Filters on ω and convergence of measures on Boolean algebras

Tomasz Żuchowski

Mathematical Institute, University of Wrocław

38th Summer Conference on Topology and its Applications, 08-12.07.2024 Coimbra

イロト イヨト イヨト

= nar

 $\|\mu\| = \sup \left\{ |\mu(A)| + |\mu(B)| : A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}} \right\} < \infty.$

$$\|\mu\| = \sup\left\{|\mu(A)| + |\mu(B)|: A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}}\right\} < \infty.$$

A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- *pointwise null* if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $\|\mu\| = \sup \left\{ |\mu(A)| + |\mu(B)| : A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}} \right\} < \infty.$

A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- *pointwise null* if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

Nikodym property of Boolean algebra

A Boolean algebra A has the *Nikodym property* if every pointwise null sequence of measures on A is uniformly bounded.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• σ -algebras (Nikodym '30, Andô '61),

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- σ -algebras (Nikodym '30, Andô '61),
- algebras with Subsequential Completeness Property (Haydon '81),

・ 同 ト ・ ヨ ト ・ ヨ ト

- σ -algebras (Nikodym '30, Andô '61),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

・ 同 ト ・ ヨ ト ・ ヨ ト

- σ -algebras (Nikodym '30, Andô '61),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

However, if the Stone space St(A) of ultrafilters on A contains a non-trivial convergent sequence, then A does not have the Nikodym property:

・ロト ・ 同ト ・ ヨト ・ ヨト

- σ -algebras (Nikodym '30, Andô '61),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

However, if the Stone space St(A) of ultrafilters on A contains a non-trivial convergent sequence, then A does not have the Nikodym property:

if $x_n \to x$, then consider the sequence of measures $\mu_n = n(\delta_{x_n} - \delta_x)$.

イロト 不得 トイヨト イヨト 二日

~ ~ ~

N_F spaces

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

- every point of ω is isolated in N_F ,
- U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

イロト イポト イヨト イヨト 三日

N_F spaces

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

- every point of ω is isolated in N_F ,
- U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

Trivial example

 N_{Fr} is homeomorphic to a convergent sequence (together with its limit), where by Fr we denote the Fréchet filter on ω .

(4 同) 4 ヨ) 4 ヨ)

N_F spaces

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

- every point of ω is isolated in N_F ,
- U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

Trivial example

 N_{Fr} is homeomorphic to a convergent sequence (together with its limit), where by Fr we denote the Fréchet filter on ω .

Question

For which filters F on ω , if N_F embeds into the Stone space St(A) of a Boolean algera A, then A does not have the Nikodym property?

< ロ > < 同 > < 回 > < 回 >

=

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

イロト イポト イヨト イヨト 三日

SQA

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

イロト イポト イヨト イヨト 三日

SOR

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

F - a free filter on ω

We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

- 4 同 ト 4 回 ト - - - 回

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

F - a free filter on ω We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

•
$$\|\mu_n\| \to \infty$$
,

- 4 同 ト 4 回 ト - - - 回

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

 ${\it F}$ - a free filter on ω

We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

•
$$\|\mu_n\| \to \infty$$
,

•
$$\mu_n(A) \to 0$$
 for every $A \in \text{Clopen}(N_F)$.

・ロト ・ 雪 ト ・ ヨ ト ・

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

 ${\it F}$ - a free filter on ω

We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

- $\|\mu_n\| \to \infty$,
- $\mu_n(A) \to 0$ for every $A \in \text{Clopen}(N_F)$.

(we call such a sequence of measures a **finitely supported AN-sequence**).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

 ${\it F}$ - a free filter on ω

We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

• $\|\mu_n\| \to \infty$,

•
$$\mu_n(A) \to 0$$
 for every $A \in \text{Clopen}(N_F)$.

(we call such a sequence of measures a **finitely supported AN-sequence**).

 \mathcal{AN} - the class of all ideals on ω whose dual filters do not have the Nikodym property

▲ロ ▶ ▲ 祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → り Q (~

 ${\mathcal A}$ - a Boolean algebra

<ロト <回ト < 三ト < 三ト

SQR

э

A - a Boolean algebra St(A) - the Stone space of A, i.e. the space of all ultrafilters on A endowed with the standard topology

ヘロト 人間ト 人造ト 人造ト

A - a Boolean algebra St(A) - the Stone space of A, i.e. the space of all ultrafilters on A endowed with the standard topology

ヘロト 人間ト 人造ト 人造ト

${\cal A}$ - a Boolean algebra

St(A) - the Stone space of A, i.e. the space of all ultrafilters on A endowed with the standard topology

Theorem

If N_F homeomorphically embeds into St(A) and F does not have the Nikodym property, then A does not have the Nikodym property.

不同 医子宫 医子宫下

If a filter F on ω does not have the Nikodym property, then there is an fs-AN sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$.

If a filter F on ω does not have the Nikodym property, then there is an fs-AN sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$.

Theorem

A filter F on ω has the Nikodym property if and only if there is no sequence $\langle \mu_n : n \in \omega \rangle$ of non-negative measures on ω with finite disjoint supports such that:

If a filter F on ω does not have the Nikodym property, then there is an fs-AN sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$.

Theorem

A filter F on ω has the Nikodym property if and only if there is no sequence $\langle \mu_n : n \in \omega \rangle$ of non-negative measures on ω with finite disjoint supports such that:

•
$$\lim_{n\to\infty} \mu_n(\omega) = \infty$$
,

If a filter F on ω does not have the Nikodym property, then there is an fs-AN sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$.

Theorem

A filter F on ω has the Nikodym property if and only if there is no sequence $\langle \mu_n : n \in \omega \rangle$ of non-negative measures on ω with finite disjoint supports such that:

•
$$\lim_{n\to\infty} \mu_n(\omega) = \infty$$
,

•
$$\lim_{n\to\infty} \mu_n(\omega \setminus A) = 0$$
 for every $A \in F$.

- 同ト - ヨト - ヨ

Submeasures on ω

Definition

 $\varphi : \mathcal{P}(\omega) \to [0,\infty]$ is a submeasure if

- $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,
- $\varphi(X) \leq \varphi(Y)$ whenever $X \subseteq Y$,
- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$.

・ロト ・ 四ト ・ 日ト ・ 日

Submeasures on ω

Definition

$$\varphi: \mathcal{P}(\omega) \to [0,\infty]$$
 is a submeasure if

- $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,
- $\varphi(X) \leq \varphi(Y)$ whenever $X \subseteq Y$,
- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$.

Moreover, we asume that submeasures are *lower semicontinuous* (*lsc*), that is, $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n])$ for every $A \subseteq \omega$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Submeasures on ω

Definition

$$\varphi : \mathcal{P}(\omega) \rightarrow [0, \infty]$$
 is a submeasure if

- $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,
- $\varphi(X) \leq \varphi(Y)$ whenever $X \subseteq Y$,
- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$.

Moreover, we asume that submeasures are *lower semicontinuous* (*lsc*), that is, $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n])$ for every $A \subseteq \omega$.

Exhaustive ideal of submeasure φ

The following ideal on ω is called *the exhaustive ideal* of φ :

$$Exh(\varphi) = \left\{ A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus [0, n]) = 0 \right\}$$

It is always an $F_{\sigma\delta}$ P-ideal.

-

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

イロト 不得 トイヨト イヨト 二日

500

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}.$

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}.$

Density submeasure

A submeasure φ is a *density submeasure* if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of non-negative measures on ω with finite disjoint supports such that $\varphi = \sup_{n \in \omega} \mu_n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}.$

Density submeasure

A submeasure φ is a *density submeasure* if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of non-negative measures on ω with finite disjoint supports such that $\varphi = \sup_{n \in \omega} \mu_n$.

An example is an *asymptotic density* on ω defined by:

$$\varphi_d(A) = \sup_{n \in \omega} \left| A \cap [2^n, 2^{n+1}) \right| / 2^n.$$

・ロット (雪) ・ ヨ)

Let F be a filter on ω . Then, the following are equivalent:

Tomasz Żuchowski Filters on ω and convergence of measures on Boolean algebras

→ 同 ▶ → 臣 ▶ → 臣 ▶

Let F be a filter on ω . Then, the following are equivalent:

• F does not have the Nikodym property;

▲冊▶ ▲臣▶ ▲臣▶

Let F be a filter on ω . Then, the following are equivalent:

- F does not have the Nikodym property;
- there is a density submeasure φ on ω such that φ(ω) = ∞ and F ⊆ Exh(φ)*;

(4 同) 4 ヨ) 4 ヨ)

Let F be a filter on ω . Then, the following are equivalent:

- F does not have the Nikodym property;
- there is a density submeasure φ on ω such that φ(ω) = ∞ and F ⊆ Exh(φ)*;
- there is a non-pathological lsc submeasure φ on ω such that $\varphi(\omega) = \infty$ and $F \subseteq Exh(\varphi)^*$.

- 4 同 1 - 4 回 1 - 4 回 1

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$.

◆□ ▶ ◆問 ▶ ◆注 ▶ ◆注 ▶

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$. We denote $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$ when $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ and $\mathcal{J} \notin_{\mathcal{K}} \mathcal{I}$.

< ロ > < 同 > < 回 > < 回 >

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$. We denote $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$ when $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ and $\mathcal{J} \notin_{\mathcal{K}} \mathcal{I}$.

Theorem

There exists a family $\{\mathcal{J}_{\alpha}: \alpha < \mathfrak{d}\}$ of density ideals from \mathcal{AN} such that for any $\mathcal{I} \in \mathcal{AN}$ there is $\alpha < \mathfrak{d}$ such that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}_{\alpha}$.

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$. We denote $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$ when $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ and $\mathcal{J} \notin_{\mathcal{K}} \mathcal{I}$.

Theorem

There exists a family $\{\mathcal{J}_{\alpha}: \alpha < \mathfrak{d}\}$ of density ideals from \mathcal{AN} such that for any $\mathcal{I} \in \mathcal{AN}$ there is $\alpha < \mathfrak{d}$ such that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}_{\alpha}$.

However, there is no \leq_{K} -maximal element in AN!

(4月) キョン・(日)

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$. We denote $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$ when $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ and $\mathcal{J} \notin_{\mathcal{K}} \mathcal{I}$.

Theorem

There exists a family $\{\mathcal{J}_{\alpha}: \alpha < \mathfrak{d}\}$ of density ideals from \mathcal{AN} such that for any $\mathcal{I} \in \mathcal{AN}$ there is $\alpha < \mathfrak{d}$ such that $\mathcal{I} \leq_{K} \mathcal{J}_{\alpha}$.

However, there is no \leq_{K} -maximal element in AN!

Theorem

For every $\mathcal{I} \in \mathcal{AN}$ there is $\mathcal{J} \in \mathcal{AN}$ such that $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$.

イロト イボト イヨト イヨト

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) has the Grothendieck property.

(4月) キョン・(日)

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) has the Grothendieck property.

Not easy to distinguish with the Nikodym property!

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) has the Grothendieck property.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

• (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)

< ロ > < 同 > < 回 > < 回 >

ъ

500

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) has the Grothendieck property.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

- (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)
- (Talagrand, 1984) example under CH of the algebra with (G) but without (N)

< ロ > < 同 > < 回 > < 回 >

Э

SQA

Grothendieck property of Boolean algebra

A Boolean algebra A has the *Grothendieck property* if the Banach space C(St(A)) has the Grothendieck property.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

- (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)
- (Talagrand, 1984) example under CH of the algebra with (G) but without (N)
- (Sobota & Zdomskyy, preprint 2023) example under MA of the algebra with (G) but without (N)
- (Głodkowski & Widz, preprint 2024) forcing construction of the algebra with (G) but without (N)

イロト イヨト イヨト

3

SQA

Let F be a filter on ω and A a Boolean algebra. Then,

 if N_F has the BJN property and embeds into St(A), then A does not have the Grothendieck property;

< 回 > < 回 > < 回 >

Let F be a filter on ω and A a Boolean algebra. Then,

- if N_F has the BJN property and embeds into St(A), then A does not have the Grothendieck property;
- N_F has the BJN property iff $F^* \leq_K \mathcal{Z}(= Exh(\varphi_d))$

A (B) < (B) < (B) < (B) </p>

Let F be a filter on ω and A a Boolean algebra. Then,

- if N_F has the BJN property and embeds into St(A), then A does not have the Grothendieck property;
- N_F has the BJN property iff $F^* \leq_K \mathcal{Z}(= Exh(\varphi_d))$ iff there is a density submeasure φ on ω such that $F \subseteq Exh(\varphi)^*$

- 4 同 1 4 三 1 4 三 1

Let F be a filter on ω and A a Boolean algebra. Then,

- if N_F has the BJN property and embeds into St(A), then A does not have the Grothendieck property;
- N_F has the BJN property iff $F^* \leq_K \mathcal{Z}(= Exh(\varphi_d))$ iff there is a density submeasure φ on ω such that $F \subseteq Exh(\varphi)^*$

Theorem

For a density ideal \mathcal{I} on ω we have $\mathcal{I} \in \mathcal{AN}$ if and only if $\mathcal{I} <_{\mathcal{K}} \mathcal{Z}$.

The results in this section are joint work with Damian Sobota.

ヘロト ヘロト ヘビト ヘビト

= nar

The results in this section are joint work with Damian Sobota.

Definition $\mathcal{A}_F = \{ A \subseteq \omega : A \in F \lor A^c \in F \}$

イロト イヨト イヨト

э

The results in this section are joint work with Damian Sobota.

Definition

 $\mathcal{A}_{F} = \left\{ A \subseteq \omega : A \in F \lor A^{\mathsf{c}} \in F \right\}$

Theorem

If A_F does not have the Nikodym property, then it neither has the Grothendieck property.

・ 同 ト ・ ヨ ト ・ ヨ ト

The results in this section are joint work with Damian Sobota.

Definition

 $\mathcal{A}_{\mathcal{F}} = \left\{ A \subseteq \omega \colon A \in \mathcal{F} \lor A^{\mathsf{c}} \in \mathcal{F} \right\}$

Theorem

If A_F does not have the Nikodym property, then it neither has the Grothendieck property.

The Stone space of the algebra \mathcal{A}_F

We have $St(A_F) = \beta N_F$, which is " $\beta \omega$ with all ultrafilters extending F glued together to the point p_F ".

イロト イボト イヨト イヨト

The results in this section are joint work with Damian Sobota.

Definition

 $\mathcal{A}_{\mathcal{F}} = \left\{ A \subseteq \omega \colon A \in \mathcal{F} \lor A^{\mathsf{c}} \in \mathcal{F} \right\}$

Theorem

If A_F does not have the Nikodym property, then it neither has the Grothendieck property.

The Stone space of the algebra \mathcal{A}_F

We have $St(A_F) = \beta N_F$, which is " $\beta \omega$ with all ultrafilters extending F glued together to the point p_F ". The "remainder" of βN_F is $St(A_F/Fin) = St(A_F) \setminus \omega$.

イロト イボト イヨト イヨト

The following are equivalent:

•
$$\mathcal{A}_F$$
 has (N) ;

イロト イボト イヨト イヨト

SQA

ŀ

The following are equivalent:

2 \mathcal{A}_F/Fin has (N) and there is no fs-AN sequence on N_F .

イロト イボト イヨト イヨト

The following are equivalent:

1
$$\mathcal{A}_F$$
 has (N) ;

2 A_F/Fin has (N) and there is no fs-AN sequence on N_F .

Theorem

For every density ideal \mathcal{I} such that $\mathcal{I} \equiv_{\mathcal{K}} \mathcal{Z}$, the algebra $\mathcal{A}_{\mathcal{I}^*}$ has the Nikodym property and does not have the Grothendieck property.

The following are equivalent:

1
$$\mathcal{A}_F$$
 has (N) ;

2 \mathcal{A}_F/Fin has (N) and there is no fs-AN sequence on N_F .

Theorem

For every density ideal \mathcal{I} such that $\mathcal{I} \equiv_{K} \mathcal{Z}$, the algebra $\mathcal{A}_{\mathcal{I}^*}$ has the Nikodym property and does not have the Grothendieck property.

Corollary

There are \mathfrak{c} non-isomorphic Boolean algebras with (N) and without (G), of the form \mathcal{A}_F where F is a Borel filter on ω .

< ロ > < 同 > < 回 > < 回 >

Thank You! :)

< □ > < □ > < □ > < Ξ > < Ξ >

E

590