ALPHA-LIMIT SETS

Veronika Rýžová

Mathematical Institute Silesian University in Opava

Veronika Rýžová ALPHA-LIMIT SETS

э

Basic definitions Comparison of properties

Outline

Basic definitions

- Sets of limit points
- An example

2 Comparison of properties

Veronika Rýžová

ALPHA-LIMIT SETS

(日) (日) (日) (日)

∍⊳

Sets of limit points An example

Basic definitions

 A dynamical system: an ordered pair (X, f), X a compact metric space (interval, graph), f : X → X is a continuous map

Sets of limit points An example

Basic definitions

- A dynamical system: an ordered pair (X, f), X a compact metric space (interval, graph), f : X → X is a continuous map
- A semiconjugacy: a continuous onto mapping φ : X → Y, satisfying φ ∘ f = g ∘ φ, where (X, f) and (Y, g) are two dynamical systems

Sets of limit points An example

Basic definitions

- A dynamical system: an ordered pair (X, f), X a compact metric space (interval, graph), f : X → X is a continuous map
- A semiconjugacy: a continuous onto mapping φ : X → Y, satisfying φ ∘ f = g ∘ φ, where (X, f) and (Y, g) are two dynamical systems
- A preimage sequence of a point x: a sequence $\{x_n\}_{n=0}^{\infty}$ such that $f^n(x_n) = x$

イロト 不得 トイヨト イヨト

Sets of limit points An example

Basic definitions

- A dynamical system: an ordered pair (X, f), X a compact metric space (interval, graph), f : X → X is a continuous map
- A semiconjugacy: a continuous onto mapping φ : X → Y, satisfying φ ∘ f = g ∘ φ, where (X, f) and (Y, g) are two dynamical systems
- A preimage sequence of a point x: a sequence $\{x_n\}_{n=0}^{\infty}$ such that $f^n(x_n) = x$
- A backward orbit branch of a point x: a sequence {x_n}_{n=0}[∞] such that x₀ = x and f (x_n) = x_{n-1} (alternatively any sequence {x_i}_{i≤0} ⊂ X such that x₀ = x and f (x_i) = x_{i+1} for each i < 0)

Sets of limit points An example

Basic definitions

- A dynamical system: an ordered pair (X, f), X a compact metric space (interval, graph), f : X → X is a continuous map
- A semiconjugacy: a continuous onto mapping φ : X → Y, satisfying φ ∘ f = g ∘ φ, where (X, f) and (Y, g) are two dynamical systems
- A preimage sequence of a point x: a sequence $\{x_n\}_{n=0}^{\infty}$ such that $f^n(x_n) = x$
- A backward orbit branch of a point x: a sequence {x_n}_{n=0}[∞] such that x₀ = x and f (x_n) = x_{n-1} (alternatively any sequence {x_i}_{i≤0} ⊂ X such that x₀ = x and f (x_i) = x_{i+1} for each i < 0)
- B_f (x): a set consisting of all backward orbit branches of a point x

イロト 人口 ト イロト

Sets of limit points An example

Example - difference between sequences

$$f(x) = \begin{cases} 4x, & \text{for } x \in \begin{bmatrix} 0, \frac{1}{4} \\ -2x + \frac{3}{2}, & \text{for } x \in \begin{bmatrix} \frac{1}{4}, \frac{1}{2} \\ 2x - \frac{1}{2}, & \text{for } x \in \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \\ \frac{-8}{9}x + \frac{5}{3}, & \text{for } x \in \begin{bmatrix} \frac{3}{4}, \frac{21}{25} \\ \frac{1}{2}x + \frac{1}{2}, & \text{for } x \in \begin{bmatrix} \frac{21}{25}, 1 \end{bmatrix}. \end{cases}$$

• $x = 1$

Image: A matrix and a matrix

-

э

Sets of limit points An example

Example - difference between sequences

$$f(x) = \begin{cases} 4x, & \text{for } x \in \begin{bmatrix} 0, \frac{1}{4} \\ -2x + \frac{3}{2}, & \text{for } x \in \begin{bmatrix} \frac{1}{4}, \frac{1}{2} \\ 2x - \frac{1}{2}, & \text{for } x \in \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \\ -\frac{8}{9}x + \frac{5}{3}, & \text{for } x \in \begin{bmatrix} \frac{3}{4}, \frac{21}{25} \\ \frac{1}{2}x + \frac{1}{2}, & \text{for } x \in \begin{bmatrix} \frac{21}{25}, 1 \\ 25, 1 \end{bmatrix}. \end{cases}$$

• *x* = 1

• Trajectory of 1: {1, 1, ...}

< (□) ト < 三

Sets of limit points An example

Example - difference between sequences

Sets of limit points An example

Example - difference between sequences

• Preimage sequences: $\left\{ 1, \frac{3}{4}, \frac{1}{4}, \frac{9}{16}, \frac{15}{32}, \ldots \right\}, \\ \left\{ 1, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \ldots \right\}$

Sets of limit points An example

Example - difference between sequences

- Preimage sequences: $\begin{cases} 1, \frac{3}{4}, \frac{1}{4}, \frac{9}{16}, \frac{15}{32}, \dots \end{cases}, \\ \{1, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots \} \end{cases}$
- Backward orbit branches: $\{1, 1, 1, ...\}, \{1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, ...\}$

Image: A math a math

Sets of limit points An example

Sets of limit points

 An α-limit set of a point x: a set of all limit points of preimage sequences, denoted by α (x)

Sets of limit points An example

Sets of limit points

- An α-limit set of a point x: a set of all limit points of preimage sequences, denoted by α (x)
- A special α-limit set of a point x: a set consisting of all limit points of sequences from B_f (x), denoted by sα (x)

(日)

Sets of limit points An example

Sets of limit points

- An α-limit set of a point x: a set of all limit points of preimage sequences, denoted by α (x)
- A special α-limit set of a point x: a set consisting of all limit points of sequences from B_f (x), denoted by sα (x)
- A β-limit set of a point x [Hantáková and Roth, 2021]: the smallest closed set such that d (x_n, β (x)) → 0 as n → ∞ for every backward orbit branch {x_n}_{n=0}[∞] of the point x, denoted by β (x), clearly β (x) = sα(x)

< ロ > < 同 > < 三 > < 三 >

Sets of limit points An example

Sets of limit points

- An α-limit set of a point x: a set of all limit points of preimage sequences, denoted by α (x)
- A special α-limit set of a point x: a set consisting of all limit points of sequences from B_f (x), denoted by sα (x)
- A β-limit set of a point x [Hantáková and Roth, 2021]: the smallest closed set such that d (x_n, β (x)) → 0 as n → ∞ for every backward orbit branch {x_n}_{n=0}[∞] of the point x, denoted by β (x), clearly β (x) = sα(x)
- An α-limit set of a backward branch {x_j}_{j≤0}: consists of all points y for which there exists a strictly decreasing sequence of negative integers {j_i}_{i≥0} such that x_{j_i} → y as i → ∞, denoted by α_f ({x_j}_{j≤0})

Sets of limit points An example

Example - difference between limit sets

x = 1

• Trajectory of 1: {1, 1, ...}

Sets of limit points An example

Example - difference between limit sets

x = 1

- Trajectory of 1: $\{1, 1, \ldots\}$
- $\omega_f(1) = \{1\}$

Sets of limit points An example

Example - difference between limit sets

$$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\$$

• Preimage sequences: $\left\{ 1, \frac{3}{4}, \frac{1}{4}, \frac{9}{16}, \frac{15}{32}, \ldots \right\}, \\ \left\{ 1, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \ldots \right\}$

< ロ > < 同 > < 三 > < 三 >

Sets of limit points An example

Example - difference between limit sets

$$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$$

• Preimage sequences:

$$\begin{cases}
1, \frac{3}{4}, \frac{1}{4}, \frac{9}{16}, \frac{15}{32}, \dots \\
1, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots \end{cases}$$
• $\alpha(1) = \{1, \frac{1}{4}, \frac{3}{4}, \frac{1}{16}, \dots$

Veronika Rýžová

Sets of limit points An example

Example - difference between limit sets

$$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$$

• Preimage sequences:

$$\begin{cases} 1, \frac{3}{4}, \frac{1}{4}, \frac{9}{16}, \frac{15}{32}, \dots \\ 1, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots \end{cases}$$

•
$$\alpha(1) = \left\{1, \frac{1}{4}, \frac{3}{4}, \frac{1}{16}, \ldots\right\}$$

• Backward orbit branches: $\{1, 1, 1, ...\}, \{1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, ...\}$

Sets of limit points An example

Example - difference between limit sets

$$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

• Preimage sequences: $\left\{ 1, \frac{3}{4}, \frac{1}{4}, \frac{9}{16}, \frac{15}{32}, \dots \right\}, \\ \left\{ 1, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots \right\}$

•
$$\alpha(1) = \left\{1, \frac{1}{4}, \frac{3}{4}, \frac{1}{16}, \ldots\right\}$$

• Backward orbit branches: $\{1, 1, 1, ...\}, \{1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, ...\}$

•
$$s\alpha(1) = \{0, 1, \frac{1}{2}\} = \beta(1)$$

< ロ > < 同 > < 三 > < 三 >

Comparison of properties of limit sets

- emptiness, invariance
 - $\omega(x)$ non-empty, strongly invariant
 - α(x) same (under conditions)

- 4 同 6 4 日 6 4 日 6

Comparison of properties of limit sets

- emptiness, invariance
 - $\omega(x)$ non-empty, strongly invariant
 - $\alpha(x)$ same (under conditions)
- isolated points
 - $\omega(x)$ single periodic orbit
 - α (x) always periodic

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Comparison of properties of limit sets

- emptiness, invariance
 - $\omega(x)$ non-empty, strongly invariant
 - $\alpha(x)$ same (under conditions)
- isolated points
 - $\omega(x)$ single periodic orbit
 - α (x) always periodic
- closeness
 - ω(x) always
 - α(x) always
 - $s\alpha(x)$ can be open

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Comparison of properties of limit sets

 maximal set (sα(x) not contained)[Hantáková and Roth, 2021]

ALPHA-LIMIT SETS

日本・モン・

Generalisation of Sharkovsky's results for continuous maps on graphs [Hric and Málek, 2006, Blokh, 1990]:

• Periodic orbit: $\tilde{\omega}$ is a finite set

- 4 目 ト - 日 ト - 4

Generalisation of Sharkovsky's results for continuous maps on graphs [Hric and Málek, 2006, Blokh, 1990]:

- Periodic orbit: $\tilde{\omega}$ is a finite set
- $P_{\tilde{\omega}} = \bigcap_{U} \overline{Orb_f(U)}$, where U is taken over all open subgraphs intersecting $\tilde{\omega}$

<**日本**

Generalisation of Sharkovsky's results for continuous maps on graphs [Hric and Málek, 2006, Blokh, 1990]:

- Periodic orbit: $\tilde{\omega}$ is a finite set
- $P_{\tilde{\omega}} = \bigcap_{U} \overline{Orb_f(U)}$, where U is taken over all open subgraphs intersecting $\tilde{\omega}$
 - Solenoidal set: $P_{\tilde{\omega}}$ is nowhere dense set

・ 同 ト ・ ヨ ト ・ ヨ ト

Generalisation of Sharkovsky's results for continuous maps on graphs [Hric and Málek, 2006, Blokh, 1990]:

- Periodic orbit: $\tilde{\omega}$ is a finite set
- $P_{\tilde{\omega}} = \bigcap_{U} \overline{Orb_f(U)}$, where U is taken over all open subgraphs intersecting $\tilde{\omega}$
 - Solenoidal set: $P_{\tilde{\omega}}$ is nowhere dense set
 - Basic set: if P_ω consists of finitely many connected components and ω contains a periodic point

- 4 同 ト 4 ヨ ト 4 ヨ ト

Generalisation of Sharkovsky's results for continuous maps on graphs [Hric and Málek, 2006, Blokh, 1990]:

- Periodic orbit: $\tilde{\omega}$ is a finite set
- $P_{\tilde{\omega}} = \bigcap_{U} \overline{Orb_f(U)}$, where U is taken over all open subgraphs intersecting $\tilde{\omega}$
 - Solenoidal set: $P_{\tilde{\omega}}$ is nowhere dense set
 - Basic set: if P_ω consists of finitely many connected components and ω contains a periodic point
 - Singular set: if $P_{\tilde{\omega}}$ consists of finitely many connected components and $\tilde{\omega}$ does not contain a periodic point

- 4 同 1 4 三 1 4 三 1

Important properties

• Basic set:

Veronika Rýžová

ALPHA-LIMIT SETS

э

- Basic set:
 - Lemma (strong transitivity) [Hric and Málek, 2006]: Let ω̃ be an indecomposable basic set for f ∈ C (G), U a subgraph such that U ⊂ intP_{ω̃}, and J an open subgraph with J ∩ ω̃ ≠ Ø. Then U ⊂ fⁿ(J) for sufficiently large n.

◆□ → ◆問 → ◆臣 → ◆臣 →

- Basic set:
 - Lemma (strong transitivity) [Hric and Málek, 2006]: Let ω̃ be an indecomposable basic set for f ∈ C (G), U a subgraph such that U ⊂ intP_{ω̃}, and J an open subgraph with J ∩ ω̃ ≠ Ø. Then U ⊂ fⁿ(J) for sufficiently large n.
- Solenoid:

- Basic set:
 - Lemma (strong transitivity) [Hric and Málek, 2006]: Let ω̃ be an indecomposable basic set for f ∈ C (G), U a subgraph such that U ⊂ intP_{ω̃}, and J an open subgraph with J ∩ ω̃ ≠ Ø. Then U ⊂ fⁿ(J) for sufficiently large n.
- Solenoid:
 - ω̃ = P ∪ Q [Blokh, 1995, Bruckner and Smítal, 1993], P set of isolated points, Q perfect set

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Basic set:
 - Lemma (strong transitivity) [Hric and Málek, 2006]: Let ω̃ be an indecomposable basic set for f ∈ C (G), U a subgraph such that U ⊂ intP_{ω̃}, and J an open subgraph with J ∩ ω̃ ≠ Ø. Then U ⊂ fⁿ(J) for sufficiently large n.
- Solenoid:
 - ω̃ = P ∪ Q [Blokh, 1995, Bruckner and Smítal, 1993], P set of isolated points, Q perfect set
- Singular set:

- 4 同 ト 4 ヨ ト

- Basic set:
 - Lemma (strong transitivity) [Hric and Málek, 2006]: Let ω̃ be an indecomposable basic set for f ∈ C (G), U a subgraph such that U ⊂ intP_{ω̃}, and J an open subgraph with J ∩ ω̃ ≠ Ø. Then U ⊂ fⁿ(J) for sufficiently large n.
- Solenoid:
 - ω̃ = P ∪ Q [Blokh, 1995, Bruckner and Smítal, 1993], P set of isolated points, Q perfect set
- Singular set:
 - Semiconjugacy with unit circle and irrational rotation

• $x \in \overline{Rec(f)}$

- $x \in \overline{Rec(f)}$
- $x \in \beta(x)$

・ロト ・四ト ・ヨト ・ヨト

- $x \in \overline{Rec(f)}$
- $x \in \beta(x)$
- There exists $y \in G$ such that $x \in \beta(y)$.

Sketch of proof

• $x \in \beta(x) \Rightarrow$ there exists $y \in G$ such that $x \in \beta(y)$:

Obvious (choose y = x)

ヘロト ヘロト ヘビト ヘビト

Sketch of proof

- $x \in \beta(x) \Rightarrow$ there exists $y \in G$ such that $x \in \beta(y)$:
 - Obvious (choose y = x)
- $x \in \overline{Rec(f)} \Rightarrow x \in \beta(x)$:
 - Construct a backward orbit branch with x as its limit point

Sketch of proof

- $x \in \beta(x) \Rightarrow$ there exists $y \in G$ such that $x \in \beta(y)$:
 - Obvious (choose y = x)
- $x \in \overline{Rec(f)} \Rightarrow x \in \beta(x)$:
 - Construct a backward orbit branch with x as its limit point

•
$$\overline{Rec(f)} \subset \bigcup_{y \in X} \omega_f(y)$$
 [Blokh, 1995] $\Rightarrow x \in \tilde{\omega}$

Sketch of proof

- $x \in \beta(x) \Rightarrow$ there exists $y \in G$ such that $x \in \beta(y)$:
 - Obvious (choose y = x)

•
$$x \in \overline{Rec(f)} \Rightarrow x \in \beta(x)$$
:

Construct a backward orbit branch with x as its limit point

•
$$\overline{Rec(f)} \subset \bigcup_{y \in X} \omega_f(y) [Blokh, 1995] \Rightarrow x \in \tilde{\omega}$$

• $\tilde{\omega}$ is a periodic orbit

Veronika Rýžová ALPHA-LIMIT SETS

Sketch of proof

- $x \in \beta(x) \Rightarrow$ there exists $y \in G$ such that $x \in \beta(y)$:
 - Obvious (choose y = x)

•
$$x \in \overline{Rec(f)} \Rightarrow x \in \beta(x)$$
:

Construct a backward orbit branch with x as its limit point

•
$$\overline{Rec(f)} \subset \bigcup_{y \in X} \omega_f(y)$$
 [Blokh, 1995] $\Rightarrow x \in \tilde{\omega}$

- $\bullet~\tilde{\omega}$ is a periodic orbit
- $\tilde{\omega}$ is a basic set (strong transitivity)

・ロト ・四ト ・ヨト ・ヨト

Sketch of proof

- $x \in \beta(x) \Rightarrow$ there exists $y \in G$ such that $x \in \beta(y)$:
 - Obvious (choose y = x)

•
$$x \in \overline{Rec(f)} \Rightarrow x \in \beta(x)$$
:

Construct a backward orbit branch with x as its limit point

•
$$\overline{Rec(f)} \subset \bigcup_{y \in X} \omega_f(y)$$
 [Blokh, 1995] $\Rightarrow x \in \tilde{\omega}$

- $\tilde{\omega}$ is a periodic orbit
- $\tilde{\omega}$ is a basic set (strong transitivity)
- $\tilde{\omega}$ is a solenoid (minimal system)

Sketch of proof

- $x \in \beta(x) \Rightarrow$ there exists $y \in G$ such that $x \in \beta(y)$:
 - Obvious (choose y = x)

•
$$x \in \overline{Rec(f)} \Rightarrow x \in \beta(x)$$
:

Construct a backward orbit branch with x as its limit point

•
$$\overline{Rec(f)} \subset \bigcup_{y \in X} \omega_f(y) [Blokh, 1995] \Rightarrow x \in \tilde{\omega}$$

- $\tilde{\omega}$ is a periodic orbit
- $\tilde{\omega}$ is a basic set (strong transitivity)
- $\tilde{\omega}$ is a solenoid (minimal system)
- $\tilde{\omega}$ is a singular set (minimal system)

・ 同 ト ・ ヨ ト ・ ヨ ト

Sketch of proof

• There exists $y \in G$ such that $x \in \beta(y) \Rightarrow x \in Rec(f)$:

Veronika Rýžová ALPHA-LIMIT SETS

Sketch of proof

• There exists $y \in G$ such that $x \in \beta(y) \Rightarrow x \in Rec(f)$:

•
$$\bigcup_{y \in G} \beta(y) = \bigcup_{y \in G} \overline{s\alpha(y)}$$

Veronika Rýžová ALPHA-LIMIT SETS

Sketch of proof

• There exists $y \in G$ such that $x \in \beta(y) \Rightarrow x \in Rec(f)$:

•
$$\bigcup_{y \in G} \beta(y) = \bigcup_{y \in G} \overline{s\alpha(y)}$$

• $\bigcup_{y \in G} s\alpha(y) \subset \overline{Rec(f)}$ Sun et al. [2011]

Sketch of proof

• There exists $y \in G$ such that $x \in \beta(y) \Rightarrow x \in Rec(f)$:

•
$$\bigcup_{y \in G} \beta(y) = \bigcup_{y \in G} \overline{s\alpha(y)}$$

- $\bigcup_{y \in G} s\alpha(y) \subset \overline{Rec(f)}$ Sun et al. [2011]
- The union of closures is a subset of closure of unions

Thank you for your attention

Veronika Rýžová ALPHA-LIMIT SETS

・ロト ・四ト ・ヨト ・ヨト

э

- A M Blokh. Dynamical systems on one-dimensional branched manifolds. i. *Journal of Soviet Mathematics*, 48:500–508, 1990.
- A M Blokh. The "spectral" decomposition for one-dimensional maps. In *Dynamics Reported*, pages 1–59. Springer Berlin Heidelberg, 1995. doi: 10.1007/978-3-642-61215-2_1. URL https://doi.org/10.10072F978-3-642-61215-2_1.
- A M Bruckner and J Smítal. A characterization of ω-limit sets of maps of the interval with zero topological entropy. *Ergodic Theory and Dynamical Systems*, 13(1):7–19, 1993.
- J Hantáková and S Roth. On backward attractors of interval maps. Nonlinearity, 34(11):7415–7445, sep 2021. doi: 10.1088/1361-6544/ac23b6. URL

https://doi.org/10.1088/1361-6544/ac23b6.

- R Hric and M Málek. Omega limit set and distributional chaos on graphs. *Topology and its Applications*, 153:2469–2475, 2006.
- TaiXiang Sun, HongJian Xi, and Hailan Liang. Special α -limit points and unilateral γ -limit points for graph maps. Science

China Mathematics, 54:2013–2018, 09 2011. doi: 10.1007/s11425-011-4254-1.

Veronika Rýžová ALPHA-LIMIT SETS

э