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βω and ω∗

The Stone-Čech compactification of ω, denoted βω, is the largest
compactification of ω. It is (or at least it can be viewed as) the
space of all ultrafilters on ω.

Equivalently, it is the Stone space of
the Boolean algebra P(ω).
The space of all non-principal ultrafilters on ω, known as the
Stone-Čech remainder of ω, is denoted

ω∗ = βω \ ω.
It is the Stone space of the Boolean algebra P(ω)/fin.
A trivial self-homeomorphism of ω∗ is a homeomorphism ω∗ → ω∗

that is induced by a function ω → ω.
For example, the shift map σ : ω∗ → ω∗ is defined by setting

σ(u) = the ultrafilter generated by {A+ 1 : A ∈ u}.

In this way, σ is induced by the successor function n 7→ n + 1 on ω.
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trivial self-maps of ω∗

More generally, recall that βω has the Stone extension property,
which states that for any compact Hausdorff space X , any map
ω → X can be extended to a continuous map βω → X .

ω X

X

βω

βω

F = βf �ω∗

ω∗

ω∗

⊇

⊇

f βf

In particular, if f : ω → ω, then there is a continuous map
βf : βω → βω that extends f .

If f is an almost permutation of ω, by which we mean a bijection
between two co-finite subsets of ω (like the successor function),
then this extension βf restricts to a self-homeomorphism F of ω∗.
Explicitly, for any ultrafilter u ∈ ω∗, F (u) is the ultrafilter
generated by {f [A] : A ∈ u}.
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theorems of Rudin (no, the other one) and Shelah

A trivial self-homeomorphism of ω∗ is any self-homeomorphism
induced in this way by an almost permutation of ω.

There are only 2ℵ0 = c almost permutations of ω. Consequently,
there are at most c trivial self-homeomorphisms of ω∗. In fact there
are exactly c of them (and this is not hard to show).

Theorem (W. Rudin, 1956)

The Continuum Hypothesis (CH) implies there are 2c self-
homeomorphisms of ω∗. In particular, CH implies there are 2c

non-trivial self-homeomorphisms of ω∗.

Theorem (Shelah, 1979)

It is consistent that every self-homeomorphism of ω∗ is trivial.

Building on Shelah’s result, we now know that the forcing axiom
OCA implies every self-homeomorphism of ω∗ is trivial.
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When are two maps the same?

When are two self-homeomorphisms of ω∗ essentially the same?

For example, the shift map is induced by the function n 7→ n + 1:

0 1 2 3 4 5 6 7 . . .

Rearranging the members of ω gives us a different map, but the
structure of the new map is no different:

2 1 0 5 4 3 8 7 . . .

These two essentially identical almost bijections of ω induce
essentially identical self-homeomorphisms of ω∗.
Just as two spaces can be essentially identical (a.k.a.
homeomorphic) without being literally identical, two maps can be
essentially identical without being literally identical.
This kind of identity is studied in topological dynamics.
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conjugation

Two dynamical systems (X , f ) and (Y , g) are conjugate if there is
a homeomorphism h : X → Y such that h ◦ f = g ◦ h.

Y Y

XX
f

g

hh

ω∗ ω∗

ω∗ω∗
f

g

hh

This is the natural notion of isomorphism in the category of
dynamical systems. Setting X = Y = ω∗, this is what it means for
two self-homeomorphisms of ω∗ to be essentially the same.

Two self-homeomorphisms φ and ψ of ω∗ are conjugate if
there is an h as above with h ◦ φ = ψ ◦ h.
If, furthermore, there is a trivial self-homeomorphism h of ω∗

with h ◦ φ = ψ ◦ h, then φ and ψ are trivially conjugate.

Will Brian Trivial self-homeomorphisms of ω∗



conjugation

Two dynamical systems (X , f ) and (Y , g) are conjugate if there is
a homeomorphism h : X → Y such that h ◦ f = g ◦ h.

Y Y

XX
f

g

hh

ω∗ ω∗

ω∗ω∗
f

g

hh

This is the natural notion of isomorphism in the category of
dynamical systems.

Setting X = Y = ω∗, this is what it means for
two self-homeomorphisms of ω∗ to be essentially the same.

Two self-homeomorphisms φ and ψ of ω∗ are conjugate if
there is an h as above with h ◦ φ = ψ ◦ h.
If, furthermore, there is a trivial self-homeomorphism h of ω∗

with h ◦ φ = ψ ◦ h, then φ and ψ are trivially conjugate.

Will Brian Trivial self-homeomorphisms of ω∗



conjugation

Two dynamical systems (X , f ) and (Y , g) are conjugate if there is
a homeomorphism h : X → Y such that h ◦ f = g ◦ h.

Y Y

XX
f

g

hh

ω∗ ω∗

ω∗ω∗
f

g

hh

This is the natural notion of isomorphism in the category of
dynamical systems. Setting X = Y = ω∗, this is what it means for
two self-homeomorphisms of ω∗ to be essentially the same.

Two self-homeomorphisms φ and ψ of ω∗ are conjugate if
there is an h as above with h ◦ φ = ψ ◦ h.
If, furthermore, there is a trivial self-homeomorphism h of ω∗

with h ◦ φ = ψ ◦ h, then φ and ψ are trivially conjugate.

Will Brian Trivial self-homeomorphisms of ω∗



conjugation

Two dynamical systems (X , f ) and (Y , g) are conjugate if there is
a homeomorphism h : X → Y such that h ◦ f = g ◦ h.

Y Y

XX
f

g

hh

ω∗ ω∗

ω∗ω∗
f

g

hh

This is the natural notion of isomorphism in the category of
dynamical systems. Setting X = Y = ω∗, this is what it means for
two self-homeomorphisms of ω∗ to be essentially the same.

Two self-homeomorphisms φ and ψ of ω∗ are conjugate if
there is an h as above with h ◦ φ = ψ ◦ h.

If, furthermore, there is a trivial self-homeomorphism h of ω∗

with h ◦ φ = ψ ◦ h, then φ and ψ are trivially conjugate.

Will Brian Trivial self-homeomorphisms of ω∗



conjugation

Two dynamical systems (X , f ) and (Y , g) are conjugate if there is
a homeomorphism h : X → Y such that h ◦ f = g ◦ h.

Y Y

XX
f

g

hh

ω∗ ω∗

ω∗ω∗
f

g

hh

This is the natural notion of isomorphism in the category of
dynamical systems. Setting X = Y = ω∗, this is what it means for
two self-homeomorphisms of ω∗ to be essentially the same.

Two self-homeomorphisms φ and ψ of ω∗ are conjugate if
there is an h as above with h ◦ φ = ψ ◦ h.
If, furthermore, there is a trivial self-homeomorphism h of ω∗

with h ◦ φ = ψ ◦ h, then φ and ψ are trivially conjugate.

Will Brian Trivial self-homeomorphisms of ω∗



trivial maps can be non-trivially conjugate
Recall that it is consistent for all self-homeomorphisms of ω∗ to be
trivial. Thus "trivially conjugate" and "conjugate" mean the same
thing in some models of set theory.

But it is also consistent that these notions do not coincide:

Theorem (Van Douwen, 1987)

The shift map σ and its inverse are not trivially conjugate.
In particular, it is consistent that σ and σ−1 are not conjugate.

Theorem (B., 2024)

CH implies σ and σ−1 are conjugate.

conjugate in every model ⇔ trivially conjugate
conjugate in some model ⇔ CH implies conjugacy

Let us say two trivial maps are potentially conjugate if they can be
made conjugate in a forcing extension (which is true if and only if
CH implies they are conjugate).
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more on what van Douwen said

The prodigal index of an almost bijection of ω is

Ind(f ) = |domain(f ) \ image(f )| − |image(f ) \ domain(f )|.

This is an integer, because domain(f ) and image(f ) are both
co-finite subsets of ω.

For example, the shift map has index 1, its inverse has index −1,
and their "join" has index 0.

• • • • • • • . . .

• • • • • • • . . .

Theorem (Van Douwen, 1987)

Suppose f and g are almost bijections of ω. If Ind(f ) 6= Ind(g),
then the self-homeomorphisms of ω∗ induced by f and g are not
trivially conjugate.
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our main theorem

Van Douwen’s theorem reveals an obstruction to trivial conjugacy:
If Ind(φ) 6= Ind(ψ), then φ and ψ are not trivially conjugate.

This is not an obstruction to potential conjugacy, however, because
CH implies σ and σ−1 are conjugate.

Lemma (BFG, 2024)

Suppose φ and ψ are trivial self-homeomorphisms of ω∗. If Ind(φ)
and Ind(ψ) have different parities (one odd and one even), then φ
and ψ are not conjugate.

Theorem (BFG, 2024)

Suppose φ and ψ are trivial self-homeomorphisms of ω∗. Then φ
and ψ are potentially conjugate if and only if they have the same
prodigal index parity and the same first-order theory (i.e., the
structures 〈ω∗, φ〉 and 〈ω∗, ψ〉 are elementarily equivalent).
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prodigal index parity and the same first-order theory (i.e., the
structures 〈ω∗, φ〉 and 〈ω∗, ψ〉 are elementarily equivalent).
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the main idea of the lemma

To illustrate the idea behind this lemma, consider the following two
almost permutations of ω: one with infinitely many Z-like orbits,
and one with infinitely many Z-like orbits plus one N-like orbit.

These maps have index parity 0 and 1, respectively.
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the main idea of the lemma

The clopen sets corresponding to the “ends” of these orbits are
definable in the structure 〈ω∗, φ〉, where φ is the induced self-
homeomorphism. They are identifiable as little copies of the shift
(ω∗, σ).

They are called the incompressible components of φ.
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the main idea of the lemma

The following (2nd order) property distinguishes these two maps:

There is a way of pairing off the incompressible components such
that for any subset of the pairs, there is a φ-invariant clopen set
containing precisely those pairs.
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a few open questions

Question
Is there a coherent notion of "even" and "odd" that applies to all
self-homeomorphisms of ω∗ (even the non-trivial ones)? Does the
autohomeomorphism group of ω∗ map onto the 2-element group?

We do not know whether the parity condition in our main theorem
is necessary: it may be that the theory of 〈ω∗, φ〉 already
determines the parity of φ. (This is true for some maps, e.g. σ.)

Question
Can two elementarily equivalent trivial self-homeomorphisms of ω∗

have a different index parity? Are the two maps described on the
previous slide elementarily equivalent?

Question
Suppose a non-trivial self-homeomorphisms of ω∗ is elementarily
equivalent to σ. Does CH prove it is conjugate to σ?
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The end

Thank you for listening
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