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An example

Basic definitions

• A dynamical system: an ordered pair (X , f ), X a compact
metric space (interval, graph), f ∶ X → X is a continuous map

• A semiconjugacy: a continuous onto mapping φ ∶ X → Y ,
satisfying φ ◦ f = g ◦ φ, where (X , f ) and (Y , g) are two
dynamical systems

• A preimage sequence of a point x : a sequence {xn}∞n=0 such
that f

n (xn) = x

• A backward orbit branch of a point x : a sequence {xn}∞n=0

such that x0 = x and f (xn) = xn−1 (alternatively any sequence
{xi}i≤0 ⊂ X such that x0 = x and f (xi) = xi+1 for each i < 0)

• Bf (x): a set consisting of all backward orbit branches of a
point x
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Example - difference between sequences

1
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f (x) =
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4x , for x ∈ [0, 1
4
)

−2x + 3
2
, for x ∈ [1

4
, 1

2
)

2x − 1
2
, for x ∈ [1

2
, 3

4
)

−8
9
x + 5

3
, for x ∈ [3

4
, 21

25
)

1
2
x + 1

2
, for x ∈ [21

25
, 1] .

• x = 1

• Trajectory of 1: {1, 1, . . .}
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Sets of limit points

• An α-limit set of a point x : a set of all limit points of
preimage sequences, denoted by α (x)

• A special α-limit set of a point x : a set consisting of all limit
points of sequences from Bf (x), denoted by sα (x)

• A β-limit set of a point x [Hantáková and Roth, 2021]: the
smallest closed set such that d (xn, β (x)) → 0 as n →∞ for
every backward orbit branch {xn}∞n=0 of the point x , denoted

by β (x), clearly β (x) = sα (x)
• An α-limit set of a backward branch {xj}j≤0: consists of all

points y for which there exists a strictly decreasing sequence
of negative integers {ji}i≥0 such that xji → y as i →∞,

denoted by αf ({xj}j≤0)
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• Trajectory of 1: {1, 1, . . .}

• ωf (1) = {1}
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Comparison of properties of limit sets

• emptiness, invariance

⬩ ω (x) - non-empty, strongly invariant
⬩ α (x) - same (under conditions)

• isolated points

⬩ ω (x) - single periodic orbit
⬩ α (x) - always periodic

• closeness

⬩ ω (x) - always
⬩ α (x) - always
⬩ sα (x) - can be open
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Comparison of properties of limit sets

• maximal set (sα (x) not contained)[Hantáková and Roth,
2021]
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Types of ω̃ for continuous graph map

Generalisation of Sharkovsky’s results for continuous maps on
graphs [Hric and Málek, 2006, Blokh, 1990]:

• Periodic orbit: ω̃ is a finite set

• Pω̃ = ⋂
U

Orbf (U), where U is taken over all open subgraphs

intersecting ω̃

•

⬩ Solenoidal set: Pω̃ is nowhere dense set

•

⬩ Basic set: if Pω̃ consists of finitely many connected
components and ω̃ contains a periodic point

•

⬩ Singular set: if Pω̃ consists of finitely many connected
components and ω̃ does not contain a periodic point
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Important properties

• Basic set:

⬩ Lemma (strong transitivity) [Hric and Málek, 2006]: Let ω̃
be an indecomposable basic set for f ∈ C (G), U a subgraph
such that U ⊂ intPω̃, and J an open subgraph with J ∩ ω̃ /= ∅.
Then U ⊂ f

n (J) for sufficiently large n.

• Solenoid:

• ⬩ ω̃ = P ∪ Q [Blokh, 1995, Bruckner and Sḿıtal, 1993], P set of
isolated points, Q perfect set

• Singular set:

• ⬩ Semiconjugacy with unit circle and irrational rotation
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Conjecture [Hantáková and Roth, 2021]: Let f ∶ G → G be a
graph map, and let x ∈ G . The following are equivalent:

•
• x ∈ Rec (f )

•

• x ∈ β (x)

•

• There exists y ∈ G such that x ∈ β (y) .

Veronika Rýžová ALPHA-LIMIT SETS



Basic definitions
Comparison of properties

References
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•
• x ∈ β (x)
•
• There exists y ∈ G such that x ∈ β (y) .
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Sketch of proof

• x ∈ β (x) ⇒ there exists y ∈ G such that x ∈ β (y):

• cbjcbwjc
⬩ Obvious (choose y = x)

• x ∈ Rec (f ) ⇒ x ∈ β (x):

•

⬩ Construct a backward orbit branch with x as its limit point

•

⬩ Rec (f ) ⊂ ⋃
y∈X

ωf (y) [Blokh, 1995] ⇒ x ∈ ω̃

ω̃ is a periodic orbit
ω̃ is a basic set (strong transitivity)
ω̃ is a solenoid (minimal system)
ω̃ is a singular set (minimal system)
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Sketch of proof

• There exists y ∈ G such that x ∈ β (y) ⇒ x ∈ Rec (f ):

•

⬩ ⋃
y∈G

β (y) = ⋃
y∈G

sα (y)

•

⬩ ⋃
y∈G

sα (y) ⊂ Rec (f ) Sun et al. [2011]

•

⬩ The union of closures is a subset of closure of unions
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Thank you for your attention
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