◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(Cofinitely) sensitivity for Mahavier dynamical systems

Tina Sovič

Coimbra, July 2024

Tina Sovič

Definitions and notation

Closed relations that imply sensitivity

Subsets of a closed relation and sensitivity $_{\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc }$

Coauthor

Matevž Črepnjak , University of Maribor

・ロト・日本・日本・日本・日本・日本

Tina Sovič

Definitions and notation

Closed relations that imply sensitivity

Subsets of a closed relation and sensitivity $_{\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc }$

 I. Banič, G. Erceg, J. Kennedy and V. Nall, Chaos and mixing homeomorphisms on fans

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 → ��や

Tina Sovič

Definitions and notation

Let X be a non-empty compact metric space and let $F \subseteq X \times X$ be a relation on X. If F is closed in $X \times X$, then we say that F is a **closed relation** on X.

Let *X* be a non-empty compact metric space and *F* a closed relation on *X*. **The Mahavier product of** *F* is defined by

$$X_F^+ = \left\{ (x_1, x_2, x_3, \ldots) \in \prod_{i=1}^{\infty} X \mid (x_i, x_{i+1}) \in F \text{ for each positive integer } i \right\}$$

・ロト・日本・日本・日本・日本・日本

Tina Sovič

イロト イロト イヨト イヨト

Definitions and notation

Let X be a non-empty compact metric space and let $F \subseteq X \times X$ be a relation on X. If F is closed in $X \times X$, then we say that F is a **closed relation** on X.

Let X be a non-empty compact metric space and F a closed relation on X. The Mahavier product of F is defined by

$$X_F^+ = \left\{ (x_1, x_2, x_3, \ldots) \in \prod_{i=1}^{\infty} X \mid (x_i, x_{i+1}) \in F \text{ for each positive integer } i \right\}.$$

Tina Sovič

Let *X* be a non-empty compact metric space and let *F* be a closed relation on *X*. The function $\sigma_F^+ : X_F^+ \to X_F^+$, defined by

$$\sigma_F^+(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots)$$

for each $(x_1, x_2, x_3, ...) \in X_F^+$, is called the shift map on X_F^+ .

Let X be a compact metric space and F a closed relation on X. The dynamical system (X_F^+, σ_F^+) is called a **Mahavier dynamical** system. Let *X* be a non-empty compact metric space and let *F* be a closed relation on *X*. The function $\sigma_F^+ : X_F^+ \to X_F^+$, defined by

$$\sigma_F^+(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots)$$

for each $(x_1, x_2, x_3, ...) \in X_F^+$, is called the shift map on X_F^+ .

Let *X* be a compact metric space and *F* a closed relation on *X*. The dynamical system (X_F^+, σ_F^+) is called a **Mahavier dynamical** system.

Tina Sovič

A dynamical system (*X*, *f*) is **sensitive**, if there exists $\varepsilon > 0$ such that for each non-empty open set $U \subseteq X$, there exists a positive integer *n* such that diam($f^n(U)$) > ε .

In this case ε is called a **sensitivity constant** of (X, f).

Dynamical system (*X*, *f*) is **cofinitely sensitive**, if there exists $\varepsilon > 0$ such that for each non-empty open set $U \subseteq X$, there exists a positive integer n_0 such that $\operatorname{diam}(f^n(U)) > \varepsilon$ for each positive integer $n \ge n_0$.

・ロト・日本・日本・日本・日本・日本

Tina Sovič

A dynamical system (*X*, *f*) is **sensitive**, if there exists $\varepsilon > 0$ such that for each non-empty open set $U \subseteq X$, there exists a positive integer *n* such that diam($f^n(U)$) > ε . In this case ε is called a **sensitivity constant** of (*X*, *f*).

Dynamical system (*X*, *f*) is **cofinitely sensitive**, if there exists $\varepsilon > 0$ such that for each non-empty open set $U \subseteq X$, there exists a positive integer n_0 such that diam $(f^n(U)) > \varepsilon$ for each positive integer $n \ge n_0$.

Tina Sovič

A dynamical system (*X*, *f*) is **sensitive**, if there exists $\varepsilon > 0$ such that for each non-empty open set $U \subseteq X$, there exists a positive integer *n* such that diam($f^n(U)$) > ε . In this case ε is called a **sensitivity constant** of (*X*, *f*).

Dynamical system (*X*, *f*) is **cofinitely sensitive**, if there exists $\varepsilon > 0$ such that for each non-empty open set $U \subseteq X$, there exists a positive integer n_0 such that $\operatorname{diam}(f^n(U)) > \varepsilon$ for each positive integer $n \ge n_0$.

Example

Let $X = \mathbb{Z} \cup \{-\infty, \infty\}$. For each integer *k* let

$$q_k = \begin{cases} 1 - \frac{1}{2^k} & ; \quad k \in \mathbb{N} \\ 2^k - 1 & ; \quad k \in \mathbb{Z} \setminus \mathbb{N} \end{cases},$$

and let $Y = \{-1, 1\} \cup \bigcup_{k \in \mathbb{Z}} \{q_k\}$. Note that *X* and *Y* are homeomorphic. Let $h : Y \to X$ be a homeomorphism with $h(q_k) = k$ for each integer *k*. On *X* we use the metric *d* defined by

$$d(x, y) = |h^{-1}(x) - h^{-1}(y)|.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Tina Sovič

Example

We define a close relation F on X by

$$F = \left\{ (2^{k}, 2^{k} + 1), (2^{k}, -2^{k} - 1), (-2^{k} - 1, 2^{k} + 2) \mid k \in \mathbb{N} \right\}$$
$$\cup \left\{ (k, k + 1) \mid k \in \mathbb{N} \setminus \{2^{k} \mid k \in \mathbb{N}\} \right\}$$
$$\cup \{ (0, 1), (\infty, \infty), (\infty, -\infty), (-\infty, \infty) \}.$$

Then (X_F^+, σ_F^+) is a sensitive dynamical system, which is not cofinitely sensitive.

Tina Sovič

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Tina Sovič

Subsets of a closed relation and sensitivity

Closed relations that imply sensitivity

Observation

Let X be a compact metric space and let F be a closed relation on X. If there exist closed relations A and B on X, with $F = A \cup B$, $A \cap B = \emptyset$ and $\pi_1(A) = \pi_1(B) = X$, then (X_F^+, σ_F^+) is a cofinitely sensitive dynamical system with $\varepsilon = \min \{d(A(x), B(x)) \mid x \in X\} > 0$ being its sensitivity constant.

Tina Sovič

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem

Let X be a compact subspace of \mathbb{R} and let F be a closed relation on X. If there exist closed relations A and B on X, such that

$$\mathbf{1} \quad F = \mathbf{A} \cup \mathbf{B},$$

$$2 A \cap B \neq F$$

3
$$\pi_1(A) = \pi_1(B) = X$$
,

4
$$(A \cap B) \cap \Delta = \emptyset$$
, and

5
$$A \subseteq \{(x, y) \in X \times X \mid y \le x\}$$
 or $A \subseteq \{(x, y) \in X \times X \mid y \ge x\}$,

then (X_F^+, σ_F^+) is sensitive.

Tina Sovič

Example

Let X = [0, 1] and let $F \subseteq X \times X$ be the union of two straight line segments, first one from (1, 0) to $(0, \frac{1}{2})$ and the second one from $(0, \frac{1}{2})$ to (1, 1). Then (X_F^+, σ_F^+) is sensitive.

Tina Sovič

Theorem

Let X be a compact subspace of \mathbb{R} with $m = \min X$ and $M = \max X$. Let F be a closed relation on X, satisfying

1
$$\pi_2(F) \subseteq \pi_1(F)$$
,

2 for each $x \in X$ it holds that $m \in F(x)$ if and only if x = m,

3 there exist closed relations A and B on X such that

$$1 \quad F = A \cup B,$$

$$A \subseteq \{(x, y) \in X \times X \mid y \le x\}, B \subseteq \{(x, y) \in X \times X \mid y \ge x\}$$

- **3** $A \cap \Delta = \{(m, m)\}, B \cap \Delta = \{(m, m)\},$
- 4 there exist $a \in (m, M)$ with $[m, a] \subseteq \pi_1(A) \cap \pi_1(B)$.

Then (X_F^+, σ_F^+) is cofinitely sensitive.

Example

Let X = [0, 1] and $F = \{(t, \frac{t}{2}) \mid t \in [0, 1]\} \cup \{(t, \sqrt{3}t) \mid t \in [0, \frac{1}{\sqrt{3}}]\}$. Then X_F^+ is homeomorphic to the Lelek fan, and (X_F^+, σ_F^+) is cofinitely sensitive.

Tina Sovič

Theorem

Let $a, b \in \mathbb{R}$, a < b, X = [a, b], let $f : X \to X$ be a strictly increasing continuous function, and let B be a closed relation on $Y \subseteq X$, such that for each $x \in X$ with f(x) = x, there exist $a_x, b_x \in Y$, $a_x < b_x$, such that

1
$$x \in [a_x, b_x] \subseteq Y$$
 and

2 $\Gamma(f) \cap B|_{[a_x,b_x]}$ is an empty set.

If $F = \Gamma(f) \cup B$, then (X_F^+, σ_F^+) is sensitive.

Tina Sovič

Theorem

Let $a, b \in \mathbb{R}$, a < b, X = [a, b], let $f : X \to X$ be a strictly decreasing continuous function, and let B be a closed relation on $Y \subseteq X$, such that for each $x \in [a, b]$ with $f^2(x) = x$, there exist $a_x, b_x \in Y$, $a_x < b_x$, such that

1 $x \in [a_x, b_x] \subseteq Y$ or $f(x) \in [a_x, b_x] \subseteq Y$ and

2 $\Gamma(f) \cap B|_{[a_x,b_x]}$ is an empty set.

If $F = \Gamma(f) \cup B$, then (X_F^+, σ_F^+) is sensitive.

Tina Sovič

Subsets of a closed relation and sensitivity

Theorem

Let X be a compact metric space and G a closed relation on X such that (X_G^+, σ_G^+) is sensitive. Suppose F is a closed relation on X with $G \subseteq F$, $\pi_2(F) \subseteq \pi_1(G)$, and σ_F^+ is an open map. Then (X_F^+, σ_F^+) is sensitive, too.

Observation

Let X be a compact metric space, let n be a positive integer and let $F = \bigcup_{i=1}^{n} \Gamma(h_i)$, where $h_i : X \to X$ is a homeomorphism for each *i*. Then $\sigma_F^+ : X_F^+ \to X_F^+$ is an open map.

Tina Sovič

Subsets of a closed relation and sensitivity

Theorem

Let X be a compact metric space and G a closed relation on X such that (X_G^+, σ_G^+) is sensitive. Suppose F is a closed relation on X with $G \subseteq F$, $\pi_2(F) \subseteq \pi_1(G)$, and σ_F^+ is an open map. Then (X_F^+, σ_F^+) is sensitive, too.

Observation

Let *X* be a compact metric space, let *n* be a positive integer and let $F = \bigcup_{i=1}^{n} \Gamma(h_i)$, where $h_i : X \to X$ is a homeomorphism for each *i*. Then $\sigma_F^+ : X_F^+ \to X_F^+$ is an open map.

Tina Sovič

For a compact metric space X, let

$$\Delta_X = \{(x, x) \mid x \in X\}.$$

Theorem

Let X be a compact metric space and let F be a closed relation on X. If $\Delta_X \subseteq F$ and (X_F^+, σ_F^+) is sensitive, then (X_F^+, σ_F^+) is cofinitely sensitive.

Theorem

Let X be a compact metric space, let G be a closed relation on X with $\pi_1(G) = \pi_2(G) = X$. If $F = G \cup \Delta_X$ and (X_G^+, σ_G^+) is sensitive, then (X_F^+, σ_F^+) is cofinitely sensitive.

Tina Sovič

For a compact metric space X, let

$$\Delta_X = \{(x, x) \mid x \in X\}.$$

Theorem

Let X be a compact metric space and let F be a closed relation on X. If $\Delta_X \subseteq F$ and (X_F^+, σ_F^+) is sensitive, then (X_F^+, σ_F^+) is cofinitely sensitive.

Theorem

Let X be a compact metric space, let G be a closed relation on X with $\pi_1(G) = \pi_2(G) = X$. If $F = G \cup \Delta_X$ and (X_G^+, σ_G^+) is sensitive, then (X_F^+, σ_F^+) is cofinitely sensitive.

Tina Sovič

Thank you !

tina.sovic@um.si

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - 釣�?

Tina Sovič