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What to expect

Norms making “bad” categories “good”: metric spaces and normed vector spaces
Quantale-valued norms for sets and categories
Intermezzo on the Hausdorff metric
V-enriched categories versus V-normed categories
Cauchy sequences and normed convergence
Three principal example categories
The Cauchy cocompletion of a normed category
Banach’s Fixed Point Theorem
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A “good” category of metric spaces?

Classically, a (Fréchet, 1906) metric d : X × X −→ [0,∞] on a set X must satisfy:

Fin d(x , y) <∞
•-Inq 0 ≥ d(x , x) (i.e. 0 = d(x , x) )

Sep d(x , y) = 0 = d(y , x) =⇒ x = y
Sym d(x , y) = d(y , x)

∆-Inq d(x , y) + d(y , z) ≥ d(x , z)

Suppose we let these metric spaces be the objects of a category, called

MetFréchet ,

with morphisms f : X → Y to satisfy

1-Lip dX (x , x ′) ≥ dY (fx , fx ′)
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Some shortcomings of MetFréchet, Hausdorff’s 1914 observations

MetFréchet has finite limits, but not all countable products (not even of 2-point spaces).
Any two non-empty spaces fail to admit a coproduct.
Neither its cartesian structure nor its natural monoidal structure are closed.
The (non-symmetrized) Hausdorff distance

d(A,B) = sup
x∈A

inf
y∈B

d(x , y)

for A,B ⊆ X will generally satisfy only •-Inq and 4-Inq.

BUT these two conditions hold even when the given distance function on X satisfies
none of the other conditions!
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Lawvere 1973: Importing enriched category theory to metric spaces

Met1

Objects are required to satisfy only •-Inq and ∆-Inq; as before, morphisms satisfy 1-Lip.

Then:
Met1 is topological over Set, hence complete and cocomplete.
Met1 is symmetric monoidal closed (and, hence, allows for the formation of “good”
function spaces, although it is not cartesian closed).

Requiring also the Sym condition would not obstruct these properties,

but it would obstruct viewing individual objects as small R+-enriched categories:

R+ = ([0,∞],≥,+,0) Ab = (Ab,→,⊗,Z)

0 ≥ d(x , x) 0 ≥ X (x , x) Z −→ X (x , x)

d(x , y) + d(y , z) ≥ d(x , z) X (x , y) + X (y , z) ≥ X (x , z) X (x , y)⊗X (y , z) −→ X (x , z)

Walter Tholen (York University, Toronto) Normed Categories SUMTOPO2024, University of Coimbra 5 / 43



Lawvere 1973: Importing enriched category theory to metric spaces

Met1

Objects are required to satisfy only •-Inq and ∆-Inq; as before, morphisms satisfy 1-Lip.

Then:
Met1 is topological over Set, hence complete and cocomplete.
Met1 is symmetric monoidal closed (and, hence, allows for the formation of “good”
function spaces, although it is not cartesian closed).

Requiring also the Sym condition would not obstruct these properties,

but it would obstruct viewing individual objects as small R+-enriched categories:

R+ = ([0,∞],≥,+,0) Ab = (Ab,→,⊗,Z)

0 ≥ d(x , x) 0 ≥ X (x , x) Z −→ X (x , x)

d(x , y) + d(y , z) ≥ d(x , z) X (x , y) + X (y , z) ≥ X (x , z) X (x , y)⊗X (y , z) −→ X (x , z)

Walter Tholen (York University, Toronto) Normed Categories SUMTOPO2024, University of Coimbra 5 / 43



Lawvere 1973: Importing enriched category theory to metric spaces

Met1

Objects are required to satisfy only •-Inq and ∆-Inq; as before, morphisms satisfy 1-Lip.

Then:
Met1 is topological over Set, hence complete and cocomplete.
Met1 is symmetric monoidal closed (and, hence, allows for the formation of “good”
function spaces, although it is not cartesian closed).

Requiring also the Sym condition would not obstruct these properties,

but it would obstruct viewing individual objects as small R+-enriched categories:

R+ = ([0,∞],≥,+,0) Ab = (Ab,→,⊗,Z)

0 ≥ d(x , x) 0 ≥ X (x , x) Z −→ X (x , x)

d(x , y) + d(y , z) ≥ d(x , z) X (x , y) + X (y , z) ≥ X (x , z) X (x , y)⊗X (y , z) −→ X (x , z)

Walter Tholen (York University, Toronto) Normed Categories SUMTOPO2024, University of Coimbra 5 / 43



Lawvere 1973: Importing enriched category theory to metric spaces

Met1

Objects are required to satisfy only •-Inq and ∆-Inq; as before, morphisms satisfy 1-Lip.

Then:
Met1 is topological over Set, hence complete and cocomplete.
Met1 is symmetric monoidal closed (and, hence, allows for the formation of “good”
function spaces, although it is not cartesian closed).

Requiring also the Sym condition would not obstruct these properties,

but it would obstruct viewing individual objects as small R+-enriched categories:

R+ = ([0,∞],≥,+,0) Ab = (Ab,→,⊗,Z)

0 ≥ d(x , x) 0 ≥ X (x , x) Z −→ X (x , x)

d(x , y) + d(y , z) ≥ d(x , z) X (x , y) + X (y , z) ≥ X (x , z) X (x , y)⊗X (y , z) −→ X (x , z)

Walter Tholen (York University, Toronto) Normed Categories SUMTOPO2024, University of Coimbra 5 / 43



Lawvere 1973: Importing enriched category theory to metric spaces

Met1

Objects are required to satisfy only •-Inq and ∆-Inq; as before, morphisms satisfy 1-Lip.

Then:
Met1 is topological over Set, hence complete and cocomplete.
Met1 is symmetric monoidal closed (and, hence, allows for the formation of “good”
function spaces, although it is not cartesian closed).

Requiring also the Sym condition would not obstruct these properties,

but it would obstruct viewing individual objects as small R+-enriched categories:

R+ = ([0,∞],≥,+,0) Ab = (Ab,→,⊗,Z)

0 ≥ d(x , x) 0 ≥ X (x , x) Z −→ X (x , x)

d(x , y) + d(y , z) ≥ d(x , z) X (x , y) + X (y , z) ≥ X (x , z) X (x , y)⊗X (y , z) −→ X (x , z)

Walter Tholen (York University, Toronto) Normed Categories SUMTOPO2024, University of Coimbra 5 / 43



Regarding individual spaces as ordinary small categories

Every set X gives rise to the (indiscrete) category over X :

iX

Its objects are the points of X , and for all x , y ∈ X there is exactly one morphism x → y :

x
(x ,y) // y

If X is a (Lawvere) metric space, then this morphism has a “norm”:

|(x , y)| := X (x , y)

With idx = (x , x) and the composable morphisms f := (x , y), g := (y , z) we have

0 ≥ |idx | |f |+ |g| ≥ |g · f |
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Catering to the Working Mathematician: “What about morphisms?”

Met∞
Again, objects must satisy •-Inq and ∆-Inq, but morphisms are now arbitrary mappings.

This seems like an utterly uninteresting category: Met∞ ' Set !

BUT we could try to make it interesting by providing it with some kind of “operator norm”;
that is, by considering for every morphism f : X → Y (with some arithmetic for 0 and∞)

L(f ) := inf{` ∈ [0,∞] | ∀x , x ′ ∈ X : ` · d(x , x ′) ≥ d(fx , fx ′)}
Then:

1 ≥ L(idX ) L(g) · L(f ) ≥ L(g · f )

Not to leave the realm of R+, we could put:

|f | := log◦ L(f ) (with log◦ α = max{0, logα})
0 ≥ |idX | |f |+ |g| ≥ |g · f |
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Adding structure: What about normed vector spaces?

A norm ||-|| : X → [0,∞] on a (real, say) vector space X must satisfy

Fin ||x || <∞
•-Inq 0 ≥ ||0|| (i.e. 0 = ||0|| )
Sep ||x || = 0 =⇒ x = 0

Hom ||ax || = |a| ||x || (a ∈ R)

∆-Inq ||x ||+ ||y || ≥ ||x + y ||

Such X becomes a one-object category, making every x ∈ X a morphism x : ∗ → ∗ ,
with a “norm” satisfying •-Inq and ∆-Inq, and to be composed via vector addition.

These are the objects of the category

NVec1

whose morphisms f : X → Y are linear maps satisfying

1-Lip ||x || ≥ ||fx ||
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Some strange (co)limits in NVec1

For a constant c > 0, let Rc be the 1-dimensional vector space R, normed by |1|c = c.

Consider the following sequence in NVec1, carried by identity maps:

R = R1 // R 1
2

// R 1
3

// ... // colim = 0

Wouldn’t it be “nicer” to obtain R0, i.e. to allow c = 0?

Likewise, consider the following inverse sequence in NVec1, carried by identity maps:

R = R1 R2oo R3oo ...oo lim = 0oo

Wouldn’t it be “nicer” to obtain R∞, i.e. to allow c =∞?
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Envisioning SNVec∞

Facit:

NVec1 is too tight, both at the object and the morphism levels.

Goals:

Similarly to the transition from MetFréchet to Met∞, replace NVec1 by a category of
semi-normed vector spaces and all linear maps,
with a norm based on the classical operator norm, but one that fits into a general
categorical framework of normed categories.
Introduce a notion of (Cauchy) convergence for sequences of operators that is
supported by the categorical framework, and that not only
yields better behaved sequential (co)limits in the examples just given, but also
allows for a wide range of other meaningful examples or applications.
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Replacing R+ = ([0,∞],≥,+,0) by V = (V ,≤,⊗, k)

In this talk, a quantale (always unital and commutative) is given by
a complete lattice (V,≤)

a commutative monoid (V,⊗, k)

satisfying the infinite distributive law (
∨

i ui)⊗ v =
∨

i(ui ⊗ v)

That is:

V = (V,≤,⊗, k) is a small, thin, skeletal, cocomplete symmetric monoidal-closed category

Internal hom: u ≤ [v ,w ] ⇐⇒ u ⊗ v ≤ w (-⊗ v) a [v , -] : V −→ V

Key examples: R+ (Lawvere) 2 = ({true, false},⇒,∧, true) (Boole)

[v ,w ] = max{w − v ,0} [v ,w ] = (v ⇒ w)

= w−̂v
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Set//V := Fam(V ,≤)
V-normed sets and maps:

A f //

|-|A

≤

��

B

|-|B��
V

|a|A ≤ |fa|B

Set//V is

topological over Set
locally presentable
symmetric monoidal closed

A⊗ B = A× B, |(a,b)| = |a| ⊗ |b| E = {∗}, | ∗ | = k

[A,B] = Set(A,B), |ϕ| =
∧
a∈A

[|a|, |ϕa|] (i.e. |ϕ| is maximal with |ϕ| ⊗ |a| ≤ |ϕa|)
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Cat//V := (Set//V)-Cat, CAT//V := (Set//V)-CAT

V-normed categories and functors:

X F //

|-|X

≤

""

Y

|-|Y||
(V,⊗)

|f |X ≤ |Ff |Y

E→ X(x , x) X(x , y)⊗ X(y , z)→ X(x , z)

∗ 7→ 1x (f ,g) 7→ g · f

k ≤ |1x | |f | ⊗ |g| ≤ |g · f |
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Some first examples of (V-)normed categories

V = R+:

Every metric space X becomes a (small) normed category iX with |(x , y)| := X (x , y).
The (large) category Met∞ becomes normed with |f | := log◦ L(f ).
Similarly we will consider the large normed category SNVec∞.

V = 2:

A 2-normed category X comes with a (characteristic) function |-| : X→ 2,
i.e. with a subclass S of morphisms in X, satisfying

1x ∈ S f ∈ S & g ∈ S =⇒ g · f ∈ S

i.e. S is a wide subcategory of the ordinary category X.
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Extrapolating from metric spaces to V-categories: Met1  V-Cat

A V-category structure on a set X is a function X (-,-) : X × X → V satisfying

k ≤ X (x , x) X (x , y)⊗ X (y , z) ≤ X (x , z)

A V-functor is a map f : X → Y of (small) V-categories satisfying

X (x , x ′) ≤ Y (fx , fx ′) .

R+-Cat = Met1
2-Cat = Ord

= the category of (pre)ordered sets and monotone (= order-preserving) maps
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V-categories vs. (Set//V)-categories

V i
>

// Set//V
s

jj = Fam(V,≤)

V-Cat i
>

// Cat//V
s

kk = (Set//V)-Cat

X 7−→ X = iX

X = obX, X (x , y) =
∨

f :x→y |f | ←−p X

V = R+ :

Met1
i
>

// NCat1
s

jj = Cat//R+

V = 2 :

Ord i
>

// Cat//2
s

jj 3 (X,S), Id(X) ⊆ S, S · S ⊆ S
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Intermezzo on the Hausdorff metric: distributors

R+-Dist:

Objects are metric spaces; morphisms X ◦
ρ // Y are “distributors”:

x
ρ(x ,y)

y
Y (y ,y ′)

x ′
ρ(x ′,y ′)

X(x ′,x)

y ′

Composition with Y ◦σ // Z : (σ · ρ)(x , z) = infy∈Y (ρ(x , y) + σ(y , z))

Examples: Met1 −→ R+-Dist, ( X f // Y ) 7→ ( X ◦
f∗ // Y ), f∗(x , y) = Y (fx , y)

Making R+-Dist normed:

|ρ| := supx∈X infy∈Y ρ(x , y) ||ρ|| := infϕ:X→Y supx∈X ρ(x , ϕx) AC =⇒ |ρ| = ||ρ||
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Intermezzo on the Hausdorff metric: exploiting s a i à la Lawvere

X ∈ Met1 7−→ HX ∈ NCat1:

objects: all subsets A ⊆ X ; morphisms: all maps ϕ : A→ B, |ϕ| = supx∈A X (x , ϕx)

HX := s(HX ) ∈ Met1:

HX (A,B) = inf
ϕ:A→B

|ϕ| =(AC) sup
x∈A

inf
y∈B

X (x , y)

NCat1
s (functorial)

%%
Met1

H
(functorial)

//

(not functorial) H
99

(-)∗
��

Met1

(-)∗
��

R+-Dist H
(lax functorial)

// R+-Dist

On a positive note: Everything generalizes from R+ to V.
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X ∈ Met1 7−→ HX ∈ NCat1:

objects: all subsets A ⊆ X ; morphisms: all maps ϕ : A→ B, |ϕ| = supx∈A X (x , ϕx)

HX := s(HX ) ∈ Met1:

HX (A,B) = inf
ϕ:A→B

|ϕ| =(AC) sup
x∈A

inf
y∈B

X (x , y)

NCat1
s (functorial)

%%
Met1

H
(functorial)

//

(not functorial) H
99

(-)∗
��

Met1

(-)∗
��

R+-Dist H
(lax functorial)

// R+-Dist

On a positive note: Everything generalizes from R+ to V.
Walter Tholen (York University, Toronto) Normed Categories SUMTOPO2024, University of Coimbra 18 / 43



Intermezzo on the Hausdorff metric: exploiting s a i à la Lawvere
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Properties of Cat//V, V-normed categories vs. ordinary categories

Cat//V is

topological over Cat
locally presentable
symmetric monoidal closed

X⊗ Y = X× Y, |(f , f ′)| = |f | ⊗ |f ′| E = {∗ → ∗}, |∗ → ∗| = k

[X,Y] = (Cat//V)(X,Y), |α : F → G| =
∧

x∈obX
|αx |

V −→ 2 induces Cat//V −→ Cat//2

(v 7→ true) :⇐⇒ k ≤ v (X, |-|) 7−→ (X,X◦)

with X◦ := {f : k ≤ |f |} (à la Kelly)
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Set//V as a V-normed category??

Every monoidal-closed categoryW becomesW-enriched, qua its internal hom.

Q: What happens toW = Set//V?

A: Obtain a category with V-normed sets as objects and arbitrary maps as morphisms:

Set||V

Therefore:

Set||V is a V-normed category, with |ϕ : A→ B| =
∧

a∈A[|a|, |ϕa|] . Furthermore:

(Set||V)◦ = Set//V
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Normed convergence of sequences

s : N −→ X xo
s0,1 // x1

s1,2 // x2 // ... // xm
sm,n // xn // ...

sn,n = 1xn,n , sm,n · sk ,m = sk ,n

s|N = s|↑N with ↑N = {n : n ≥ N}

x ∼= ncolim s : (C1) x ∼= colim s (in the ordinary category X with cocone γn : xn → x)

xn
γn //

αn
&&

x

f
��

y

α = (αn)! f Nat(s,∆y) ∼= X(x , y)

(C2) ∀y ∈ X : (Nat(s|N ,∆y)→ X(x , y))N∈N is a colimit cocone in Set//V

(C2) ⇐⇒ (C2a) k ≤
∨
N

∧
n≥N

|γn|

(C2b) ∀ f : x → y : |f | ≥
∨
N

∧
n≥N

|f · γn|
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Comparison with [Kubiś 2017]

Fact:

Existence granted,
a normed colimit is unique up to a k-isomorphism, i.e., up to an isomorphism in X◦.

Comparison:

For a norm on a category, Kubiś requires (when we extrapolate from R+ to a quantale V)
the additional condition

(Sop) |g · f | ⊗ |g| ≤ |f |,

but for x ∼= ncolim s, he requires only (C1) and (C2a), not (C2b).

Unfortunately, as he observes himself, this does not make normed colimits unique up to a
k–isomorphism.
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A word about symmetry

(S) |f · h| ⊗ |h| ≤ |f |

(Sop) |g · f | ⊗ |g| ≤ |f |

For X = iX , X ∈ V-Cat:

(S) ⇐⇒ X (x , y) = X (y , x) ⇐⇒ (Sop)

For (X,S) ∈ Cat//2:

(S) f · h ∈ S & h ∈ S =⇒ f ∈ S

(Sop) g · f ∈ S & g ∈ S =⇒ f ∈ S

For X ∈ Cat//V:

If X satisfies (S), then (C1) & (C2a) suffice to also have (C2b).
But here we may not trade (S) for (Sop) (as done in [Kubiś 2017])!
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Cauchy cocompleteness

s : N→ X Cauchy :⇐⇒ k ≤
∨

N
∧

n≥N |sm,n|

X Cauchy cocomplete :⇐⇒ every Cauchy sequence in X has a normed colimit in X

For X = iX , X ∈ R+-Cat = Met1:

s Cauchy ⇐⇒ inf
N

sup
n≥m≥N

X (xm, xn) = 0

⇐⇒ s is forward Cauchy (see [Bonsangue, van Breugel, Rutten 1998])

x ∼= ncolim s ⇐⇒ ∀y : X (x , y) = inf
N

sup
n≥N

X (xn, y)

⇐⇒ x is a forward limit of s (in the sense of [BvBR 1998])
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A couple of cautionary notes

A sequence with a normed colimit may not be Cauchy:

0 1 // 1 1 // 2 n−2 // n 0 //∞

The constant sequence e = ( x e // x e // x // ...) given by an idempotent e
may not have a normed colimit, even if it has an ordinary colimit and is Cauchy:

e has (ordinary) colimit in X ⇐⇒ e splits (e = t · r , r · t = 1) in X
e is Cauchy ⇐⇒ k ≤ |e|

e has normed colimit in X ⇐⇒ e splits such that k ≤ |r |, k ≤ |t |

Equivalent are for a V-normed category X:

X◦ is idempotent complete (i.e., every idempotent in X◦ splits in X◦)
Every constant Cauchy sequence in X has a normed colimit in X.
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The constant sequence e = ( x e // x e // x // ...) given by an idempotent e
may not have a normed colimit, even if it has an ordinary colimit and is Cauchy:

e has (ordinary) colimit in X ⇐⇒ e splits (e = t · r , r · t = 1) in X
e is Cauchy ⇐⇒ k ≤ |e|

e has normed colimit in X ⇐⇒ e splits such that k ≤ |r |, k ≤ |t |

Equivalent are for a V-normed category X:

X◦ is idempotent complete (i.e., every idempotent in X◦ splits in X◦)
Every constant Cauchy sequence in X has a normed colimit in X.
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The Boolean case: V = 2

For a sequence s in (X,S) ∈ Cat//2:

s is Cauchy ⇐⇒ eventually all connecting maps are in S

x ∼= ncolim s ⇐⇒ x ∼= colim s with colimit cocone (γn)n s.th.

for all f : x → y
f ∈ S ⇐⇒ eventually all f · γn are in S

(X,S) with X = Top is Cauchy cocomplete for S = {monos} and S = {closed embed’s},

but not for S = {embeddings} [Adámek, Hušek, Rosický, T 2023]:

(↓n × N)cof
γn //

f ·γn ))

colim s

f=id /∈S
��

(N× N)cof

N× {0} is closed in colim s, but not in (N× N)cof
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Extending the real arithmetic to [0,∞]

Put e∞ =∞ and 0 · ∞ =∞ (i.e. (-) · ∞ preserves infima) and consider the adjunction

R+ = ([0,∞],≥,+,0)
exp

⊥
// R× = ([0,∞],≥, ·,1)

log◦
ll

Internal hom [β, α]:

α −̂β = max{α− β,0} α

β
= inf{γ : α ≤ β · γ}

Obtain
0
0

= 0
α

0
=∞ (α > 0)

α

∞
=
∞
∞

= 0

log◦ 0 = 0 log◦ α = max{0, logα} (0 < α <∞) log◦∞ =∞
log◦(α · β) ≤ log◦ α + log◦ β
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The normed categories SNVec∞ and NVec∞
A seminorm ||-|| : X → [0,∞] on a vector space X must satisfy:
||0|| = 0
||ax || = |a| ||x || (a ∈ R,a 6= 0)

||x + y || ≤ ||x ||+ ||y ||
With all linear maps as morphisms normed by

|X f // Y | := sup
x∈X

log◦(
||fx ||
||x ||

)

one obtains the normed category SNVec∞.
It contains the full subcategory NVec∞ of separated seminormed spaces:

||x || = 0 =⇒ x = 0

Theorem
SNVec∞ is Cauchy cocomplete, but NVec∞ is not.
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Brief comment on the proof of the Theorem

The proof is harder than one may have expected, although the starting point seems clear:

For a Cauchy sequence s = (Xm
sm,n // Xn)m≤n , form the colimit (Xn

γn // X )n in Vec and
put

||x || := sup
N∈N

inf
n≥N

inf
z∈γ−1

n x
||z||n (x ∈ X )

Now prove that that this makes X a seminormed space and verify conditions (C2a), (C2b).

The negative assertion about NVec∞ follows more easily, with the help of

R = R1 // R 1
2

// R 1
3

// ... // colim = 0
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A final remark on NVec∞
Call a linear map f : X → Y of seminormed vector spaces a 0-to-0 morphism if

||x || = 0 =⇒ ||fx || = 0

holds. This defines the wide subcategory SNVec00 of SNVec∞.

X 0−0 //

0−0
))

X/{x ∈ X | ||x || = 0}

?
��

Y

Corollary
The normed category NVec∞ is a full reflective subcategory of SNVec00 (not of SNVec∞).
It has colimits of all those Cauchy sequences whose normed colimit in SNVec∞ is also
a colimit in the ordinary category SNVec00.
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Banach spaces?

An existing normed colimit in NVec∞ of a Cauchy sequence of isometric embeddings of
Banach spaces may not be Banach:

R // R2 // R3 // ... //
⊕

n Rn

Indeed, the Cauchy sequence (xn)n,

where the i-th component of xn is 1
i+1 for i ≤ n, and 0 otherwise,

does not converge in
⊕

n Rn.
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No linear structure: Is Met∞ Cauchy cocomplete?

Met∞:
Objects: (Lawvere) metric spaces
Morphisms: all maps, normed by

|X ϕ // Y | := sup
x ,x ′∈X

log◦(
Y (ϕx , ϕx ′)

X (x , x ′)
)

V-Lip:
Objects: (small) V-categories
Morphisms: all maps, normed by

|X ϕ // Y | :=
∧

x ,x ′∈X

[X (x , x ′),Y (ϕx , ϕx ′)]

Get Met∞ from R×-Lip via change of base:

R+
exp

⊥
// R×

log◦

hh
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Yes: Met∞ is Cauchy cocomplete!

Recall “totally below”:
u �

∨
i∈I

vi ⇐⇒ ∃ i ∈ I : u � vI

Theorem
V-Lip is Cauchy cocomplete if
⇓k = {ε ∈ V : ε� k} is up-directed;
k is approximated from totally below:

∨
⇓k = k;

⊗ preserves�: (u � v , w > ⊥ =⇒ u ⊗ w � v ⊗ w).

The proof uses “ε-methods” in the quantalic context, as first pioneered by [Flagg 1992]
(Proceedings of CT1991, Montreal)
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Finally: Is Set||V Cauchy cocomplete?

Theorem
For every small V-normed category X, the V-normed presheaf category

[X,Set||V]

is Cauchy cocomplete, provided that V satisfies
(A) k is approximated from totally below:

∨
⇓k = k;

OR

(B) k ∧-distributes over arbitrary joins: k ∧
∨

i vi =
∨

i k ∧ vi .

Corollary
The presheaf category [X,Set||V] is Cauchy cocomplete whenever
V is integral (k = >), or V is a frame, or V is constructively completely distributive.
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Further remarks on the Theorem

The proof is much harder than expected!
We don’t know of a quantale V for which Set||V fails to be Cauchy cocomplete!
Conditions (A) and (B) are independent of each other:

(B) ; (A):

For any infinite set X and its cofinite topology O(X ), consider (O(X ),⊆,∩,X ).

Then any open set U with U � X must be empty since, otherwise, we have

X =
⋃

x∈U

X \ {x},

whereas no x ∈ U allows U ⊆ X \ {x}. Consequently, (A) is violated in O(X ).
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(A) ; (B) [Gutiérrez-Garcı́a, Höhle 2024]

>

> k

1 0 2

⊥

⊗ > k > 0 1 2 ⊥
> > > > > > > ⊥
k > k > 0 1 2 ⊥
> > > > > > > ⊥
0 > 0 > 0 1 2 ⊥
1 > 1 > 1 2 0 ⊥
2 > 2 > 2 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

k ∧ (1 ∨ 2) = 0 6= ⊥ = (k ∧ 1) ∨ (k ∧ 2)
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Reminders: weighted colimits, distributors, accessible presheaves

F : A→ X, ϕ : Aop → Set||V V-normed functors of V-normed categories A,X (A small),

also written as composable V-distributors: F ∗ : X ◦ // A , ϕ : A ◦ // E

x ∼= colimϕF ⇐⇒ X(x , y) ∼= Nat(ϕ,X(F−, y)) naturally in y

⇐⇒ x ∼= colimϕ·F∗ idX
⇐⇒ : “ x is a weighted colimit of ϕ · F ∗ ”

After [Kelly-Schmitt 2005]:

ψ : Xop → Set||V accessible :⇐⇒ ψ = ϕ · F ∗ for some F , ϕ as above

PX := full normed subcategory of [Xop,Set||V] of all accessible presheaves on X
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Normed colimits as weighted colimits

Proposition
If V satisfies condition (A) or (B), then for every V-normed category X,
PX is Cauchy cocomplete.

For a Cauchy sequence s in the V-normed category X, form

ϕs ∼= ncolim (N s // X
yX // PX)

Proposition

x ∼= ncolims ⇐⇒ x ∼= colimϕs idX

Corollary
X Cauchy cocomplete ⇐⇒ X has weighted colimits for all F : A→ X, ϕ : Aop → Set||V,
with A countable and ϕ a normed colimit of a Cauchy sequence of representables in PA.
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Cauchy cocompletion (à la [Kelly, Schmitt 2005])

V continues to satisfy (A) or (B).

Let Φ be the class of weights used in the Corollary, so that

X is Cauchy cocomplete ⇐⇒ X is Φ-cocomplete .

Let Φ(X) be the least full replete V-normed subcategory of PX closed under Φ-colimits.

Theorem
For every V-normed category X and every Cauchy cocomplete V-normed category Y, the
composition with the restricted Yoneda embedding yX : X→ Φ(X) defines an equivalence

(Φ-COCTS)(Φ(X),Y)→ (CAT//V)(X,Y) .

That is, Φ(−) provides a left biadjoint to the inclusion 2-functor Φ-COCTS→ CAT//V.

The equivalence restricts to (Φ-Cocts)(Φ(X),Y)→ (Cat//V)(X,Y) for small X and Y.
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Banach’s Fixed Point Theorem

Let X be (R+-)normed and F : X→ X contractive: there is ` < 1 with |Fh| ≤ `|h| for all h.

Suppose we have some f : x → Fx with |f | <∞. Just like for metric spaces, the sequence

sf = ( x f // Fx Ff // F 2x F 2f // F 3x F 3f // ... )

is Cauchy. Would its colimit be a “fixed point” of F?

Theorem
Let X be Cauchy cocomplete with some f as above. If the contractive endofunctor

F preserves y ∼= colim sf , then the canonical f : y → Fy is an isom. with |f | = 0;

F preserves y ∼= ncolim sf , then the canonical f : y → Fy is a 0-isom.: |f | = 0 = |f−1|.

Note: Preservation of the normed colimit follows from its ordinary preservation
when X satisfies the symmetry condition (S) or (Sop).
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A To-Do list

What about complete metric spaces? Banach spaces? Hilbert spaces?
Find a quantale V such that Set||V fails to be Cauchy cocomplete!
Is V-Dist with the Hausdorff norm Cauchy cocomplete?
Describe the Cauchy cocompletion of a a normed category “more constructively”?
Why not directed or filtered systems instead of just sequences? Relevant examples?
Beyond quantales: V any symmetric monoidal-closed category, ... ?
V-normed 2-categories, etc.!
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