $A \sqsubset B$ implies there exists $C \subseteq X$ with $A \sqsubset C \sqsubset B$.

A relation \square on $\mathcal{P}(X)$ satisfying (S1), (S2), and (S3) is a *semitopogenous order on* X.

A relation \square on X satisfying (S1), (S2), (S3), and (S4) is a *topogenous order on* X.

A relation satisfying (S5) is said to be *interpolating*.

If τ is a topology on X,

$$A \sqsubset_{\tau} B \iff A \subseteq intB$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

gives a perfect interpolating topogenous order.

If τ is a topology on X,

$$A \sqsubset_{\tau} B \iff A \subseteq intB$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

gives a perfect interpolating topogenous order. $$\overset{\textstyle \nwarrow}{\searrow}$$ satisfies an infinite version of (S4-U)

If τ is a topology on X,

$$A \sqsubset_{\tau} B \iff A \subseteq intB$$

gives a perfect interpolating topogenous order.

 $A \sqsubset B$ will model "*B* is a neighborhood of *A*".

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If τ is a topology on X,

$$A \sqsubset_{\tau} B \iff A \subseteq intB$$

gives a perfect interpolating topogenous order.

 $A \sqsubset B$ will model "B is a neighborhood of A".

Every (semi-)topogenous order \Box has a **complementary order** \Box^c :

$$A \sqsubset^{c} B \iff X \setminus B \sqsubset X \setminus A.$$

If τ is a topology on X,

$$A \sqsubset_{\tau}^{c} B \iff c A \subseteq B.$$

Closure Operators

A closure operator on X is a function $cl : \mathcal{P}(X) \to \mathcal{P}(X)$ which is: grounded: $cl\emptyset = \emptyset$, extensive: $A \subseteq clA$ for all $A \subseteq X$, monotone: $A \subseteq B \subseteq X \Rightarrow clA \subseteq clB$.

- E. Čech

Closure Operators

A closure operator on X is a function $cl : \mathcal{P}(X) \to \mathcal{P}(X)$ which is: grounded: $cl\emptyset = \emptyset$, extensive: $A \subseteq clA$ for all $A \subseteq X$, monotone: $A \subseteq B \subseteq X \Rightarrow clA \subseteq clB$. - E. Čech

If it also satisfies

additive: $cl(A \cup B) = clA \cup clB$ for all $A, B \subseteq X$, and

idempotent: cl(cl(A)) = clA for all $A \subseteq X$

then it is a Kuratowski closure operator.

Recall that Kuratowski closure operators cl on a set X are just those closure operators that are associated with topologies τ on X.

The Closure Operators from a semitopogenous order \square (1) $cl_C : \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $cl_C(A) = \{x : x \square U \Rightarrow U \cap A \neq \emptyset\}$

is grounded, extensive, and monotone.

The Closure Operators from a semitopogenous order \square (1) $cl_C : \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $cl_C(A) = \{x : x \square U \Rightarrow U \cap A \neq \emptyset\}$

is grounded, extensive, and monotone.

(2) $cl_{\square} : \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $cl_{\square}(A) = \{x \in X : x \square U \Rightarrow a \square U \text{ for some } a \in A\}$

is grounded, extensive, monotone, and idempotent.

The Closure Operators from a semitopogenous order \square (1) $cl_C : \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $cl_C(A) = \{x : x \square U \Rightarrow U \cap A \neq \emptyset\}$

is grounded, extensive, and monotone.

(2) cl_□ : P(X) → P(X) defined by
 cl_□(A) = {x ∈ X : x □ U ⇒ a □ U for some a ∈ A}
 is grounded, extensive, monotone, and idempotent.

(3)
$$cl^{\sqsubset} : \mathcal{P}(X) \to \mathcal{P}(X)$$
 defined by
 $cl^{\sqsubset}(A) = \bigcap \{ U \subseteq X : A \sqsubset U \}$

is grounded, extensive, and monotone.

The Closure Operators from a semitopogenous order \Box (1) $cl_{\mathcal{C}}: \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $cl_{C}(A) = \{x : x \sqsubset U \Rightarrow U \cap A \neq \emptyset\}$ is grounded, extensive, and monotone. -Császár (1963) (2) $cl_{\square}: \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $cl_{\sqsubset}(A) = \{x \in X : x \sqsubset U \Rightarrow a \sqsubset U \text{ for some } a \in A\}$ is grounded, extensive, monotone, and idempotent. -Richmond & Slapal (2024) (3) $cI^{\sqsubset}: \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $cl^{\sqsubset}(A) = \bigcap \{ U \subseteq X : A \sqsubset U \}$

> is grounded, extensive, and monotone. -Maki (1986) Holgate, Iragi, Razafindrakoto (2016) Slapal, Richmond, Iragi (2024)

(4) If \square satisfies (S1), (S3), and (S4- \cap), then

$$\mathcal{T}_{\sqsubset} = \{ U \subseteq X : x \in U \Rightarrow x \sqsubset U \}$$

is a topology on X.

-Császár (2000)

The associated Kuratowski closure operator is denoted $cl_{\mathcal{T}_{\square}}$, and this is simply the topological closure from \mathcal{T}_{\square} .

Notation

The collection of cl_{\square} -closed of X is denoted \mathcal{F}_{\square} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If \mathcal{G} is a collection, $\mathcal{CG} = \{X - G : G \in \mathcal{G}\}.$

Notation

The collection of cl_{\square} -closed of X is denoted \mathcal{F}_{\square} .

If \mathcal{G} is a collection, $\mathcal{CG} = \{X - G : G \in \mathcal{G}\}.$

Theorem

Suppose \square is a semitopogenous order on X.

(a)
$$cl_{\Box} \leq cl_{C} \leq cl_{\mathcal{T}_{\Box}}$$
.
(b) $\mathcal{T}_{\Box} \subseteq C\mathcal{F}_{C} \subseteq C\mathcal{F}_{\Box}$.
(c) $C\mathcal{T}_{\Box} \subseteq \mathcal{F}_{C} \subseteq \mathcal{F}_{\Box}$.

$$cl_{\sqsubset}(A) = \{ x \in X : x \sqsubset U \Rightarrow a \sqsubset U \text{ for some } a \in A \}$$
$$(a \sqsubset U \Rightarrow a \in U)$$
$$\subseteq cl_{C}(A) = \{ x : x \sqsubset U \Rightarrow U \cap A \neq \emptyset \}$$

Notation

The collection of cl_{\Box} -closed subsets of X is denoted \mathcal{F}_{\Box} .

If \mathcal{G} is a collection, $\mathcal{CG} = \{X - G : G \in \mathcal{G}\}.$

Theorem

Suppose \square is a semitopogenous order on X.

(a)
$$cl_{\Box} \leq cl_{C} \leq cl_{\mathcal{T}_{\Box}}$$
.
(b) $\mathcal{T}_{\Box} \subseteq \mathcal{CF}_{C} \subseteq \mathcal{CF}_{\Box}$
(c) $\mathcal{CT}_{\Box} \subseteq \mathcal{F}_{C} \subseteq \mathcal{F}_{\Box}$.

 $cl_{\sqsubset}(A) = \{ x \in X : x \sqsubset U \Rightarrow a \sqsubset U \text{ for some } a \in A \}$ $(a \sqsubset U \Rightarrow a \in U)$ $\subseteq cl_{C}(A) = \{ x : x \sqsubset U \Rightarrow U \cap A \neq \emptyset \}$

Proof.

We will now show $\mathcal{T}_{\Box} \subseteq C\mathcal{F}_{C}$. Suppose $U \in \mathcal{T}_{\Box}$. We want to show $X - U = cl_{C}(X - U)$. Suppose $y \in cl_{C}(X - U)$ and $y \in U$. Now $U \in \mathcal{T}_{\Box}$ implies $y \sqsubset U$. By the definition of cl_{C} , $y \in cl_{C}(X - U)$ and $y \sqsubset U$ implies $U \cap (X - U) \neq \emptyset$, which is a contradiction. Thus, $y \in cl_{C}(X - U)$ implies $y \in X - U$ so X - U is cl_{C} -closed. Thus, $\mathcal{T}_{\Box} \subseteq C\mathcal{F}_{C}$. Now we will show that $cl_{C}(A) \subseteq cl_{\mathcal{T}_{\Box}}(A)$. From $C\mathcal{T}_{\Box} \subseteq \mathcal{F}_{C}$ and the fact that $cl_{\mathcal{T}_{\Box}}$ is idempotent, we have $cl_{\mathcal{T}_{\Box}}(A) \in C\mathcal{T}_{\Box} \subseteq \mathcal{F}_{C}$. $A \subseteq cl_{\mathcal{T}_{\Box}}(A) \in C\mathcal{T}_{\Box} \subseteq \mathcal{F}_{C}$ so $cl_{C}(A) \subseteq cl_{C}(cl_{\mathcal{T}_{\Box}}(A)) = cl_{\mathcal{T}_{\Box}}(A)$, as needed.

Theorem

Suppose \square is a semitopogenous order on X.

$$\begin{array}{ll} \text{(a)} & cl_{\square} \leq cl_{C} \leq cl_{\mathcal{T}_{\square}}.\\ \text{(b)} & \mathcal{T}_{\square} \subseteq \mathcal{CF}_{C} \subseteq \mathcal{CF}_{\square}.\\ \text{(c)} & \mathcal{CT}_{\square} \subseteq \mathcal{F}_{C} \subseteq \mathcal{F}_{\square}. \end{array}$$

These are the only relations which always hold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A semitopogenous order \Box_p from a closure operator p

Theorem

Suppose $p : \mathcal{P}(X) \to \mathcal{P}(X)$ is grounded, extensive, and monotone. For $A, B \subseteq X$, define $A \sqsubset_p B$ if and only if $p(A) \subseteq B$.

- (a) \sqsubset_p is a coperfect semitopogenous order. In particular, $\mathcal{T}_{\sqsubset_p}$ is an Alexandroff topology.
- (b) \sqsubset_p satisfies (S4- \cup) if and only if p is additive.
- (c) \sqsubset_p satisfies (S5) if and only if p is idempotent.

(d) $cl^{\square p} = p$.

Theorem

If \sqsubset is a semitopogenous order on X and $p = cl^{\sqsubset}$, then $\sqsubset \subseteq \sqsubset_p$ and $\sqsubset = \sqsubset_p$ if and only if \sqsubset is coperfect.

For $\varepsilon > 0$ and $A \subseteq \mathbb{R}$, put $A_{\varepsilon} = \bigcup \{ (a - \varepsilon, a + \varepsilon) : a \in A \}$ and $A \sqsubset_{\varepsilon} B \iff A_{\varepsilon} \subseteq B.$ For $A \subseteq \mathbb{R}$, $cl_{\Box_{\varepsilon}}(A) = A$: Suppose $x \in cl_{\Box_{\varepsilon}}(A)$. Now $x \sqsubset_{\varepsilon} (x - \varepsilon, x + \varepsilon)$. By def of $cl_{\Box_{\varepsilon}}$, there exists $a \in A$ with $a \Box_{\Box_{\varepsilon}} (x - \varepsilon, x + \varepsilon)$.

$$(\mathbf{a} - \varepsilon, \mathbf{a} + \varepsilon) \subseteq (\mathbf{x} - \varepsilon, \mathbf{x} + \varepsilon)$$

 $(\mathbf{a} - \varepsilon, \mathbf{a} + \varepsilon) \subseteq (\mathbf{x} - \varepsilon, \mathbf{x} + \varepsilon)$
 $\mathbf{x} = \mathbf{a} \in \mathbf{A}$

Hence $cl_{\Box_{\varepsilon}}(A) \subseteq A$, so equality follows since $cl_{\Box_{\varepsilon}}$ is extensive.

For $\varepsilon > 0$ and $A \subseteq \mathbb{R}$, put $A_{\varepsilon} = \bigcup \{ (a - \varepsilon, a + \varepsilon) : a \in A \}$ and $A \sqsubset_{\varepsilon} B \iff A_{\varepsilon} \subseteq B.$ For $A \subseteq \mathbb{R}$, $cl_{\Box_{\varepsilon}}(A) = A$: Suppose $x \in cl_{\Box_{\varepsilon}}(A)$. Now $x \sqsubset_{\varepsilon} (x - \varepsilon, x + \varepsilon)$. By def of $cl_{\Box_{\varepsilon}}$, there exists $a \in A$ with

$$a \ \sqsubseteq_{\varepsilon} \ (x - \varepsilon, x + \varepsilon)$$

 $(a - \varepsilon, a + \varepsilon) \ \subseteq \ (x - \varepsilon, x + \varepsilon)$
 $x = a \in A$

Hence $cl_{\Box_{\varepsilon}}(A) \subseteq A$, so equality follows since $cl_{\Box_{\varepsilon}}$ is extensive.

 $\mathcal{F}_{\sqsubset_{arepsilon}} = \mathcal{P}(\mathbb{R})$

For $A \subseteq \mathbb{R}$, $cl_C(A) = A_{\varepsilon}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For $A \subseteq \mathbb{R}$, $cl_C(A) = A_{\varepsilon}$.

$$cl_{\mathcal{C}}(A) = \{x : (x - \varepsilon, x + \varepsilon) \subseteq U \Rightarrow \exists a \in A \cap U\} \\= \{x : (x - \varepsilon, x + \varepsilon) \cap A \neq \emptyset\} \\= \{x : \exists a \in A, x \in (a - \varepsilon, a + \varepsilon)\} \\= \bigcup_{a \in A} (a - \varepsilon, a + \varepsilon) \\= A_{\varepsilon}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For $A \subseteq \mathbb{R}$, $cl_C(A) = A_{\varepsilon}$.

$$cl_{C}(A) = \{x : (x - \varepsilon, x + \varepsilon) \subseteq U \Rightarrow \exists a \in A \cap U\}$$
$$= \{x : (x - \varepsilon, x + \varepsilon) \cap A \neq \emptyset\}$$
$$= \{x : \exists a \in A, x \in (a - \varepsilon, a + \varepsilon)\}$$
$$= \bigcup_{a \in A} (a - \varepsilon, a + \varepsilon)$$
$$= A_{\varepsilon}.$$

Since \Box_{ε} has form \Box_p for the closure operator $p(A) = A_{\varepsilon}$, $cl^{\Box_{\varepsilon}} = p(A) = A_{\varepsilon}$ by earlier theorem.

$$\mathcal{F}_{\mathcal{C}} = \mathcal{F}^{\sqsubset_{\varepsilon}} = \{\emptyset, \mathbb{R}\}.$$

$$\begin{aligned} \mathcal{T}_{\sqsubset_{\varepsilon}} &= \{ U \subseteq X : x \in U \Rightarrow x \sqsubset_{\varepsilon} U \} \\ &= \{ \emptyset, \mathbb{R} \} \end{aligned}$$

・ロト・日本・モート モー うへぐ

$$\mathcal{T}_{\sqsubset_{\varepsilon}} = \{ U \subseteq X : x \in U \Rightarrow x \sqsubset_{\varepsilon} U \}$$

= $\{ \emptyset, \mathbb{R} \}$

	cl_{\Box}	cl□	$cl_{\mathcal{T}_{\square}}$
cl _C	\geq Theorem		\leq Theorem
	$> \square_{\varepsilon}$		$< \Box_{\varepsilon}$
cl_{\Box}	=		\leq Theorem
			$< \Box_{\varepsilon}$
cl⊏		=	

Example: $A \sqsubset_S B$ iff $A = \emptyset$ or $A \cup S \subseteq B$.

$$\begin{aligned} \mathcal{T}_{\Box s} &= \{ U \subseteq X : x \in U \Rightarrow x \sqsubset_{S} U \} \\ &= \{ U \subseteq X : S \subseteq U \} \cup \{ \emptyset \} \\ &= Super(S). \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Example: $A \sqsubset_S B$ iff $A = \emptyset$ or $A \cup S \subseteq B$.

$$\mathcal{T}_{\Box s} = \{ U \subseteq X : x \in U \Rightarrow x \sqsubset_{s} U \} \\ = \{ U \subseteq X : S \subseteq U \} \cup \{ \emptyset \} \\ = Super(S).$$

It can be shown that

$$cl_{\mathcal{C}}(A) = cl_{\Box}(A) = cl_{\mathcal{T}_{\Box}}(A) = \begin{cases} A & \text{if } A \cap S = \emptyset \\ A \cup S & \text{if } A \cap S \neq \emptyset \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: $A \sqsubset_S B$ iff $A = \emptyset$ or $A \cup S \subseteq B$.

$$\mathcal{T}_{\Box s} = \{ U \subseteq X : x \in U \Rightarrow x \sqsubset_{s} U \}$$

= $\{ U \subseteq X : S \subseteq U \} \cup \{ \emptyset \}$
= $Super(S).$

It can be shown that

$$cl_{\mathcal{C}}(A) = cl_{\square}(A) = cl_{\mathcal{T}_{\square}}(A) = \begin{cases} A & \text{if } A \cap S = \emptyset \\ A \cup S & \text{if } A \cap S \neq \emptyset. \end{cases}$$

In particular, with $X = \mathbb{R}$ and S = [0, 1],

$$cl_{C}([2,3]) = cl_{\Box}([2,3]) = cl_{\mathcal{T}_{\Box}}([2,3]) = [2,3].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example: $A \sqsubset_S B$ iff $A = \emptyset$ or $A \cup S \subseteq B$.

But with
$$X = \mathbb{R}$$
 and $S = [0, 1]$,
 $cl^{\Box_{S}}([2, 3]) = \bigcap \{ U \subseteq X : [2, 3] \Box_{S} U \}$
 $= \bigcap \{ U \subseteq X : [2, 3] \cup [0, 1] \subseteq U \}$
 $= [0, 1] \cup [2, 3]$
 $\not\subseteq [2, 3] = cl_{C}([2, 3]) = cl_{\Box}([2, 3]) = cl_{T_{\Box}}([2, 3])$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Example: $A \sqsubset_S B$ iff $A = \emptyset$ or $A \cup S \subseteq B$.

But with
$$X = \mathbb{R}$$
 and $S = [0, 1]$,
 $cl^{\Box_{S}}([2, 3]) = \bigcap \{ U \subseteq X : [2, 3] \Box_{S} U \}$
 $= \bigcap \{ U \subseteq X : [2, 3] \cup [0, 1] \subseteq U \}$
 $= [0, 1] \cup [2, 3]$
 $\not\subseteq [2, 3] = cl_{C}([2, 3]) = cl_{\Box}([2, 3]) = cl_{\mathcal{T}_{\Box}}([2, 3])$

	cl_{\Box}	cl□	$cl_{\mathcal{T}_{\square}}$
cl _C	\geq Theorem	$< \Box s$	\leq Theorem
	$> \Box_{\varepsilon}$		$< \Box_{\varepsilon}$
cl_{\Box}	_	$< \Box_S$	\leq Theorem
	_		$< \Box_{\varepsilon}$
cl□		=	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

On \mathbb{R} , define $A \sqsubset B$ if and only if

$$A = \emptyset$$
 or $\exists b \in \mathbb{R}$ such that $A \cup (b, \infty) \subseteq B$.

(ロ)、(型)、(E)、(E)、 E) の(の)

On \mathbb{R} , define $A \sqsubset B$ if and only if

 $A = \emptyset$ or $\exists b \in \mathbb{R}$ such that $A \cup (b, \infty) \subseteq B$.

$$\begin{aligned} \mathcal{T}_{\Box \rightarrow} &= \{ U : x \in U \Rightarrow x \Box_{\rightarrow} U \} \\ &= \{ U \subseteq \mathbb{R} : \exists b \in \mathbb{R}, (b, \infty) \subseteq U \} \cup \{ \emptyset \}. \end{aligned}$$

Thus the complements of $\mathcal{T}_{\Box \rightarrow}$ -open sets are \mathbb{R}, \emptyset , and the sets which are bounded above and we have

$$cl_{\mathcal{T}_{\Box \to}}(A) = \begin{cases} \emptyset & \text{if } A = \emptyset \\ \mathbb{R} & \text{if } \sup A = \infty \\ A & \text{if } A \text{ is bounded above.} \end{cases}$$

On \mathbb{R} , define $A \sqsubset B$ if and only if

 $A = \emptyset$ or $\exists b \in \mathbb{R}$ such that $A \cup (b, \infty) \subseteq B$.

$$\begin{aligned} \mathcal{T}_{\Box \rightarrow} &= & \{ U : x \in U \Rightarrow x \Box_{\rightarrow} U \} \\ &= & \{ U \subseteq \mathbb{R} : \exists b \in \mathbb{R}, (b, \infty) \subseteq U \} \cup \{ \emptyset \}. \end{aligned}$$

Thus the complements of $\mathcal{T}_{\Box \rightarrow}$ -open sets are \mathbb{R}, \emptyset , and the sets which are bounded above and we have

$$cl_{\mathcal{C}}(A) = cl_{\Box \rightarrow}(A) = cl_{\mathcal{T}_{\Box \rightarrow}}(A) = \begin{cases} \emptyset & \text{if } A = \emptyset \\ \mathbb{R} & \text{if } \sup A = \infty \\ A & \text{if } A \text{ is bounded above.} \end{cases}$$

 $cl^{\square}(A) = A$ for all $A \subseteq \mathbb{R}$. Suppose A is bounded above. For $n \in \mathbb{N}$, let $b_n = \max A + n$. Now $A \sqsubset A \cup (b_n, \infty)$, so

$$cl^{\sqsubset}(A)\subseteq \bigcap_{n\in\mathbb{N}}(A\cup(b_n,\infty))=A.$$

Suppose A is unbounded above and a_n is a strictly increasing sequence in A diverging to ∞ . Now

$$cl^{\sqsubset}(A)\subseteq \bigcap_{n\in\mathbb{N}}(A\cup(a_n,\infty))=A.$$

 $cl^{\square}(A) = A$ for all $A \subseteq \mathbb{R}$. Suppose A is bounded above. For $n \in \mathbb{N}$, let $b_n = \max A + n$. Now $A \sqsubset A \cup (b_n, \infty)$, so

$$cl^{\sqsubset}(A)\subseteq \bigcap_{n\in\mathbb{N}}(A\cup(b_n,\infty))=A.$$

Suppose A is unbounded above and a_n is a strictly increasing sequence in A diverging to ∞ . Now

$$cl^{\sqsubset}(A)\subseteq \bigcap_{n\in\mathbb{N}}(A\cup(a_n,\infty))=A.$$

If sup $A = \infty$,

$$A = cl^{\sqsubset}(A) \subset cl_{\mathcal{C}}(A) = cl_{\sqsubset \rightarrow}(A) = cl_{\mathcal{T}_{\sqsubset \rightarrow}}(A).$$

	cl_{\Box}	cl□	$cl_{\mathcal{T}_{\square}}$
cl _C	\geq Theorem	$< \Box s$	\leq Theorem
	$> \square_{\varepsilon}$	$> \Box_{\rightarrow}$	$< \Box_{\varepsilon}$
cl_{\Box}	_	$< \Box_S$	\leq Theorem
		$> \Box_{\rightarrow}$	$< \Box_{\varepsilon}$
cl□		=	$< \Box_{\rightarrow}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Example \sqsubset^*

On $X = \mathbb{R}$, define $A \sqsubset^* B$ iff $A \subseteq B$ and A is finite or $B = \mathbb{R}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example \sqsubset^*

On $X = \mathbb{R}$, define $A \sqsubset^* B$ iff $A \subseteq B$ and A is finite or $B = \mathbb{R}$. It is routine to verify that for $A \subseteq \mathbb{R}$, $cl_C(A) = cl_{\sqsubset^*}(A) = cl_{\mathcal{T}_{\sqsubset^*}}(A) = A$ $cl^{\sqsubset^*}(A) = \begin{cases} A & \text{if } A \text{ is finite} \\ \mathbb{R} & \text{if } A \text{ is infinite} \end{cases}$

Example \sqsubset^*

On $X = \mathbb{R}$, define $A \sqsubset^* B$ iff $A \subseteq B$ and A is finite or $B = \mathbb{R}$. It is routine to verify that for $A \subseteq \mathbb{R}$, $cl_C(A) = cl_{\sqsubset^*}(A) = cl_{\mathcal{T}_{\sqsubset^*}}(A) = A$ $cl^{\sqsubset^*}(A) = \begin{cases} A & \text{if } A \text{ is finite} \\ \mathbb{R} & \text{if } A \text{ is infinite} \end{cases}$ $cl_{\sqsubset} & cl_{\frown} & cl_{\mathcal{T}_{\Box}} \end{cases}$

	CI□	CI	$\mathcal{CI}_{\mathcal{T}_{\square}}$
cl _C	\geq Theorem	$< \Box s$	\leq Theorem
	$> \square_{\varepsilon}$	$> \Box_{\rightarrow}$	$< \Box_{\varepsilon}$
cl_{\Box}	=	$< \Box s$	\leq Theorem
		$> \Box_{\rightarrow}$	$< \Box_{\varepsilon}$
cl□		=	$<$ \Box_{\rightarrow}
			$> \Box^*$

References

- Á. Császár, Foundations of general topology, Pergamon Press, Macmillan Company, NY, 1963.
- Á. Császár, Finite extensions of topogenities, Acta Math. Hungar. 89 (1–2) (2000) 55–69.
- D. Holgate, M. Iragi, and A. Razafindrakoto, Topogenous and nearness structures on categories, Appl. Categor. Struct. 24 (2016) 447–455.
- T. Richmond (2020) *General Topology: An Introduction*, Berlin: De Gruyter.
- T. Richmond and J. Šlapal, Lower separation axioms in bitopogenous spaces, Math. Slovaca. 74(2) (2024) 491–500.
- J. Šlapal, T. Richmond, and M. Iragi, Topogenous orders and closure operators on posets. Turkish J. Math. 48 (2024) 469–476.