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Standing notation I

Objects:

Topological dynamical systems (t.d.s) (G ,X ), where:
X - compact metrizable space.

G - topological group.

G × X → X continuous s.t ex = x and h(gx) = (hg)x .
When G = Z, we write (X ,T ) where T is the generator of the
Z-action.
Y ⊂ X closed and G -invariant (GY = Y ) is called a subsystem.
(G ,X ) is called minimal if only subsystems are Y = ∅ and Y = X .
(G ,X ) is called aperiodic (free) if ∃x ∈ X gx = x implies g = e.
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Standing notation II

Morphisms:
ϕ : (G ,X ) → (G ,Y )

where, ϕ : X → Y - Equivariant continuous mapping (ϕ(gx) = gϕ(x),
∀x ∈ X , g ∈ G ):

X X

Y Y

g

ϕ

g

ϕ

Special morphisms:
ϕ is onto

△⇔ ϕ : (G ,X ) ↠ (G ,Y )
△⇔ ϕ is an extension or factor map

ϕ is injective
△⇔ ϕ : (G ,X ) ↪→ (G ,Y )

△⇔ ϕ is an (dynamical) embedding

Yonatan Gutman (IM PAN) Local mean dimension theory 3



Embedding dimension

For any compact metrizable space X there is a (topological)
embedding into the Hilbert cube: ϕ : X ↪→ [0, 1]N.
Let (X ,T ) be a t.d.s. There is a (dynamical) embedding by the
orbit-map:

Φ : (X ,T ) ↪→ (([0, 1]N)Z, shift)
x 7→ (ϕ(T kx))k∈Z

Under which conditions is there an embedding into a d-cubical shift:

(X ,T ) ↪→ (([0, 1]d)Z, shift) (d ∈ N)?

Define the embedding dimension:

edim(X ,T ) = min{d ∈ N ∪ {∞} | (X ,T ) ↪→ (([0, 1]d)Z, shift)}
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Auslander’s question

Question (Auslander, 1988)
Let (X ,T ) be minimal. Is edim(X ,T ) = 1?

Theorem (Lindenstrauss-Weiss, 2000)
There exist (X ,T ) minimal such that edim(X ,T )>1.
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Mean dimension

Let f : X → Y be a continuous map and ε > 0. Let d be a
compatible metric on X . The map f is called an ε-embedding if
diam f −1(y) < ε for all y ∈ Y .
Let widimϵ(X , d) be the minimal integer n ≥ 0 such that there exist an
n-dimensional simplicial complex P and an ε-embedding f : X → P .
(Lebesgue) dim(X ) = limϵ→0 widimϵ(X , d)

dn(x , y) = max0≤i≤n−1 d(T
ix ,T iy)

(Gromov) mdim(X ,T ) = limϵ→0 limn→∞
widimϵ(X ,dn)

n
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Topological definition of mean dimension

α = {U1,U2, . . .Um} is a finite open cover of X .
ord(α) = maxx∈X

∑
U∈α 1U(x)− 1

A (finite) open cover β of X
refines a (finite) open cover α of X
if for every V ∈ β there is a U ∈ α such that
V ⊂ U.
D(α) = minβ≻α ord(β)

dim(X ) = supαD(α)

mdim(α) = limn→∞
1
n D(

∨n−1
k=0 T

kα)

(Gromov) mdim(X ,T ) = supαmdim(α)
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Mean dimension obstruction for embedding

mdim(([0, 1]d)Z, shift) = d

If Y ⊂ X is a subsystem then mdim(Y ,T ) ≤ mdim(X ,T )

edim(X ,T ) ≥ mdim(X ,T )

Lindenstrauss and Weiss constructed a minimal system (X ,T ) with
mdim(X ,T ) > 1, so edim(X ,T ) > 1.

Theorem (G-Tsukamoto, 2020)
If (X ,T ) is (an extension of) an aperiodic minimal system and
mdim(X ,T ) < d

2 , then (X ,T ) ↪→ (([0, 1]d)Z, shift).
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Local theory of mean dimension

Definition
An open cover of X is standard if it is composed of two non-dense
open sets.
An open cover (U,V ) distinguishes (x , y) ∈ X × X if x /∈ V and
y /∈ U. Such a cover is always standard.
Conversely, every standard cover distinguishes some (x , y) ∈ X × X .
Let (X ,T ) be a t.d.s. A pair (x , y) ∈ X × X is said to be a mean
dimension pair if for every standard open cover, α, which distinguishes
(x , y), it holds

mdim(α) > 0.

Theorem (García-Ramos & G, 2024)
mdim(X ,T ) > 0 iff there are mean dimension pairs.
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Completely positive mean dimension systems

Definition
(X ,T ) is a completely positive mean dimension (CPMD) system if every
non-trivial factor of (X ,T ) has positive mean dimension.

Theorem (Lindenstrauss-Weiss 2000)(
([0, 1]d)Z, shift

)
is a completely positive mean dimension (CPMD) system.

Proof.
Essentially the Brouwer fixed point theorem...
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Analytic and coanalytic sets of Polish spaces

Definition
A Polish space is a separable topological space that can be metrized using
a complete metric. A subset of a Polish space is analytic if it is the
continuous image of a Borel subset of a Polish space and coanalytic if it is
the complement of an analytic set.

Basic Facts:
All Borel subsets of a Polish space are both analytic and coanalytic.
Moreover, if a set is both analytic and coanalytic, then it is Borel.
However, in every uncountable Polish space there are analytic, and hence
coanalytic, sets which are not Borel.
Heuristic:
Loosely speaking, if a set is analytic or coanalytic but not Borel, it means
that it cannot be described with countable information.

Yonatan Gutman (IM PAN) Local mean dimension theory 11
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that it cannot be described with countable information.
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Parameterizing all dynamical systems

Let (X ,T ) be a t.d.s, then (X ,T ) ↪→ (QZ, shift), where Q = [0, 1]N

is the Hilbert cube.
Let S(Q) = {X ⊂ QZ : X is closed, non-empty and shift-invariant}
equipped with the Hausdorff metric. This is a Baire space which
parameterizes all dynamical systems.

S+(Q) = {X ∈ S(Q) : (X , shift) is a CPMD system}.
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Complexity of CPMD

S+(Q) = {X ∈ S(Q) : (X , shift) is a CPMD system}.

Definition
A coanalytic subset A of a Polish space X is complete coanalytic if for
every coanalytic set B of a Polish space Y, there exists a Borel function
f : Y → X such that f −1(A) = B.

Theorem (García-Ramos & G, 2024)
The set S+(Q) is a complete coanalytic subset of S(Q), in particular not
Borel.

Remark
The theorem is true in the generality of sofic group actions.
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Complexity of CPMD - Overview of the proof I

Theorem (García-Ramos & G, 2024)
The set S+(Q) is a complete coanalytic subset of S(Q).

Theorem
S+(Q) is a coanalytic subset of S(Q).

Let K (X ) be the space of all non-empty compact subsets of X . Consider
the diagonal map △ : I ↪→ Q = IN, x 7→ (x , x , , . . .). This induces a map
S(I ) ↪→ S(Q), A 7→ △(A). Note A ∼= △(A) as Z-systems. Therefore it is
enough to prove

Theorem
S+(I ) is a complete coanalytic subset of S(I ).
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Complexity of CPMD - Overview of the proof II

Theorem (García-Ramos & G, 2024)
S+(I ) is a complete coanalytic subset of S(I ).

Theorem
S+(I ) is a coanalytic subset of S(I ).

Theorem (Hurewicz)

The collection of countable compact subsets of I , is a complete coanalytic
subset of K (I ).

Proposition

There exists a continuous map ψ : K (I ) → S(I ) such that ψ(B) is a
CPMD system if and only if B is countable.
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Complexity of CPMD - Proof I

Proposition

There exists a continuous map ψ : K (I ) → S(I ) such that ψ(B) is a
CPMD system if and only if B is countable.

Proof.
For B ∈ K (I ) define C (B) as the collection of all intervals contiguous to
B , i.e, the collection of maximal connected components of I \ B .
For b ∈ B , let bZ be the point x ∈ IG such that xi = b for all i ∈ Z.
For J ∈ C (B) define

XJ = {x ∈ IZ : xi ∈ J, ∀i ∈ Z},

Define ψ : K (I ) → S(I ) by

ψ(B) =
⋃
b∈B

{bZ} ∪
⋃

J∈C(B)

XJ .
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Complexity of CPMD - Proof II

ψ(B) =
⋃
b∈B

{bZ} ∪
⋃

J∈C(B)

XJ .

Case I: B is countable. Let f : (Z, ψ(B)) → (Z,Y ) be a factor map. If
f |XJ

= constJ for all J ∈ C (B), then f (ψ(B)) is countable. As ψ(B) is
connected, f (ψ(B)) = {p} for some p ∈ Y and thus it is a trivial factor.
Thus assume there exists J ∈ C (B), so that f|XJ

is non-trivial. As
XJ = (J)Z ∼= IZ, then f (XJ) has positive mean dimension. Thus every
non-trivial factor of ψ(B) has positive mean dimension, i.e., ψ(B) is a
CPMD system.

Case II: B is uncountable. By the Cantor-Bendixson theorem, B contains
a set C ′ which is homeomorphic to the Cantor (ternary) set C. There is a
continuous, non-constant function f : I → I ("extended Devil’s staircase")
such that for every interval J ∈ C (B) f |J = constJ . Define a factor map,
π : (Z, ψ(B)) → (Z, I ) by π((xi )i∈Z) = f (x0) and Z acts on I as the
identity. Although the factor is non-trivial, mdim(Z, I ) = 0.
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