Isbell-Mrówka spaces 0000 seudocompact MAD families

New results

References

Pseudocompact MAD families under weaker assumptions

Vinicius de Oliveira Rodrigues

University of São Paulo

SUMTOPO 2024 - Coimbra São Paulo Research Foundation (FAPESP) 2023/17856-7

Isbell-Mrówka spaces 0000 Pseudocompact MAD families 0000000

New results 00000000

References

Ginsburg's question

The Vietoris Hyperspace

- Let X be a T_1 topological space.
- Notation: $\exp(X) = \{C \subseteq X : C \neq \emptyset \text{ is closed}\}\$
- Notation: given $U \subseteq X$:

$$U^+ = \{ C \in \exp(X) : C \subseteq U \}.$$

- $\blacktriangleright \ U^- = \{ C \in \exp(X) : C \cap U \neq \emptyset \}.$
- The Vietoris topology of $\exp(X)$ is the topology generated by the sets above, with U open.
- The Vietoris hyperspace of X is $\exp(X)$ endowed with the Vietoris topology. (Vietoris, 1922)

Isbell-Mrówka spaces 0000

Pseudocompact MAD families

New results 00000000 References

The Vietoris Hyperspace

Figure 1: An illustration of $C \in U^+ \cap V_0^- \cap V_1^-$.

New results

References

The Vietoris Hyperspace - Basic facts

Let X be T_1 . Then...

- $\ldots \exp(X)$ is T_1 .
- $\dots \exp(X)$ is Hausdorff $\Leftrightarrow X$ is regular.
- $\dots \exp(X)$ is Tychonoff $\Leftrightarrow \exp(X)$ is regular $\Leftrightarrow X$ is normal.
- $\dots \exp(X)$ is compact $\Leftrightarrow X$ is compact. (Vietoris, 1922)

Isbell-Mrówka spaces 0000 Pseudocompact MAD families

New results

References

The Vietoris Hyperspace - Countably compactness

Let X be T_1 . Then... (Ginsburg, 1975)

- $\dots \exp(X)$ is *p*-compact $\Leftrightarrow X$ is *p*-compact (for $p \in \omega^*$).
- $\dots \exp(X)$ is countably compact $\Rightarrow \forall n \in \omega X^n$ is countably compact.

Corollary

If $\forall \kappa X^{\kappa}$ is countably compact, then $\exp(X)$ is countably compact.

Proof.

 $\forall \kappa X^{\kappa}$ is countably compact $\Rightarrow \exists p \in \omega^* X$ is *p*-compact

 $\Rightarrow \exists p \in \omega^* \exp(X) \text{ is } p\text{-compact} \Rightarrow \exp(X) \text{ is countably compact.}$

Isbell-Mrówka spaces 0000

The Vietoris Hyperspace - Pseudocompactness

- A topological space is pseudocompact if $C(X, \mathbb{R}) = C^*(X, \mathbb{R})$.
- A topological space is feebly compact if every sequence of nonempty open sets has a limit point.
- A topological space is *p*-pseudocompact if every sequence of nonempty open sets has a *p*-limit point.

Proposition (Ginsburg (1975))

If X is Tychonoff, $\exp(X)$ is pseudocompact $\Leftrightarrow \exp(X)$ is feebly compact.

The Vietoris Hyperspace - Pseudocompactness

Let X be Tychonoff. Then...

- $\dots \exp(X)$ is *p*-pseudocompact $\Leftrightarrow X$ is *p*-pseudocompact (for $p \in \omega^*$).
- $\dots \exp(X)$ is pseudocompact $\Rightarrow \forall n \in \omega X^n$ is pseudocompact.

Problem (Ginsburg (1975))

It is natural to ask whether there is any relation between the pseudocompactness (countable compactness) of X^{ω} and that of $\exp(X)$. It would also be interesting to characterize those spaces X whose hyperspaces are countably compact (pseudocompact).

Isbell-Mrówka spaces 0000 Pseudocompact MAD families

New results

References

The Vietoris Hyperspace - Ginsburg's questions

Recall that...

Corollary (Ginsburg (1975))

If X is Hausdorff and $\forall \kappa X^{\kappa}$ is countably compact, then $\exp(X)$ is countably compact.

However...

Proposition (Hrušák, Hernández-Hernández, & Martínez-Ruiz (2007))

There exists X such that $\omega \subseteq X \subseteq \beta \omega$, X^{ω} is pseudocompact and $\exp(X)$ is not pseudocompact.

Proposition (Ortiz-Castillo, Rodrigues, & Tomita (2018))

There exists X such that $\omega \subseteq X \subseteq \beta \omega$, $\forall \kappa < \mathfrak{h} X^{\kappa}$ is pseudocompact and $\exp(X)$ is not pseudocompact.

Isbell-Mrówka spaces \bullet 000

Pseudocompact MAD families 0000000

New results 00000000

References

Isbell-Mrówka spaces

Isbell-Mrówka spaces 0000

Pseudocompact MAD families

New results

References

Almost Disjoint Families

- Notation: N is some fixed infinite countable set.
- An almost disjoint family on N is an $\mathcal{A} \subseteq [N]^{\omega}$ such that:
 - \blacktriangleright *A* is infinite.
 - If $a, b \in \mathcal{A}$ are distinct, $a \cap b$ is finite.
- A MAD family is a maximal almost disjoint family.
- $\bullet~\mathfrak{a}$ is the least size of a MAD family.

• $\mathfrak{b} \leq \mathfrak{a} \leq \mathfrak{c}$.

Isbell-Mrówka spaces

- Let \mathcal{A} be an almost disjoint family over N.
- We define $\Psi(\mathcal{A}) = N \cup \mathcal{A}$.
- N is open and discrete.
- A basic neighborhood of $a \in A$ consists of the sets $\{a\} \cup \{a \setminus F : F \in [N]^{<\omega}\}$.
- Basic properties: $\Psi(\mathcal{A})$ is Tychonoff, locally compact, zero-dimensional, separable and Moore.

Isbell-Mrówka spaces $_{000 \bullet}$

Pseudocompact MAD families

New results 00000000 References

Isbell-Mrówka spaces

• e.g. \mathcal{A} is maximal $\Leftrightarrow \Psi(\mathcal{A})$ is pseudocompact $\Leftrightarrow \Psi(\mathcal{A})^{\omega}$ is pseudocompact.

Isbell-Mrówka spaces 0000

Pseudocompact MAD families •000000 New results 00000000

References

Pseudocompact MAD families

 $\begin{array}{c} {\rm Ginsburg's\ question}\\ {\rm 00000000} \end{array} \end{array} \\$

Isbell-Mrówka spaces 0000 Pseudocompact MAD families $0 \bullet 00000$

New results 00000000

References

Isbell-Mrówka spaces and Ginsburg's question

• We say that a MAD family \mathcal{A} is pseudocompact if $\exp(\Psi(\mathcal{A}))$ is pseudocompact.

Isbell-Mrówka spaces 0000 Pseudocompact MAD families 0000000

New results

References

Is every MAD family pseudocompact?

• According to Hrušák, their ZFC example was inspired by the following:

Proposition (Hrušák, Hernández-Hernández, & Martínez-Ruiz (2007))

If $\mathfrak{p} = \mathfrak{c}$, every MAD family is pseudocompact.

Proposition (Hrušák, Hernández-Hernández, & Martínez-Ruiz (2007))

If $\mathfrak{h} < \mathfrak{c}$, there is a MAD family that is not pseudocompact.

Isbell-Mrówka space: 0000 Pseudocompact MAD families

New results

References

Is every MAD family pseudocompact?

Later, we improved those results as follows:

Proposition (Guzmán, Hrušák, Rodrigues, Todorčević, & Tomita (2022))

Every MAD family is pseudocompact $\Leftrightarrow n(\omega^*) > \mathfrak{c} \iff p$ -pseudocompact for some $p \in \omega^*$, (Corral & Rodrigues, 2024b)).

*Recall that n(X) is the least cardinality of a collection of open dense sets of X with empty intersection.

Problem (Hrušák, Hernández-Hernández, & Martínez-Ruiz (2007))

Is there a pseudocompact MAD family?

Isbell-Mrówka space 0000

• Fin-sequences: A fin sequence (on N) is a sequence $s : \omega \to [N]^{<\omega} \setminus \{\emptyset\}$ of pairwise disjoint sets.

Proposition (Rodrigues & Tomita (2019))

An almost disjoint family is pseudocompact if and only if every fin sequence has an accumulation point in $\exp(\Psi(\mathcal{A}))$.

- How does such an accumulation point look like?
- Such accumulation point is neccessarely a subset of \mathcal{A} .
- Notation: if $a, X \in [N]^{\omega}, s : \omega \to [\omega]^{<\omega}$, we define $\pi_s(a) = \{n \in \omega : a \cap s(n) \neq \emptyset\}$ and $E_s(X) = \{n \in \omega : s(n) \subseteq X\}$. If $\mathcal{B} \subseteq [N]^{\omega},$ $\pi_s(\mathcal{B}) = \{\pi_s(a) : a \in \mathcal{B}\}.$
- A nonempty $\mathcal{B} \subseteq \mathcal{A}$ is an accumulation point for s if and only if for every $X \subseteq N$ with $\forall a \in \mathcal{B} a \subseteq^* X$, the set $\pi_s(\mathcal{B}) \cup \{E_s(X)\}$ is centered.

Fin-intersecting MAD families

• A nonempty $\mathcal{B} \subseteq \mathcal{A}$ is an accumulation point for s if and only if for every $X \subseteq N$ with $\forall a \in \mathcal{B} a \subseteq^* X$, the set $\pi_s(\mathcal{B}) \cup \{E_s(X)\}$ is centered.

Definition (Corral & Rodrigues (2024a))

An almost disjoint family \mathcal{A} is said to be fin-intersecting iff for every fin sequence s, there exists $I \in [\omega]^{\omega}$ such that $\{\{n \in I : s(n) \cap a \neq \emptyset\} : a \in \mathcal{A}\} \setminus [\omega]^{<\omega}$ is centered.

- Every fin-intersecting MAD family is pseudocompact.
- In that case, $\{a \in \mathcal{A} : |\{n \in I : s(n) \cap A \neq \emptyset\}| = \omega\}$ is an accumulation point for s.
- Fin-intersectingness does not imply madness (e.g. it is hereditary).
- There are non fin-intersecting MAD families in ZFC.
- Every almost disjoint family of size $<\mathfrak{s}$ is fin-intersecting.

Fin-intersecting MAD families

Table of known existence of these objects:

Assumption	Best known result	Reference
$\mathfrak{p}=\mathfrak{c}$	Fin-intersecting MAD	Corral & Rodrigues (2024a)
$n(\omega^*) > \mathfrak{c}$	Pseudocompact	Guzmán et al. (2022)
$\exists \mathcal{U} \in \omega^* \mathfrak{p}(\mathcal{U}) = \mathfrak{c}$	Pseudocompact	Guzmán et al. (2022)
$\exists \mathcal{U} \in \omega^* \mathfrak{p}(\mathcal{U}) > \mathfrak{a}$	Pseudocompact	Guzmán et al. (2022)
$\mathfrak{a} < \mathfrak{s}$	Fin-intersecting MAD	Corral & Rodrigues (2024a)
$\mathfrak{ap}=\mathfrak{s}=\mathfrak{c}$	Fin-intersecting MAD	Corral & Rodrigues (2024a)
Cohen model	Fin-intersecting MAD	Corral & Rodrigues (2024a)
Random model	Fin-intersecting MAD	Corral & Rodrigues (2024a)
$\diamondsuit(\mathfrak{b})$	Pseudocompact	Corral & Rodrigues (2024b)
$\mathfrak{ap}=\mathfrak{c}$	Pseudocompact	Corral & Rodrigues (2024b)

Isbell-Mrówka spaces 0000 Pseudocompact MAD families

New results •0000000 References

New results

Construction under $\mathfrak{ap} = \mathfrak{c}$

- $\bullet\,$ Let ${\mathcal A}$ be an almost disjoint family.
- $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are weakly separated by $X \subseteq N$ iff for every $b \in \mathcal{B}, |X \cap b| = \omega$ and for every $c \in \mathcal{C}, |X \cap c| < \omega$.
- \mathfrak{ap} is the least size of an almost disjoint family which contains a pair of disjoint subsets which cannot be weakly separated.
- $\mathfrak{p} \leq \mathfrak{a}\mathfrak{p} \leq \mathfrak{b}$.
- $\mathfrak{ap} < \mathfrak{s}$ and $\mathfrak{ap} > \mathfrak{s}$ are both consistent.

Ginsburg's	question
00000000	

Isbell-Mrówka spaces 0000 seudocompact MAD families

New results

References

Theorem $(\mathfrak{ap} = \mathfrak{c})$

There exists a pseudocompact MAD family.

- A nonempty $\mathcal{B} \subseteq \mathcal{A}$ is an accumulation point for a fin-sequence C if and only if for every $X \subseteq N$ with $\forall a \in \mathcal{B} a \subseteq^* X$, the set $\pi_C(\mathcal{B}) \cup \{E_s(X)\}$ is centered.
- Let \mathcal{F} be the set of all fin-sequences. Enumerate $[N]^{\omega} \times \mathcal{F} = \{(X_{\alpha}, C_{\alpha}) : \alpha < \mathfrak{c}\}$ with each pair appearing \mathfrak{c} times.
- Recursively, define $a_{\alpha}, \mathcal{B}^{C}_{\alpha}$ $(C \in \mathcal{F}, \alpha < \mathfrak{c})$.
- \mathcal{B}^{C}_{α} is a partial accumulation point for C. If at step α , X_{α} almost contains every element of $\mathcal{B}^{C_{\alpha}}_{\alpha}$ and witnessess that $\mathcal{B}^{C_{\alpha}}_{\alpha}$ is not an accumulation point for C_{α} , we add a_{α} to it, with $|a_{\alpha} \setminus X_{\alpha}| = \omega$.
- We add this new element to every \mathcal{B}^{C}_{α} as long as we do not break the required centeredness of $\pi_{C}(\mathcal{B}^{C}_{\alpha})$.

Isbell-Mrówka space 0000 Pseudocompact MAD families

New results

References

- Recursively, define $a_{\alpha}, \mathcal{B}^{C}_{\alpha}, I^{C}_{\alpha}$ $(C \in \mathcal{F}, \alpha < \mathfrak{c})$ satisfying:
 - $a_{\beta} \cap a_{\alpha} =^{*} \emptyset \text{ for } \beta < \alpha,$ $I_C^{\alpha} = \{ \beta < \alpha : a_{\beta} \in \mathcal{B}_C^{\alpha} \},$ **(b)** $\mathcal{B}_C^{\beta} \subset \mathcal{B}_C^{\alpha}$ for every $\beta < \alpha$, **(a)** $\mathcal{B}_{C}^{\alpha} = \bigcup_{\beta < \alpha} \mathcal{B}_{C}^{\beta}$ if α is limit, $\{\pi_C(a_\beta): \beta \in I_C^\alpha\}$ is centered. **2** If $\{\pi_C(a_\beta) : \beta \in I_C^{\alpha}\} \cup \{\pi_C(a_\alpha)\}$ is centered then $a_\alpha \in \mathcal{B}_C^{\alpha+1}$, otherwise $\mathcal{B}_{C}^{\alpha+1} = \mathcal{B}_{C}^{\alpha}$ \square If $\alpha > \omega$ and: • for every $a \in \mathcal{B}_{C_{-}}^{\alpha}$ we have $a \subseteq^* X_{\alpha}$, • $\{\pi_{C_{\alpha}}(a_{\beta}): \beta \in I_{C_{\alpha}}^{\alpha}\} \cup \{E_{C_{\alpha}}(X_{\alpha})\}$ is not centered, and • For every $k \ge 0$ and $\beta_0, \ldots, \beta_{k-1}, \bigcup_{n \in J} C_{\alpha}(n) \setminus X_{\alpha} \in \mathcal{I}^+(\{a_{\beta} : \beta < \alpha\})$, where $J = \bigcap_{i \leq h} \pi_{C_{\alpha}}(a_{\beta_i}).$

Then $\{\pi_{C_{\alpha}}(a_{\beta}): \beta \in I_{C_{\alpha}}^{\alpha}\} \cup \{\pi_{C_{\alpha}}(a_{\alpha})\}$ is centered and $a_{\alpha} \not\subseteq^* X_{\alpha}$.

insburg's question	Isbell-Mrówka spaces 0000	Pseudocompact MAD families	New results 00000000	Reference

$0 If \alpha \geq \omega and:$

▶ for every $a \in \mathcal{B}_{C_{\alpha}}^{\alpha}$ we have $a \subseteq^{*} X_{\alpha}$, ▶ $\{\pi_{C_{\alpha}}(a_{\beta}) : \beta \in I_{C_{\alpha}}^{\alpha}\} \cup \{E_{C_{\alpha}}(X_{\alpha})\}$ is not centered, and ▶ For every $k \ge 0$ and $\beta_{0}, \ldots, \beta_{k-1}, \bigcup_{n \in J} C_{\alpha}(n) \setminus X_{\alpha} \in \mathcal{I}^{+}(\{a_{\beta} : \beta < \alpha\})$, where

$$= \bigcap_{i < k} \pi_{C_{\alpha}}(a_{\beta_i}).$$

Then $\{\pi_{C_{\alpha}}(a_{\beta}): \beta \in I^{\alpha}_{C_{\alpha}}\} \cup \{\pi_{C_{\alpha}}(a_{\alpha})\}$ is centered and $a_{\alpha} \not\subseteq^* X_{\alpha}$.

- For each such J, we define $a_F \subseteq \bigcup_{n \in J} C_{\alpha}(n) \setminus X_{\alpha}$ almost disjoint from \mathcal{A}_{α} $(\mathfrak{a} = \mathfrak{c}).$
- We use the refinement lemma to get an almost disjoint family $b_F \subseteq a_F$.
- Use \mathfrak{ap} to meet all b_F 's and avoid \mathcal{A}_{α} .

rg's question	Isbell-Mrówka spaces 0000	Pseudocompact MAD families

New results 00000000

References

- $\Diamond(\mathfrak{b})$ is the following statement:
- For every family $(F_{\alpha} : \alpha < \omega_1)$ of Borel functions $F_{\alpha} : 2^{\alpha} \to \omega^{\omega}$, there exists $g : \omega_1 \to \omega^{\omega}$ such that for every $t \in 2^{\omega}_1$, the following set is stationary:

 $\{\alpha < \omega_1 : F_\alpha(t|\alpha) \not\geq^* g(\alpha)\}.$

Theorem (Construction under $\diamondsuit(\mathfrak{b})$)

There exists a pseudocompact MAD family.

Isbell-Mrówka space

- Let $e_{\alpha}: \omega \to \alpha$ be a bijection for each infinite α .
- We will define Borel F_{α} 's from $T'_{\alpha} = ([\omega]^{\omega})^{\alpha} \times 2^{\alpha} \times ([\omega]^{<\omega})^{\omega} \times [\omega]^{\omega}$ into ω^{ω} .
- In this context, $\diamondsuit(\mathfrak{b})$ guarantees the existence of $g: \omega_1 \to \omega^{\omega}$ such that for every $((a_{\xi}: \xi < \omega_1), \sigma, C, X) \in ([\omega]^{\omega})^{\omega_1} \times 2^{\omega_1} \times ([\omega]^{<\omega})^{\omega} \times [\omega]^{\omega}$, the following set is stationary:

$$\{\alpha < \omega_1 : F((a_{\xi} : \xi < \alpha), \sigma | \xi, C, X) \not\geq^* g(\alpha)\}.$$

- Notation: if $\mathcal{A} = (a_{\xi} : \xi < \alpha) \in ([\omega]^{\omega})^{\alpha}$ and $\sigma \in 2^{\alpha}$, we define $\mathcal{A}^{\sigma} = \{a_{\xi} : \sigma(\xi) = 1\}.$
- The set T_{α} of all $t = (\mathcal{A}_{\alpha}, \sigma, C, X) \in T'_{\alpha}$ satisfying the following is Borel, thus we only need to define F_{α} on this set:
 - $\textcircled{0} \ \mathcal{A} \text{ is an indexed almost disjoint family,}$
 - $2 C: \omega \to [\omega]^{<\omega} \text{ is a fin-sequence},$

Isbell-Mrówka space

- T_{α} is the set of all $t = (\mathcal{A}_{\alpha}, \sigma, C, X) \in T'_{\alpha}$ satisfying:
 - **(**) \mathcal{A} is an indexed almost disjoint family,
 - $\ 2 \ C: \omega \to [\omega]^{<\omega} \ {\rm is \ a \ fin-sequence},$

 - $\ \, \bullet \ \, \pi_C(\mathcal{A}_\alpha) \ \, \text{is centered.}$

• Notation:

- If t is as above and $n \in \omega$, $G_n^t = \{a_{e_\alpha(k)} : k \le n, \sigma(e_\alpha(k)) = 1\}.$
- $I_n^t = \bigcap_{k \le n} \pi_C(G_n^t).$
- ▶ N(t) is the first natural such that $I_{N(t)}^t \cap E_C(X)$ is finite.
- $Y_k^t = \bigcup_{m \in I_k^t} C(m) \setminus X$, which is infinite for k.
- If for some $k, Y_k^t \in I(\mathcal{A}_{\alpha})$, let F(t) be constantly 0 (the definition does not matter).
- Otherwise, let $F(t)(k) = \min Y_k^t \setminus \bigcup_{i < k} a_{e_{\alpha}(i)}$.
- Let g be a $\Diamond(\mathfrak{b})$ -sequence for F.
- Recursively, let $(a_n : n \in \omega)$ be a partition, and $a_\alpha = \bigcup_{n \in \omega} g(\alpha) \setminus \bigcup_{i < n} a_{e_\alpha(i)}$. WLOG a_α is infinite.

References I

- Corral, C., & Rodrigues, V. O. (2024a). Fin-intersecting mad families. *Filomat*, 38(7), 2563–2578.
- Corral, C., & Rodrigues, V. O. (2024b). New examples of mad families with pseudocompact hyperspaces. *Topology and its Applications*, 342, 108773.
- Ginsburg, J. (1975). Some results on the countable compactness and pseudocompactness of hyperspaces. *Canadian Journal of Mathematics*, 27(6), 1392–1399.
- Guzmán, O., Hrušák, M., Rodrigues, V. O., Todorčević, S., & Tomita, A. H. (2022). Maximal almost disjoint families and pseudocompactness of hyperspaces. *Topology and its Applications*, 305, 107872.

References II

- Hrušák, M., Hernández-Hernández, F., & Martínez-Ruiz, I. (2007). Pseudocompactness of hyperspaces. *Topology and its Applications*, 154(17), 3048–3055.
- Ortiz-Castillo, Y. F., Rodrigues, V. O., & Tomita, A. H. (2018). Small cardinals and the pseudocompactness of hyperspaces of subspaces of $\beta\omega$. Topology and its Applications, 246, 9–21.
- Rodrigues, V. O., & Tomita, A. H. (2019). Small mad families whose isbell-mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, 247(1), 99.
- Vietoris, L. (1922). Bereiche zweiter ordnung. Monatshefte für Mathematik, 32(1), 258–280.