Local mean dimension theory for sofic group actions

Yonatan Gutman Institute of Mathematics Polish Academy of Sciences (IM PAN)

Based on joint work with Felipe García-Ramos.

arXiv:2401.08440

38th Summer Conference on Topology and its Applications (SUMTOPO 2024)

University of Coimbra

8-12.07.2024

Objects:

- Topological dynamical systems (t.d.s) (G, X), where: X - compact metrizable space.
 - G topological group.

 $G \times X \to X$ continuous s.t ex = x and h(gx) = (hg)x.

- When $G = \mathbb{Z}$, we write (X, T) where T is the generator of the \mathbb{Z} -action.
- $Y \subset X$ closed and G-invariant (GY = Y) is called a subsystem.
- (G, X) is called minimal if only subsystems are $Y = \emptyset$ and Y = X.
- (G, X) is called aperiodic (free) if $\exists x \in X gx = x$ implies g = e.

Morphisms:

$$\phi:(G,X)\to(G,Y)$$

where, $\phi : X \to Y$ - Equivariant continuous mapping ($\phi(gx) = g\phi(x)$, $\forall x \in X, g \in G$):

1

Special morphisms:

 ϕ is onto $\stackrel{\triangle}{\Leftrightarrow} \phi : (G, X) \twoheadrightarrow (G, Y) \stackrel{\triangle}{\Leftrightarrow} \phi$ is an extension or factor map ϕ is injective $\stackrel{\triangle}{\Leftrightarrow} \phi : (G, X) \hookrightarrow (G, Y) \stackrel{\triangle}{\Leftrightarrow} \phi$ is an (dynamical) embedding

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi : X \hookrightarrow [0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$\begin{split} \Phi : (X, \mathcal{T}) & \hookrightarrow & (([0, 1]^{\mathbb{N}})^{\mathbb{Z}}, \text{shift}) \\ & x & \mapsto & (\phi(\mathcal{T}^k x))_{k \in \mathbb{Z}} \end{split}$$

- Under which conditions is there an embedding into a *d*-cubical shift: $(X, T) \hookrightarrow (([0, 1]^d)^{\mathbb{Z}}, \text{shift}) (d \in \mathbb{N})?$
- Define the embedding dimension:

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi : X \hookrightarrow [0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$\begin{split} \Phi : (X, \mathcal{T}) & \hookrightarrow & (([0, 1]^{\mathbb{N}})^{\mathbb{Z}}, \text{shift}) \\ & x & \mapsto & (\phi(\mathcal{T}^k x))_{k \in \mathbb{Z}} \end{split}$$

- Under which conditions is there an embedding into a *d*-cubical shift: $(X, T) \hookrightarrow (([0, 1]^d)^{\mathbb{Z}}, \text{shift}) (d \in \mathbb{N})?$
- Define the embedding dimension:

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi : X \hookrightarrow [0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$egin{array}{rcl} \Phi:(X,T)&\hookrightarrow&(([0,1]^{\mathbb{N}})^{\mathbb{Z}},{
m shift})\ &x&\mapsto&(\phi(T^kx))_{k\in\mathbb{Z}} \end{array}$$

• Under which conditions is there an embedding into a *d*-cubical shift: $(X, T) \hookrightarrow (([0, 1]^d)^{\mathbb{Z}}, \text{shift}) (d \in \mathbb{N})?$

• Define the embedding dimension:

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi : X \hookrightarrow [0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$egin{array}{rcl} \Phi:(X,T)&\hookrightarrow&(([0,1]^{\mathbb{N}})^{\mathbb{Z}},{
m shift})\ &x&\mapsto&(\phi(T^kx))_{k\in\mathbb{Z}} \end{array}$$

- Under which conditions is there an embedding into a *d*-cubical shift: $(X, T) \hookrightarrow (([0, 1]^d)^{\mathbb{Z}}, \text{shift}) (d \in \mathbb{N})?$
- Define the embedding dimension:

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi : X \hookrightarrow [0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$egin{array}{rcl} \Phi:(X,T)&\hookrightarrow&(([0,1]^{\mathbb{N}})^{\mathbb{Z}},{
m shift})\ &x&\mapsto&(\phi(T^kx))_{k\in\mathbb{Z}} \end{array}$$

- Under which conditions is there an embedding into a *d*-cubical shift:
 (X, T) ↔ (([0, 1]^d)^ℤ, shift) (d ∈ N)?
- Define the embedding dimension:

Question (Auslander, 1988)

Let (X, T) be minimal. Is edim(X, T) = 1?

Theorem (Lindenstrauss-Weiss, 2000)

There exist (X, T) minimal such that edim(X, T) > 1.

Question (Auslander, 1988)

Let (X, T) be minimal. Is dim(X, T) = 1?

Theorem (Lindenstrauss-Weiss, 2000)

There exist (X, T) minimal such that edim(X, T) > 1.

Question (Auslander, 1988)

Let (X, T) be minimal. Is edim(X, T) = 1?

Theorem (Lindenstrauss-Weiss, 2000)

There exist (X, T) minimal such that edim(X, T) > 1.

- Let f : X → Y be a continuous map and ε > 0. Let d be a compatible metric on X. The map f is called an ε-embedding if diam f⁻¹(y) < ε for all y ∈ Y.
- Let widim_ε(X, d) be the minimal integer n ≥ 0 such that there exist an n-dimensional simplicial complex P and an ε-embedding f : X → P.
- (Lebesgue) $\dim(X) = \lim_{\epsilon \to 0} \operatorname{widim}_{\epsilon}(X, d)$

•
$$d_n(x,y) = \max_{0 \le i \le n-1} d(T^i x, T^i y)$$

• (Gromov) $\operatorname{mdim}(X, T) = \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\operatorname{widim}_{\epsilon}(X, d_n)}{n}$

- Let f : X → Y be a continuous map and ε > 0. Let d be a compatible metric on X. The map f is called an ε-embedding if diam f⁻¹(y) < ε for all y ∈ Y.
- Let widim_ε(X, d) be the minimal integer n ≥ 0 such that there exist an n-dimensional simplicial complex P and an ε-embedding f : X → P.
- (Lebesgue) $\dim(X) = \lim_{\epsilon \to 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_n(x, y) = \max_{0 \le i \le n-1} d(T^i x, T^i y)$
- (Gromov) $\operatorname{mdim}(X, T) = \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\operatorname{widim}_{\epsilon}(X, d_n)}{n}$

- Let f : X → Y be a continuous map and ε > 0. Let d be a compatible metric on X. The map f is called an ε-embedding if diam f⁻¹(y) < ε for all y ∈ Y.
- Let widim_ε(X, d) be the minimal integer n ≥ 0 such that there exist an n-dimensional simplicial complex P and an ε-embedding f : X → P.
- (Lebesgue) $\dim(X) = \lim_{\epsilon \to 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_n(x, y) = \max_{0 \le i \le n-1} d(T^i x, T^i y)$
- (Gromov) $\operatorname{mdim}(X, T) = \operatorname{lim}_{\epsilon \to 0} \operatorname{lim}_{n \to \infty} \frac{\operatorname{widim}_{\epsilon}(X, d_n)}{n}$

- Let f : X → Y be a continuous map and ε > 0. Let d be a compatible metric on X. The map f is called an ε-embedding if diam f⁻¹(y) < ε for all y ∈ Y.
- Let widim_ε(X, d) be the minimal integer n ≥ 0 such that there exist an n-dimensional simplicial complex P and an ε-embedding f : X → P.
- (Lebesgue) $\dim(X) = \lim_{\epsilon \to 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_n(x,y) = \max_{0 \le i \le n-1} d(T^i x, T^i y)$
- (Gromov) $| \operatorname{mdim}(X, T) = \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\operatorname{widim}_{\epsilon}(X, d_n)}{n}$

- Let f : X → Y be a continuous map and ε > 0. Let d be a compatible metric on X. The map f is called an ε-embedding if diam f⁻¹(y) < ε for all y ∈ Y.
- Let widim_ε(X, d) be the minimal integer n ≥ 0 such that there exist an n-dimensional simplicial complex P and an ε-embedding f : X → P.
- (Lebesgue) $\dim(X) = \lim_{\epsilon \to 0} \operatorname{widim}_{\epsilon}(X, d)$

•
$$d_n(x,y) = \max_{0 \le i \le n-1} d(T^i x, T^i y)$$

• (Gromov) $| \operatorname{mdim}(X, T) = \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\operatorname{widim}_{\epsilon}(X, d_n)}{n}$

- Let f : X → Y be a continuous map and ε > 0. Let d be a compatible metric on X. The map f is called an ε-embedding if diam f⁻¹(y) < ε for all y ∈ Y.
- Let widim_ε(X, d) be the minimal integer n ≥ 0 such that there exist an n-dimensional simplicial complex P and an ε-embedding f : X → P.
- (Lebesgue) $\dim(X) = \lim_{\epsilon \to 0} \operatorname{widim}_{\epsilon}(X, d)$

•
$$d_n(x,y) = \max_{0 \le i \le n-1} d(T^i x, T^i y)$$

• (Gromov) $\operatorname{mdim}(X, T) = \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\operatorname{widim}_{\epsilon}(X, d_n)}{n}$

- $\alpha = \{U_1, U_2, \dots, U_m\}$ is a finite open cover of X.
- ord(α) = max_{x \in X} $\sum_{U \in \alpha} 1_U(x) 1$
- A (finite) open cover β of X refines a (finite) open cover α of X if for every V ∈ β there is a U ∈ α such that V ⊂ U.
- $D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$
- dim $(X) = \sup_{\alpha} D(\alpha)$
- $\operatorname{mdim}(\alpha) = \lim_{n \to \infty} \frac{1}{n} \operatorname{D}(\bigvee_{k=0}^{n-1} T^k \alpha)$
- (Gromov) $\operatorname{mdim}(X, T) = \sup_{\alpha} \operatorname{mdim}(\alpha)$

•
$$\alpha = \{U_1, U_2, \dots, U_m\}$$
 is a finite open cover of X.

- ord(α) = max_{x \in X} $\sum_{U \in \alpha} 1_U(x) 1$
- A (finite) open cover β of X refines a (finite) open cover α of X if for every V ∈ β there is a U ∈ α such that V ⊂ U.
- $D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$
- dim $(X) = \sup_{\alpha} D(\alpha)$
- $\operatorname{mdim}(\alpha) = \lim_{n \to \infty} \frac{1}{n} \operatorname{D}(\bigvee_{k=0}^{n-1} T^k \alpha)$

• (Gromov)
$$\operatorname{mdim}(X, T) = \sup_{\alpha} \operatorname{mdim}(\alpha)$$

• $\alpha = \{U_1, U_2, \dots, U_m\}$ is a finite open cover of X.

• ord(
$$\alpha$$
) = max _{$x \in X$} $\sum_{U \in \alpha} 1_U(x) - 1$

- A (finite) open cover β of X refines a (finite) open cover α of X if for every V ∈ β there is a U ∈ α such that V ⊂ U.
- $D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$
- dim $(X) = \sup_{\alpha} D(\alpha)$
- $\operatorname{mdim}(\alpha) = \lim_{n \to \infty} \frac{1}{n} \operatorname{D}(\bigvee_{k=0}^{n-1} T^k \alpha)$

• (Gromov)
$$\operatorname{mdim}(X, T) = \sup_{\alpha} \operatorname{mdim}(\alpha)$$

- $\alpha = \{U_1, U_2, \dots, U_m\}$ is a finite open cover of X.
- $\operatorname{ord}(\alpha) = \max_{x \in X} \sum_{U \in \alpha} 1_U(x) 1$
- A (finite) open cover β of X refines a (finite) open cover α of X if for every V ∈ β there is a U ∈ α such that V ⊂ U.
- $D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$
- dim $(X) = \sup_{\alpha} D(\alpha)$
- $\operatorname{mdim}(\alpha) = \lim_{n \to \infty} \frac{1}{n} \operatorname{D}(\bigvee_{k=0}^{n-1} T^k \alpha)$

• (Gromov)
$$\operatorname{mdim}(X, T) = \sup_{\alpha} \operatorname{mdim}(\alpha)$$

- $\alpha = \{U_1, U_2, \dots, U_m\}$ is a finite open cover of X.
- $\operatorname{ord}(\alpha) = \max_{x \in X} \sum_{U \in \alpha} 1_U(x) 1$
- A (finite) open cover β of X refines a (finite) open cover α of X if for every V ∈ β there is a U ∈ α such that V ⊂ U.
- $D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$
- dim $(X) = \sup_{\alpha} D(\alpha)$
- $\operatorname{mdim}(\alpha) = \lim_{n \to \infty} \frac{1}{n} \operatorname{D}(\bigvee_{k=0}^{n-1} T^k \alpha)$

• (Gromov)
$$\operatorname{mdim}(X, T) = \sup_{\alpha} \operatorname{mdim}(\alpha)$$

• $\alpha = \{U_1, U_2, \dots, U_m\}$ is a finite open cover of X.

• ord(
$$\alpha$$
) = max _{$x \in X$} $\sum_{U \in \alpha} 1_U(x) - 1$

• A (finite) open cover β of X refines a (finite) open cover α of X if for every $V \in \beta$ there is a $U \in \alpha$ such that $V \subset U$.

•
$$D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$$

• dim
$$(X) = \sup_{\alpha} D(\alpha)$$

•
$$\operatorname{mdim}(\alpha) = \lim_{n \to \infty} \frac{1}{n} \operatorname{D}(\bigvee_{k=0}^{n-1} T^k \alpha)$$

• (Gromov)
$$\operatorname{mdim}(X, T) = \sup_{\alpha} \operatorname{mdim}(\alpha)$$

• $\alpha = \{U_1, U_2, \dots, U_m\}$ is a finite open cover of X.

• ord(
$$\alpha$$
) = max _{$x \in X$} $\sum_{U \in \alpha} 1_U(x) - 1$

• A (finite) open cover β of X refines a (finite) open cover α of X if for every $V \in \beta$ there is a $U \in \alpha$ such that $V \subset U$.

•
$$D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$$

• dim
$$(X) = \sup_{\alpha} D(\alpha)$$

•
$$\operatorname{mdim}(\alpha) = \lim_{n \to \infty} \frac{1}{n} \operatorname{D}(\bigvee_{k=0}^{n-1} T^k \alpha)$$

• (Gromov) mdim
$$(X, T) = \sup_{\alpha} mdim(\alpha)$$

• $\alpha = \{U_1, U_2, \dots, U_m\}$ is a finite open cover of X.

• ord(
$$\alpha$$
) = max_{x \in X} $\sum_{U \in \alpha} 1_U(x) - 1$

 A (finite) open cover β of X refines a (finite) open cover α of X if for every V ∈ β there is a U ∈ α such that V ⊂ U.

•
$$D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$$

• dim
$$(X) = \sup_{\alpha} D(\alpha)$$

• mdim $(\alpha) = \lim_{n \to \infty} \frac{1}{n} D(\bigvee_{k=0}^{n-1} T^k \alpha)$

• (Gromov)
$$\operatorname{\mathsf{mdim}}(X, T) = \sup_{\alpha} \operatorname{\mathsf{mdim}}(\alpha)$$

- $\mathsf{mdim}(([0,1]^d)^{\mathbb{Z}}, \mathrm{shift}) = d$
- If $Y \subset X$ is a subsystem then $mdim(Y, T) \leq mdim(X, T)$
- $\operatorname{edim}(X, T) \ge \operatorname{mdim}(X, T)$
- Lindenstrauss and Weiss constructed a minimal system (X, T) with mdim(X, T) > 1, so edim(X, T) > 1.

Theorem (G-Tsukamoto, 2020)

- $\mathsf{mdim}(([0,1]^d)^{\mathbb{Z}}, \mathrm{shift}) = d$
- If $Y \subset X$ is a subsystem then $mdim(Y, T) \leq mdim(X, T)$
- $\operatorname{edim}(X, T) \ge \operatorname{mdim}(X, T)$
- Lindenstrauss and Weiss constructed a minimal system (X, T) with mdim(X, T) > 1, so edim(X, T) > 1.

Theorem (G-Tsukamoto, 2020)

• $\mathsf{mdim}(([0,1]^d)^{\mathbb{Z}}, \mathrm{shift}) = d$

- If $Y \subset X$ is a subsystem then $mdim(Y, T) \leq mdim(X, T)$
- $\operatorname{edim}(X, T) \ge \operatorname{mdim}(X, T)$
- Lindenstrauss and Weiss constructed a minimal system (X, T) with mdim(X, T) > 1, so edim(X, T) > 1.

Theorem (G-Tsukamoto, 2020)

Mean dimension obstruction for embedding

- $\mathsf{mdim}(([0,1]^d)^{\mathbb{Z}}, \mathrm{shift}) = d$
- If $Y \subset X$ is a subsystem then $mdim(Y, T) \leq mdim(X, T)$
- $\operatorname{edim}(X, T) \ge \operatorname{mdim}(X, T)$
- Lindenstrauss and Weiss constructed a minimal system (X, T) with mdim(X, T) > 1, so edim(X, T) > 1.

Theorem (G-Tsukamoto, 2020)

- $\mathsf{mdim}(([0,1]^d)^{\mathbb{Z}}, \mathrm{shift}) = d$
- If $Y \subset X$ is a subsystem then $mdim(Y, T) \leq mdim(X, T)$
- $\operatorname{edim}(X, T) \ge \operatorname{mdim}(X, T)$

 Lindenstrauss and Weiss constructed a minimal system (X, T) with mdim(X, T) > 1, so edim(X, T) > 1.

Theorem (G-Tsukamoto, 2020)

- $\mathsf{mdim}(([0,1]^d)^{\mathbb{Z}}, \mathrm{shift}) = d$
- If $Y \subset X$ is a subsystem then $mdim(Y, T) \leq mdim(X, T)$
- $\operatorname{edim}(X, T) \ge \operatorname{mdim}(X, T)$
- Lindenstrauss and Weiss constructed a minimal system (X, T) with mdim(X, T) > 1, so edim(X, T) > 1.

Theorem (G-Tsukamoto, 2020)

- $\mathsf{mdim}(([0,1]^d)^{\mathbb{Z}}, \mathrm{shift}) = d$
- If $Y \subset X$ is a subsystem then $mdim(Y, T) \leq mdim(X, T)$
- $\operatorname{edim}(X, T) \ge \operatorname{mdim}(X, T)$
- Lindenstrauss and Weiss constructed a minimal system (X, T) with mdim(X, T) > 1, so edim(X, T) > 1.

Theorem (G-Tsukamoto, 2020)

- An open cover of X is standard if it is composed of two non-dense open sets.
- An open cover (U, V) distinguishes $(x, y) \in X \times X$ if $x \notin \overline{V}$ and $y \notin \overline{U}$. Such a cover is always standard.
- Conversely, every standard cover distinguishes some $(x, y) \in X \times X$.
- Let (X, T) be a t.d.s. A pair (x, y) ∈ X × X is said to be a mean dimension pair if for every standard open cover, α, which distinguishes (x, y), it holds

 $\operatorname{mdim}(\alpha) > 0.$

Theorem (García-Ramos & G, 2024)

- An open cover of X is standard if it is composed of two non-dense open sets.
- An open cover (U, V) distinguishes (x, y) ∈ X × X if x ∉ V and y ∉ U. Such a cover is always standard.
- Conversely, every standard cover distinguishes some $(x, y) \in X \times X$.
- Let (X, T) be a t.d.s. A pair (x, y) ∈ X × X is said to be a mean dimension pair if for every standard open cover, α, which distinguishes (x, y), it holds

 $\operatorname{mdim}(\alpha) > 0.$

Theorem (García-Ramos & G, 2024)

- An open cover of X is standard if it is composed of two non-dense open sets.
- An open cover (U, V) distinguishes (x, y) ∈ X × X if x ∉ V and y ∉ U. Such a cover is always standard.
- Conversely, every standard cover distinguishes some $(x, y) \in X \times X$.
- Let (X, T) be a t.d.s. A pair (x, y) ∈ X × X is said to be a mean dimension pair if for every standard open cover, α, which distinguishes (x, y), it holds

 $\operatorname{mdim}(\alpha) > 0.$

Theorem (García-Ramos & G, 2024)

- An open cover of X is standard if it is composed of two non-dense open sets.
- An open cover (U, V) distinguishes (x, y) ∈ X × X if x ∉ V and y ∉ U. Such a cover is always standard.
- Conversely, every standard cover distinguishes some $(x, y) \in X \times X$.
- Let (X, T) be a t.d.s. A pair (x, y) ∈ X × X is said to be a mean dimension pair if for every standard open cover, α, which distinguishes (x, y), it holds

 $\operatorname{mdim}(\alpha) > 0.$

Theorem (García-Ramos & G, 2024)

- An open cover of X is standard if it is composed of two non-dense open sets.
- An open cover (U, V) distinguishes (x, y) ∈ X × X if x ∉ V and y ∉ U. Such a cover is always standard.
- Conversely, every standard cover distinguishes some $(x, y) \in X \times X$.
- Let (X, T) be a t.d.s. A pair (x, y) ∈ X × X is said to be a mean dimension pair if for every standard open cover, α, which distinguishes (x, y), it holds

 $\operatorname{mdim}(\alpha) > 0.$

Theorem (García-Ramos & G, 2024)

 $\operatorname{mdim}(X, T) > 0$ iff there are mean dimension pairs.

(X, T) is a completely positive mean dimension (CPMD) system if every non-trivial factor of (X, T) has positive mean dimension.

Theorem (Lindenstrauss-Weiss 2000)

 $(([0,1]^d)^{\mathbb{Z}}, \text{shift})$ is a completely positive mean dimension (CPMD) system.

Proof.

Essentially the Brouwer fixed point theorem...

(X, T) is a completely positive mean dimension (CPMD) system if every non-trivial factor of (X, T) has positive mean dimension.

Theorem (Lindenstrauss-Weiss 2000)

 $(([0,1]^d)^{\mathbb{Z}}, \text{shift})$ is a completely positive mean dimension (CPMD) system.

Proof.

Essentially the Brouwer fixed point theorem...

(X, T) is a completely positive mean dimension (CPMD) system if every non-trivial factor of (X, T) has positive mean dimension.

Theorem (Lindenstrauss-Weiss 2000)

 $(([0,1]^d)^{\mathbb{Z}}, \text{shift})$ is a completely positive mean dimension (CPMD) system.

Proof.

Essentially the Brouwer fixed point theorem...

A Polish space is a separable topological space that can be metrized using a complete metric. A subset of a Polish space is analytic if it is the continuous image of a Borel subset of a Polish space and coanalytic if it is the complement of an analytic set.

Basic Facts:

All Borel subsets of a Polish space are both analytic and coanalytic. Moreover, if a set is both analytic and coanalytic, then it is Borel. However, in every uncountable Polish space there are analytic, and hence coanalytic, sets which are not Borel.

Heuristic:

Loosely speaking, if a set is analytic or coanalytic but not Borel, it means that it cannot be described with countable information.

A Polish space is a separable topological space that can be metrized using a complete metric. A subset of a Polish space is analytic if it is the continuous image of a Borel subset of a Polish space and coanalytic if it is the complement of an analytic set.

Basic Facts:

All Borel subsets of a Polish space are both analytic and coanalytic. Moreover, if a set is both analytic and coanalytic, then it is Borel. However, in every uncountable Polish space there are analytic, and hence coanalytic, sets which are not Borel.

Heuristic:

Loosely speaking, if a set is analytic or coanalytic but not Borel, it means that it cannot be described with countable information.

A Polish space is a separable topological space that can be metrized using a complete metric. A subset of a Polish space is analytic if it is the continuous image of a Borel subset of a Polish space and coanalytic if it is the complement of an analytic set.

Basic Facts:

All Borel subsets of a Polish space are both analytic and coanalytic. Moreover, if a set is both analytic and coanalytic, then it is Borel. However, in every uncountable Polish space there are analytic, and hence coanalytic, sets which are not Borel.

Heuristic:

Loosely speaking, if a set is analytic or coanalytic but not Borel, it means that it cannot be described with countable information.

- Let (X, T) be a t.d.s, then $(X, T) \hookrightarrow (Q^{\mathbb{Z}}, \text{shift})$, where $Q = [0, 1]^{\mathbb{N}}$ is the Hilbert cube.
- Let S(Q) = {X ⊂ Q^Z : X is closed, non-empty and shift-invariant} equipped with the Hausdorff metric. This is a Baire space which parameterizes all dynamical systems.

 $\mathcal{S}_+(Q) = \{X \in \mathcal{S}(Q) : (X, \mathrm{shift}) \text{ is a CPMD system}\}.$

- Let (X, T) be a t.d.s, then $(X, T) \hookrightarrow (Q^{\mathbb{Z}}, \text{shift})$, where $Q = [0, 1]^{\mathbb{N}}$ is the Hilbert cube.
- Let S(Q) = {X ⊂ Q^Z : X is closed, non-empty and shift-invariant} equipped with the Hausdorff metric. This is a Baire space which parameterizes all dynamical systems.

 $\mathcal{S}_+(Q) = \{X \in \mathcal{S}(Q) : (X, \mathrm{shift}) \text{ is a CPMD system}\}.$

- Let (X, T) be a t.d.s, then $(X, T) \hookrightarrow (Q^{\mathbb{Z}}, \text{shift})$, where $Q = [0, 1]^{\mathbb{N}}$ is the Hilbert cube.
- Let S(Q) = {X ⊂ Q^Z : X is closed, non-empty and shift-invariant} equipped with the Hausdorff metric. This is a Baire space which parameterizes all dynamical systems.

 $S_+(Q) = \{X \in S(Q) : (X, \text{shift}) \text{ is a CPMD system}\}.$

- Let (X, T) be a t.d.s, then $(X, T) \hookrightarrow (Q^{\mathbb{Z}}, \text{shift})$, where $Q = [0, 1]^{\mathbb{N}}$ is the Hilbert cube.
- Let S(Q) = {X ⊂ Q^Z : X is closed, non-empty and shift-invariant} equipped with the Hausdorff metric. This is a Baire space which parameterizes all dynamical systems.

 $\mathcal{S}_+(Q) = \{X \in \mathcal{S}(Q) : (X, \mathrm{shift}) \text{ is a CPMD system}\}.$

۲

$\mathcal{S}_+(Q) = \{X \in \mathcal{S}(Q) : (X, \mathrm{shift}) \text{ is a CPMD system}\}.$

Definition

A coanalytic subset \mathcal{A} of a Polish space \mathcal{X} is complete coanalytic if for every coanalytic set \mathcal{B} of a Polish space \mathcal{Y} , there exists a Borel function $f: \mathcal{Y} \to \mathcal{X}$ such that $f^{-1}(\mathcal{A}) = \mathcal{B}$.

Theorem (García-Ramos & G, 2024)

The set $S_+(Q)$ is a complete coanalytic subset of S(Q), in particular not Borel.

Remark

$$\mathcal{S}_+(Q) = \{X \in \mathcal{S}(Q) : (X, \mathrm{shift}) \text{ is a CPMD system}\}.$$

A coanalytic subset \mathcal{A} of a Polish space \mathcal{X} is complete coanalytic if for every coanalytic set \mathcal{B} of a Polish space \mathcal{Y} , there exists a Borel function $f: \mathcal{Y} \to \mathcal{X}$ such that $f^{-1}(\mathcal{A}) = \mathcal{B}$.

Theorem (García-Ramos & G, 2024)

The set $S_+(Q)$ is a complete coanalytic subset of S(Q), in particular not Borel.

Remark

$$\mathcal{S}_+(Q) = \{X \in \mathcal{S}(Q) : (X, \mathrm{shift}) \text{ is a CPMD system}\}.$$

A coanalytic subset \mathcal{A} of a Polish space \mathcal{X} is complete coanalytic if for every coanalytic set \mathcal{B} of a Polish space \mathcal{Y} , there exists a Borel function $f: \mathcal{Y} \to \mathcal{X}$ such that $f^{-1}(\mathcal{A}) = \mathcal{B}$.

Theorem (García-Ramos & G, 2024)

The set $S_+(Q)$ is a complete coanalytic subset of S(Q), in particular not Borel.

Remark

$$\mathcal{S}_+(Q) = \{X \in \mathcal{S}(Q) : (X, \mathrm{shift}) \text{ is a CPMD system}\}.$$

A coanalytic subset \mathcal{A} of a Polish space \mathcal{X} is complete coanalytic if for every coanalytic set \mathcal{B} of a Polish space \mathcal{Y} , there exists a Borel function $f: \mathcal{Y} \to \mathcal{X}$ such that $f^{-1}(\mathcal{A}) = \mathcal{B}$.

Theorem (García-Ramos & G, 2024)

The set $S_+(Q)$ is a complete coanalytic subset of S(Q), in particular not Borel.

Remark

Theorem (García-Ramos & G, 2024)

The set $S_+(Q)$ is a complete coanalytic subset of S(Q).

Theorem

 $S_+(Q)$ is a coanalytic subset of S(Q).

Let K(X) be the space of all non-empty compact subsets of X. Consider the diagonal map $\triangle : I \hookrightarrow Q = I^{\mathbb{N}}, x \mapsto (x, x, ...)$. This induces a map $S(I) \hookrightarrow S(Q), A \mapsto \triangle(A)$. Note $A \cong \triangle(A)$ as \mathbb{Z} -systems. Therefore it is enough to prove

Theorem

Theorem (García-Ramos & G, 2024)

The set $S_+(Q)$ is a complete coanalytic subset of S(Q).

Theorem

 $S_+(Q)$ is a coanalytic subset of S(Q).

Let K(X) be the space of all non-empty compact subsets of X. Consider the diagonal map $\triangle : I \hookrightarrow Q = I^{\mathbb{N}}, x \mapsto (x, x, ...)$. This induces a map $\mathcal{S}(I) \hookrightarrow \mathcal{S}(Q), A \mapsto \triangle(A)$. Note $A \cong \triangle(A)$ as \mathbb{Z} -systems. Therefore it is enough to prove

Theorem

Theorem (García-Ramos & G, 2024)

The set $S_+(Q)$ is a complete coanalytic subset of S(Q).

Theorem

 $S_+(Q)$ is a coanalytic subset of S(Q).

Let K(X) be the space of all non-empty compact subsets of X. Consider the diagonal map $\triangle : I \hookrightarrow Q = I^{\mathbb{N}}, x \mapsto (x, x, ...)$. This induces a map $\mathcal{S}(I) \hookrightarrow \mathcal{S}(Q), A \mapsto \triangle(A)$. Note $A \cong \triangle(A)$ as \mathbb{Z} -systems. Therefore it is enough to prove

Theorem

Theorem (García-Ramos & G, 2024)

The set $S_+(Q)$ is a complete coanalytic subset of S(Q).

Theorem

 $S_+(Q)$ is a coanalytic subset of S(Q).

Let K(X) be the space of all non-empty compact subsets of X. Consider the diagonal map $\triangle : I \hookrightarrow Q = I^{\mathbb{N}}, x \mapsto (x, x, ...)$. This induces a map $\mathcal{S}(I) \hookrightarrow \mathcal{S}(Q), A \mapsto \triangle(A)$. Note $A \cong \triangle(A)$ as \mathbb{Z} -systems. Therefore it is enough to prove

Theorem

Theorem (García-Ramos & G, 2024)

 $S_+(I)$ is a complete coanalytic subset of S(I).

Theorem

 $\mathcal{S}_+(I)$ is a coanalytic subset of $\mathcal{S}(I)$.

Theorem (Hurewicz)

The collection of countable compact subsets of I, is a complete coanalytic subset of K(I).

Proposition

Theorem (García-Ramos & G, 2024)

 $S_+(I)$ is a complete coanalytic subset of S(I).

Theorem

 $S_+(I)$ is a coanalytic subset of S(I).

Theorem (Hurewicz)

The collection of countable compact subsets of I, is a complete coanalytic subset of K(I).

Proposition

Theorem (García-Ramos & G, 2024)

 $S_+(I)$ is a complete coanalytic subset of S(I).

Theorem

 $S_+(I)$ is a coanalytic subset of S(I).

Theorem (Hurewicz)

The collection of countable compact subsets of I, is a complete coanalytic subset of K(I).

Proposition

Theorem (García-Ramos & G, 2024)

 $S_+(I)$ is a complete coanalytic subset of S(I).

Theorem

$$\mathcal{S}_+(I)$$
 is a coanalytic subset of $\mathcal{S}(I)$.

Theorem (Hurewicz)

The collection of countable compact subsets of I, is a complete coanalytic subset of K(I).

Proposition

Complexity of CPMD - Proof I

Proposition

There exists a continuous map $\psi \colon K(I) \to S(I)$ such that $\psi(B)$ is a CPMD system if and only if B is countable.

Proof.

For $B \in K(I)$ define C(B) as the collection of all intervals contiguous to B, i.e., the collection of maximal connected components of $I \setminus B$. For $b \in B$, let $b^{\mathbb{Z}}$ be the point $x \in I^G$ such that $x_i = b$ for all $i \in \mathbb{Z}$. For $J \in C(B)$ define

$$X_J = \{x \in I^{\mathbb{Z}} : x_i \in \overline{J}, \ \forall i \in \mathbb{Z}\},\$$

$$\psi(B) = \bigcup_{b \in B} \{b^{\mathbb{Z}}\} \cup \bigcup_{J \in C(B)} X_J.$$

There exists a continuous map $\psi \colon K(I) \to S(I)$ such that $\psi(B)$ is a CPMD system if and only if B is countable.

Proof.

For $B \in K(I)$ define C(B) as the collection of all intervals contiguous to B, i.e, the collection of maximal connected components of $I \setminus B$. For $b \in B$, let $b^{\mathbb{Z}}$ be the point $x \in I^{G}$ such that $x_{i} = b$ for all $i \in \mathbb{Z}$. For $J \in C(B)$ define

$$X_J = \{ x \in I^{\mathbb{Z}} : x_i \in \overline{J}, \ \forall i \in \mathbb{Z} \},$$

$$\psi(B) = \bigcup_{b \in B} \{ b^{\mathbb{Z}} \} \cup \bigcup_{J \in C(B)} X_J.$$

There exists a continuous map $\psi \colon K(I) \to S(I)$ such that $\psi(B)$ is a CPMD system if and only if B is countable.

Proof.

For $B \in K(I)$ define C(B) as the collection of all intervals contiguous to B, i.e, the collection of maximal connected components of $I \setminus B$. For $b \in B$, let $b^{\mathbb{Z}}$ be the point $x \in I^G$ such that $x_i = b$ for all $i \in \mathbb{Z}$. For $J \in C(B)$ define

$$X_J = \{x \in I^{\mathbb{Z}} : x_i \in \overline{J}, \ \forall i \in \mathbb{Z}\},$$

$$\psi(B) = \bigcup_{b \in B} \{ b^{\mathbb{Z}} \} \cup \bigcup_{I \in C(B)} X_J.$$

There exists a continuous map $\psi \colon K(I) \to S(I)$ such that $\psi(B)$ is a CPMD system if and only if B is countable.

Proof.

For $B \in K(I)$ define C(B) as the collection of all intervals contiguous to B, i.e., the collection of maximal connected components of $I \setminus B$. For $b \in B$, let $b^{\mathbb{Z}}$ be the point $x \in I^G$ such that $x_i = b$ for all $i \in \mathbb{Z}$. For $J \in C(B)$ define

$$X_J = \{x \in I^{\mathbb{Z}} : x_i \in \overline{J}, \ \forall i \in \mathbb{Z}\},$$

$$\psi(B) = \bigcup_{b \in B} \{ b^{\mathbb{Z}} \} \cup \bigcup_{I \in C(B)} X_J.$$

There exists a continuous map $\psi \colon K(I) \to S(I)$ such that $\psi(B)$ is a CPMD system if and only if B is countable.

Proof.

For $B \in K(I)$ define C(B) as the collection of all intervals contiguous to B, i.e., the collection of maximal connected components of $I \setminus B$. For $b \in B$, let $b^{\mathbb{Z}}$ be the point $x \in I^G$ such that $x_i = b$ for all $i \in \mathbb{Z}$. For $J \in C(B)$ define

$$X_J = \{x \in I^{\mathbb{Z}} : x_i \in \overline{J}, \ \forall i \in \mathbb{Z}\},$$

$$\psi(B) = \bigcup_{b \in B} \{b^{\mathbb{Z}}\} \cup \bigcup_{J \in C(B)} X_J.$$

Complexity of CPMD - Proof II

$$\psi(B) = \bigcup_{b \in B} \{b^{\mathbb{Z}}\} \cup \bigcup_{J \in C(B)} X_J.$$

<u>Case I: B is countable</u>. Let $f : (\mathbb{Z}, \psi(B)) \to (\mathbb{Z}, Y)$ be a factor map. If $f|_{X_J} = \text{const}_J$ for all $J \in C(B)$, then $f(\psi(B))$ is countable. As $\psi(B)$ is connected, $f(\psi(B)) = \{p\}$ for some $p \in Y$ and thus it is a trivial factor. Thus assume there exists $J \in C(B)$, so that $f_{|X_J|}$ is non-trivial. As $X_J = (\overline{J})^{\mathbb{Z}} \cong I^{\mathbb{Z}}$, then $f(X_J)$ has positive mean dimension. Thus every non-trivial factor of $\psi(B)$ has positive mean dimension, i.e., $\psi(B)$ is a CPMD system.

Complexity of CPMD - Proof II

$$\psi(B) = \bigcup_{b \in B} \{b^{\mathbb{Z}}\} \cup \bigcup_{J \in C(B)} X_J.$$

<u>Case I: B is countable</u>. Let $f : (\mathbb{Z}, \psi(B)) \to (\mathbb{Z}, Y)$ be a factor map. If $f|_{X_J} = \text{const}_J$ for all $J \in C(B)$, then $f(\psi(B))$ is countable. As $\psi(B)$ is connected, $f(\psi(B)) = \{p\}$ for some $p \in Y$ and thus it is a trivial factor. Thus assume there exists $J \in C(B)$, so that $f_{|X_J}$ is non-trivial. As $X_J = (\overline{J})^{\mathbb{Z}} \cong I^{\mathbb{Z}}$, then $f(X_J)$ has positive mean dimension. Thus every non-trivial factor of $\psi(B)$ has positive mean dimension, i.e., $\psi(B)$ is a CPMD system.

$$\psi(B) = \bigcup_{b \in B} \{b^{\mathbb{Z}}\} \cup \bigcup_{J \in C(B)} X_J.$$

$$\psi(B) = \bigcup_{b \in B} \{b^{\mathbb{Z}}\} \cup \bigcup_{J \in C(B)} X_J.$$

$$\psi(B) = \bigcup_{b \in B} \{b^{\mathbb{Z}}\} \cup \bigcup_{J \in C(B)} X_J.$$

$$\psi(B) = \bigcup_{b \in B} \{b^{\mathbb{Z}}\} \cup \bigcup_{J \in C(B)} X_J.$$