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» The Square Peg Problem

A subset X of the plane admits
an inscribed polygon, P, if all
vertices of a polygon similar to P
lie on X.

Orange rectangle inscribed in a yellow arc.
[1/24]
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In 1911 Otto Toeplitz asked:
¿Does every Jordan curve admit an inscribed square?
This is known as the square peg problem (or the inscribed
square problem).

square inscribed in a Jordan curve
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» Resolved cases

∗ Piecewise analytic curves
Arnold Emch, 1916, [3]

∗ Locally monotone curves
Walter R. Stromquist, 1989, [10]

∗ Symmetric curves
Mark J. Nielsen and Stephen E. Wright, 1995, [9]

∗ Curves that lie (homotopically essential) in an annulus
whose outer radius is at most 1 + √2 times its inner radius
Benjamin Matschke, 2011, [6]

∗ Curves formed by the union of the graphs of two Lipschitz
continuous functions
Terence Tao, 2017, [11]
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» The Inscribed Rectangle Problem

Rectangle inscribed in a Jordan curve

A natural variant of the square peg problem is: Does every Jor-
dan curve admit an inscribed rectangle? The answer is affirma-
tive (H. Vaughan 1977, [7, p.71]).
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» The solution of H. Vaughan Vaughan’s function

Let γ : S1 → R2 be a Jordan Curve. For each set {a, b}, with
a, b ∈ S1, define the function:

Vaughan’s function, fγ

fγ({a, b}) =
{(

γ(a)+γ(b)
2 , ∥γ(a)− γ(b)∥

)
, if a ̸= b;

(γ(a), 0) , if a = b.

If there are 4 different points a, b, c, d ∈ S1 such that
fγ({a, b}) = fγ({c, d}) ⇒ {γ(a), γ(b), γ(c), γ(d)} are the vertices
of a rectangle inscribed in γ(S1).
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» The solution of H. Vaughan fγ is not one to one

2nd symmetric product,F2

Given a continuum X,

F2(X) = {A ⊆ X : A ̸= ∅ y A has at most 2 points}

topologized by the Hausdorff metric.

We can see that:
∗ fγ is a continuous function from F2(S1) to R3,
∗ F2(S1) is homeomorphic to the Möbius strip,
∗ If fγ is one to one ⇒ ∃ an embedding from P2(R) to R3

(Schoenflies).
∴ fγ is not one to one.

** Watch this video of 3Blue1Brown: Who cares about topology?
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https://youtu.be/AmgkSdhK4K8
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» Other Generalizations

∗ Can something be said about the ratio between the sides of
the inscribed rectangles?

∗ In 2020 Joshua Evan Greene and Andrew Lobb proved that
every smooth Jordan curve inscribes at least one rectangle
of any given ratio, in particular a square (Annals of
Mathematics (2) 194, No. 2, 509-517 (2021)). The proof
relies on the theorem of Shevchishin and Nemirovski that
the Klein bottle does not admit a smooth Lagrangian
embedding in C2 .

∗ Later they proved that every smooth Jordan curve inscribes
every cyclic quadrilateral. The proof relies on the theorem
of Polterovich and Viterbo that an embedded Lagrangian
torus in C2 has minimum Maslov number 2.
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∗ We generalized Vaughan’s result to other plane sets (not
necessarily Jordan curves)

∗ We classify locally connected plane continua that inscribe
rectangles.

∗ We show that every copy of two disjoint simple triods
always inscribe a rectangle.

∗ We show that a dense union of disjoint arcs, such that one
of them is a line segment, always inscribes a rectangle.

∗ We switch to the hyperbolic plane and prove results
concerning hyperbolic quadrilaterals.
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» Locally Connected Plane Continua
Some locally connected plane continua are:

∗ The arc = The space homeomorphic to the closed
interval [0, 1]

∗ The simple n-od = graph with only one ramification
point, n final points and without cycles.

∗ The n-noose = graph homeomorphic to a circle, C,
attached to n arcs, A1, . . . ,An, so that ∃p ∈ C s.t. ∀i,
C ∩ Ai = {p}.

∗ The eight continuum = two joined circumferences
that intersect each other in a single point.

∗ The H continuum = the continuum homeomorphic to
the symbol H.
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» ¿Which ones inscribe rectangles?

A plane continuum X inscribes rectangles if for all embedding
γ : X → R2 all the vertices of an euclidean rectangle lie on γ(X).

Examples

These embeddings, of the arc
and the 3-od, do not inscribe
rectangles.

This is a locally connected
plane continua containing an
infinite amount of 3-ods
and the Cantor set.
¿Does it inscribe rectangles?
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» Intrinsically linked graphs
A graph is intrinsically linked if any embedding of it in R3

contains a nontrivial link.

Conway and Gordon proved that K6 is intrinsically linked. The
proof is based on a parity argument.

λ(X) =
∑

{C1,C2}

lk(C1,C2) = 1(mod2)
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» The case of the 4-od
Let X be a simple 4-od and γ : X → R2 an embedding.
Using the function fγ : F2(X) → R3 we can see that:
Proposition

If X does not inscribe rectangles, we can define an
embedding of the cone of the graph K5 in R3.
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» The case of the 4-od
Let X be a simple 4-od and γ : X → R2 an embedding.
Using the function fγ : F2(X) → R3 we can see that:
Proposition

If X does not inscribe rectangles, we can define an
embedding of the cone of the graph K5 in R3.

However, Conway and Gordon proved that every embedding of
the graph K6 in R3 contains a non-trivial link. Using this fact,
Castañeda proved that the cone of K5 is not embeddable in R3.
Therefore fγ is not one to one. So, the simple 4-od inscribes
rectangles.

Lemma (M, Villanueva) [8]

The simple 4-od inscribes rectangles.
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» Characterisation

Sachs proved that every embbeding of the graph K3,3,1 in R3

contains a non-trivial link. Using this fact and Conway and
Gordon’s result Castañeda classified locally connected continua
whose second symmetric product is embeddable in the R3:

Theorem, Castañeda, [1]

Let X be a locally connected continuum.
F2(X) can be embedded in R3 ⇐⇒ X is
homeomorphic to: the arc, the simple 3-od, the simple
4-od, S1, the 1-noose, the 2-noose or the eight
continuum.
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So we have:
∗ The 3-od and the arc do not inscribe rectangles.
∗ The space S1 and the 4-od do inscribe rectangles.
∗ If X does not inscribe rectangules ⇒ fγ is an embedding of
F2(X) in R3.

Theorem (M, Villanueva) [8]

The only locally connected plane continua that do not
inscribe rectangles are the arc and the simple 3-od.
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Theorem (M, Villanueva)

Let X be the disjoint union of two simple 3-ods. Then,
X admits an inscribed rectangle.

Proof: T1 × T2 is homeomorphic to the cone of the bipartite
graph K3,3 (Castañeda’s result). So, if γ(X) does not inscribe a
rectangle fγ is an embedding of cone of the bipartite graph K3,3

in R3, but Castañeda proved that this is impossible. Therefore,
fγ is not injective, hence X admits an inscribed rectangle.
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Theorem (M, Villanueva)

Let X be the disjoint union of a dense set of arcs in
R2, such that at least one of them is a line segment,
then X inscribes a rectangle.
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Let us define the hyperbolic length in H by the formula

ds2 = dx2 + dy2
y2 =

|dz|2
y2 (z = x+ iy).

More precisely, if γ : I → H is a piecewise differentiable path
with γ(t) = x(t) + iy(t) = z(t), then its hyperbolic length h(γ) is
equal to

h(γ) =
∫ 1

0

√(dx
dt
)2

+
(
dy
dt

)2
dt

y =

∫ 1

0

∣∣dz
dt
∣∣ dt
y .

With this length, it is possible to show that for any two points
in H there is a unique path of shortest hyperbolic length, such
paths are called hyperbolic line segments or h-segments. Once
defined the hyperbolic metric on H, we can pass to the model of
the Poincare disk using the Cayley transformation C(z) = z−i

z+i .
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Let X be a plane continuum and let γ : X → H be an
embedding. We define the continuous functions

fγ : F2(X) → H× R

by

fγ({a, b}) =
{
(midpointH (γ(a), γ(b)), dH(γ(a), γ(b)) , if a ̸= b;
(γ(a), 0) , if a = b.

gγ : X× X → H× R

by

gγ((a, b)) = (midpointH (γ(a), γ(b)), dH(γ(a), γ(b))).

[20/24]
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Theorem (Gauss Bonnet)

Let △ be a hyperbolic triangle with angles α, β γ.
Then the hyperbolic area µ(△) is given by:
µ(△) = π − α− β − γ.

Definition:
Let ε > 0. An ε-rectangle in H is a quadrilateral
whose diagonals have the same hyperbolic length, the
diagonals share their midpoint and the quadrilateral’s
inner angles sum up more than 2π − ε

Definition

A topological set, X, quasi-inscribes rectangles in H, if
for every topological copy of X in H and every ε > 0,
X admits inscribed an ε-rectangle.

[21/24]
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Theorem (M, Díaz, Valdez)

The only trees that does not quasi-inscribes rectangles
in H are the Arc and the 3-Star.
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» Further questions and Ongoing work
∗ Do non-unicoherent plane continua inscribe rectangles

(squares)?
∗ A. Illanes presented a family of nonlocally connected

continua whose second symmetric product is embeddable in
R3 [4]; Can we say something about this family?, Do
Nonlocally connected continua inscribe rectangles
(squares)?

∗ Can Greene-Lobb’s result be generalized to more
complicated continua. For instance: Does every “Smooth”
embedding of the Warsaw circle in R2 inscribe a rectangle
of any ratio?

∗ Does every Jordan Curve inscribe a square (a rectangle of
any ratio)?

∗ Does Jordan curves in H admit ε-rectangles inscribed for
every ε > 0.
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