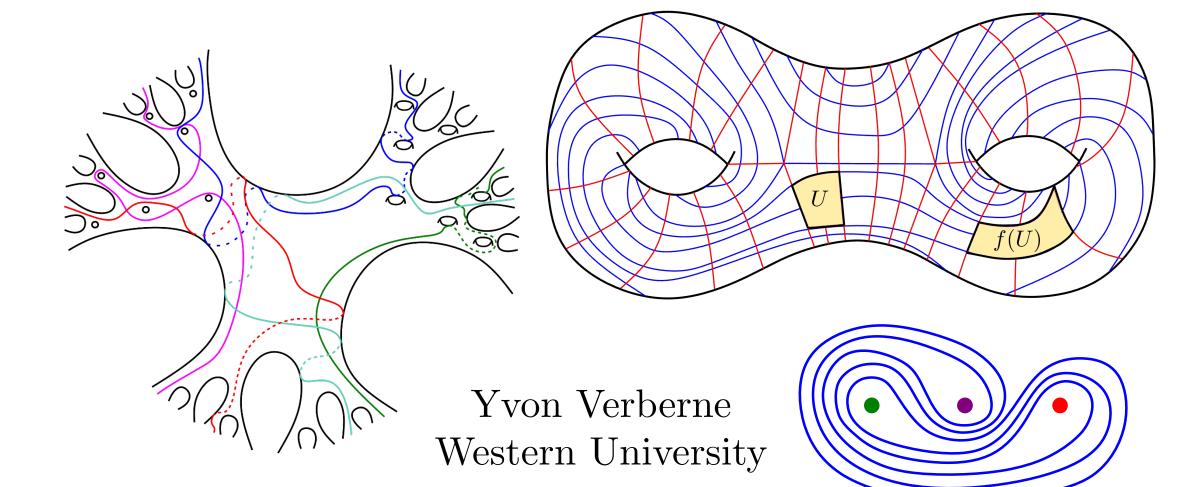
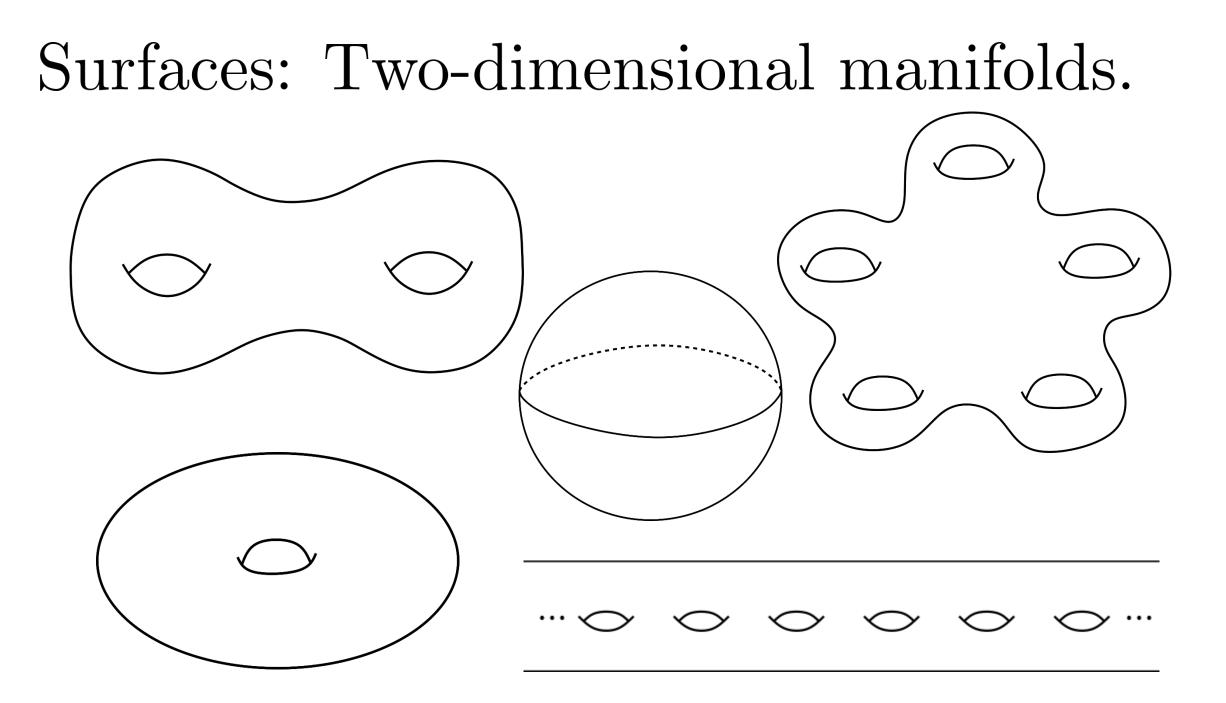
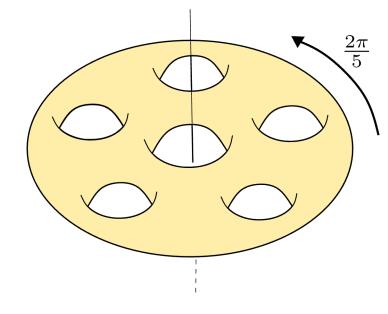
Pseudo-Anosov Homeomorphisms

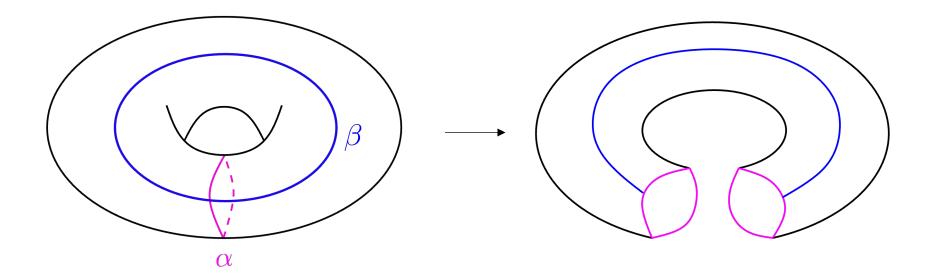


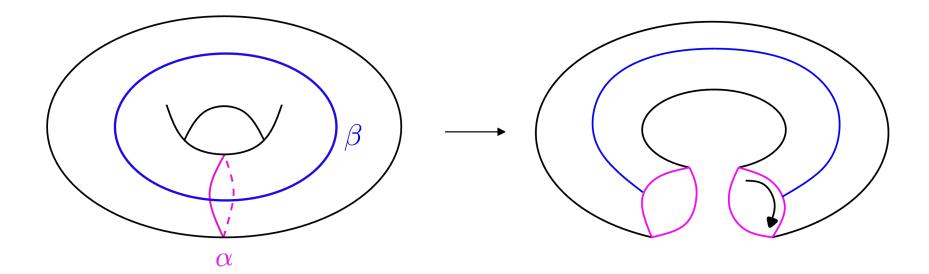


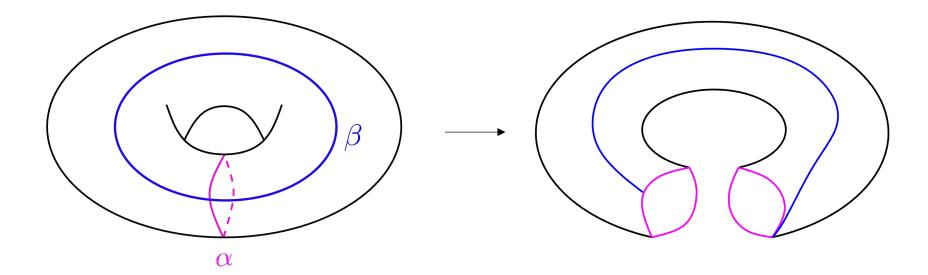
MCG(S) = Homeo(S)/Homotopy

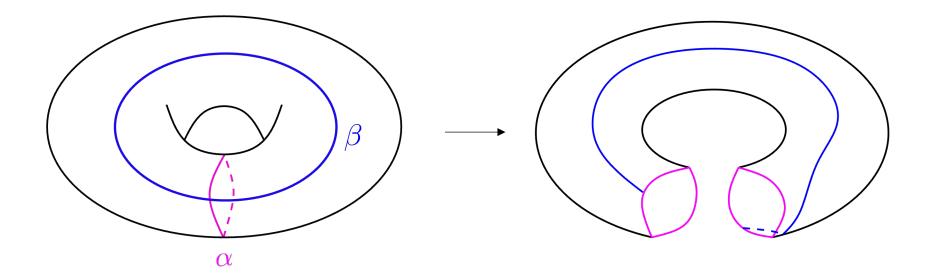


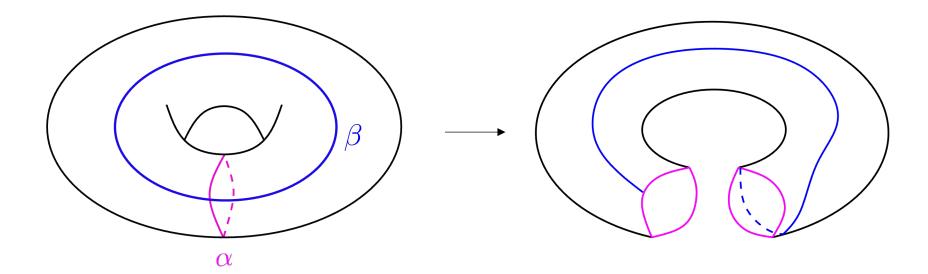
"Group of symmetries of a surface"

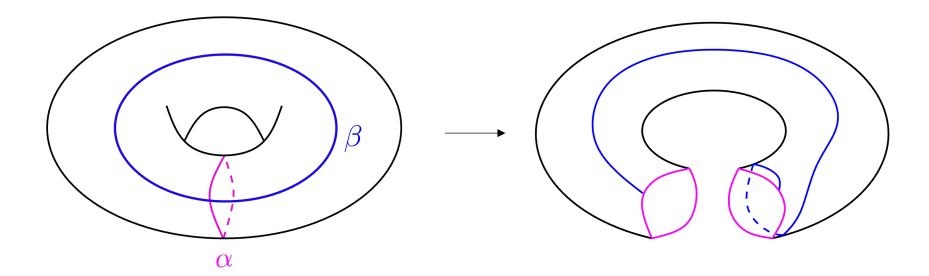


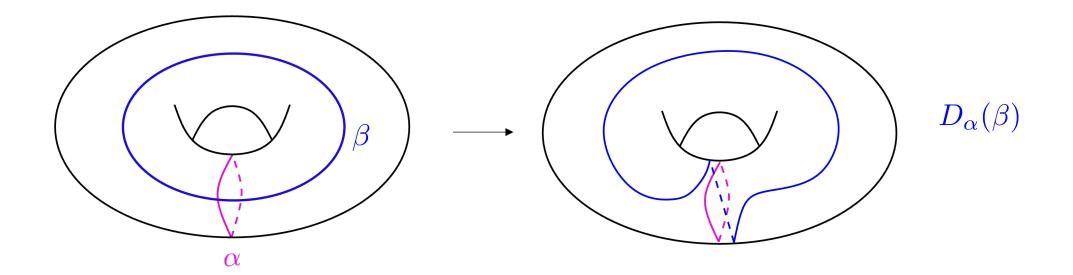






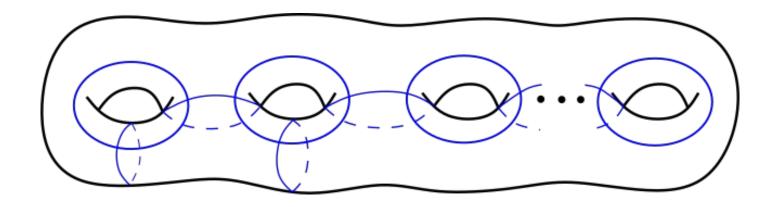






Dehn (1938) – Lickorish (1964): The mapping class group is generated by finitely many Dehn twists.

Humphries (1979): Require twists about 2g + 1 curves for a surface of genus g.



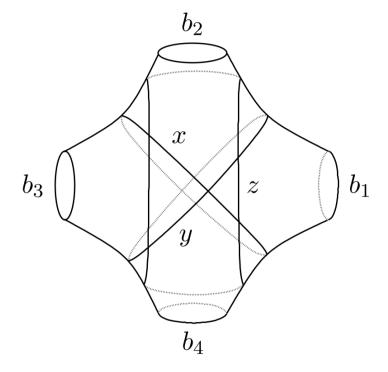
Fact: Dehn twists about nonseparating curves are all conjugate.

Fact: Dehn twists about nonseparating curves are all conjugate.

 \rightsquigarrow each maps to same element h.

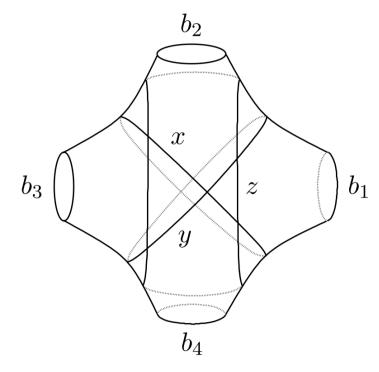
Fact: Dehn twists about nonseparating curves are all conjugate.

 \rightsquigarrow each maps to same element h.

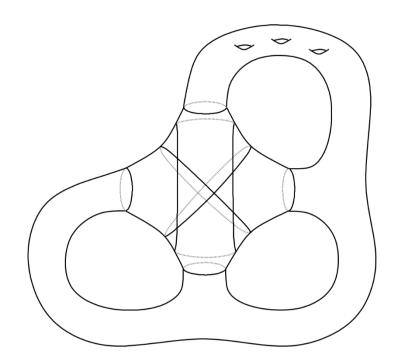


Lantern Relation: $D_x D_y D_z = D_{b_1} D_{b_2} D_{b_3} D_{b_4}$

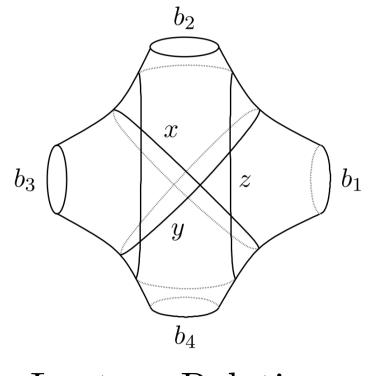
Fact: Dehn twists about nonseparating curves are all conjugate. \rightsquigarrow each maps to same element h.



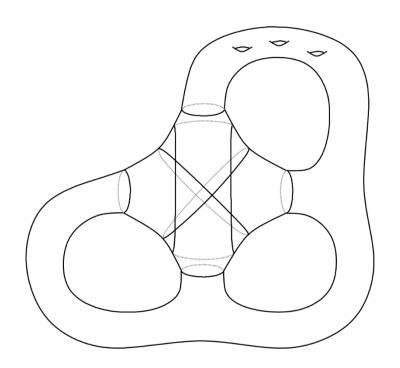
Lantern Relation: $D_x D_y D_z = D_{b_1} D_{b_2} D_{b_3} D_{b_4}$



Fact: Dehn twists about nonseparating curves are all conjugate. \rightsquigarrow each maps to same element h.



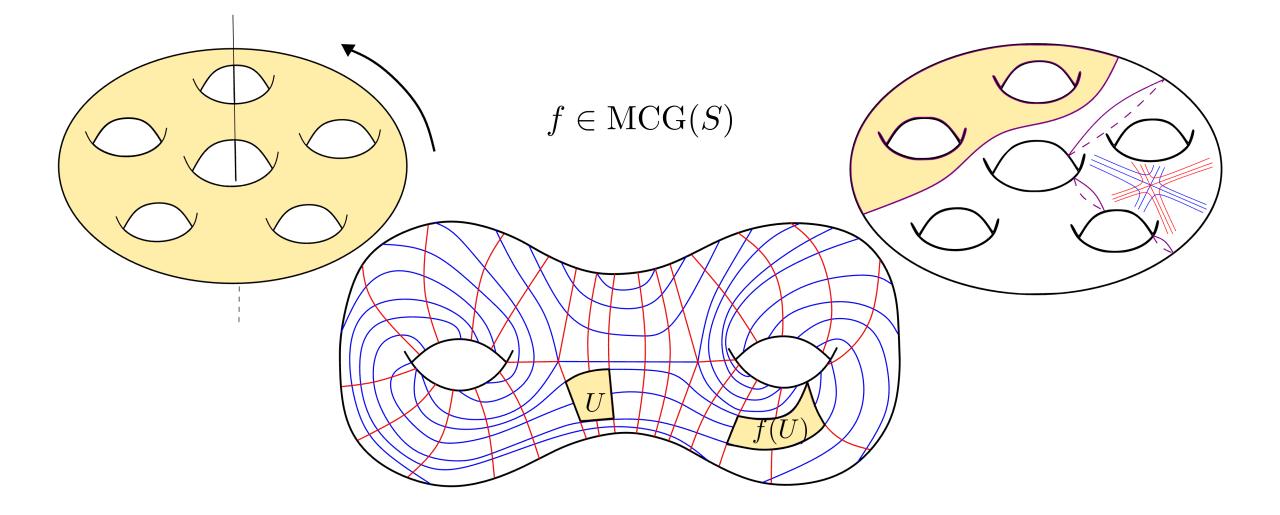
Lantern Relation: $D_x D_y D_z = D_{b_1} D_{b_2} D_{b_3} D_{b_4}$



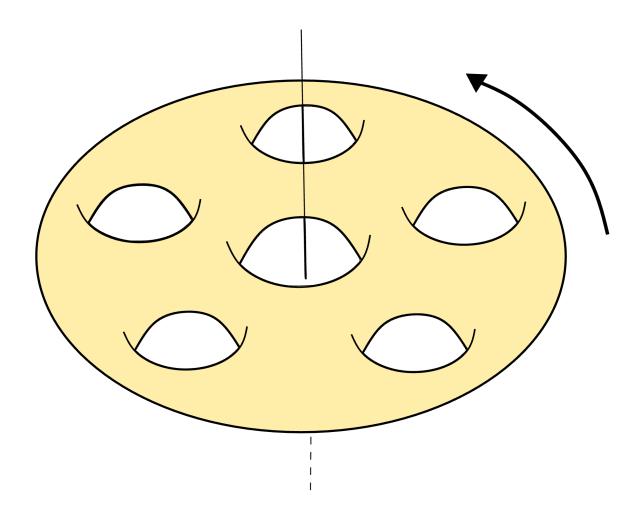
 $\implies h^3 = h^4$ i.e. *h* is trivial

Types of Mapping Classes

Nielsen–Thurston Classification

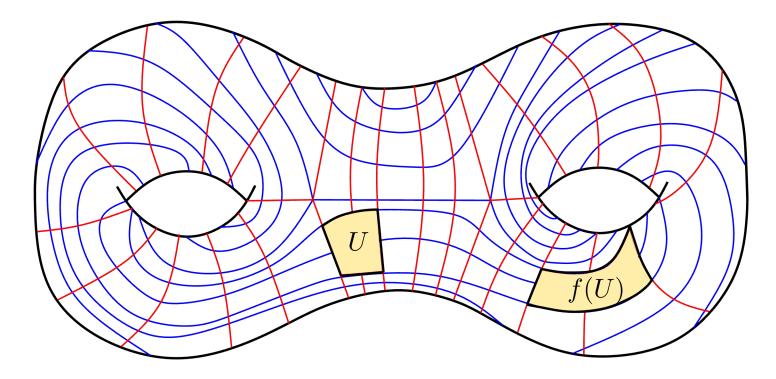


Periodic



f has finite order

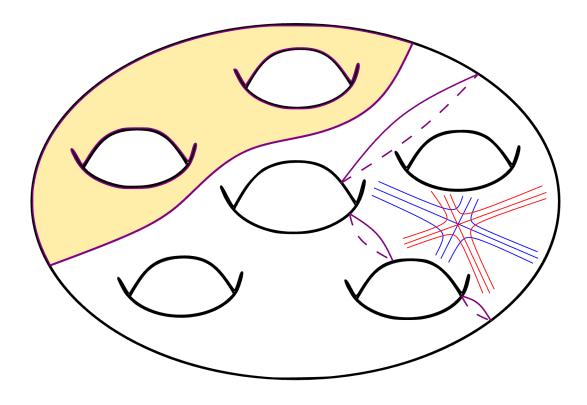
Pseudo-Anosov



Thurston (1976): \exists a number $\lambda > 1$ and a pair of foliations \mathcal{F}^{u} and $\mathcal{F}^{\mathfrak{s}}$ such that $f(\mathcal{F}^{u}) = \lambda \mathcal{F}^{u}$ and $f(\mathcal{F}^{\mathfrak{s}}) = \lambda^{-1} \mathcal{F}^{\mathfrak{s}}$.

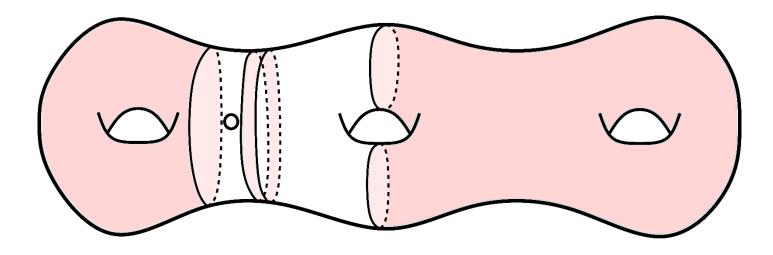
f maps no curve back to itself

Reducible

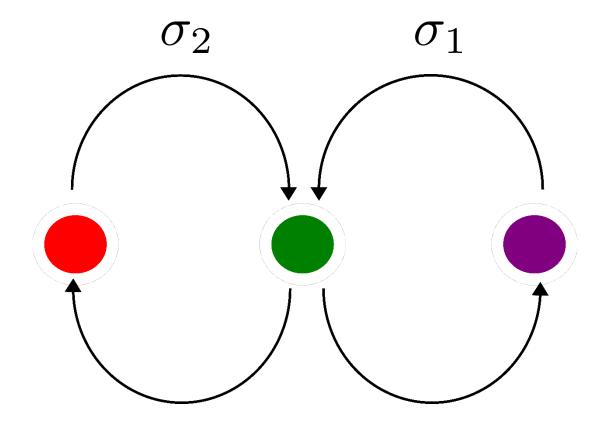


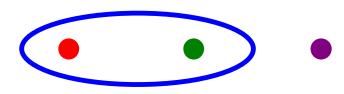
There is a set of disjoint curves fixed by some power of f

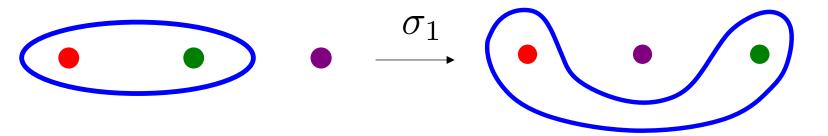
"Jordan Form"



Normal form of $f^k \in MCG(S)$: Each subsurface is fixed. Shaded regions are either pseudo-Anosov components or Dehn-twists. Unshaded regions are fixed.





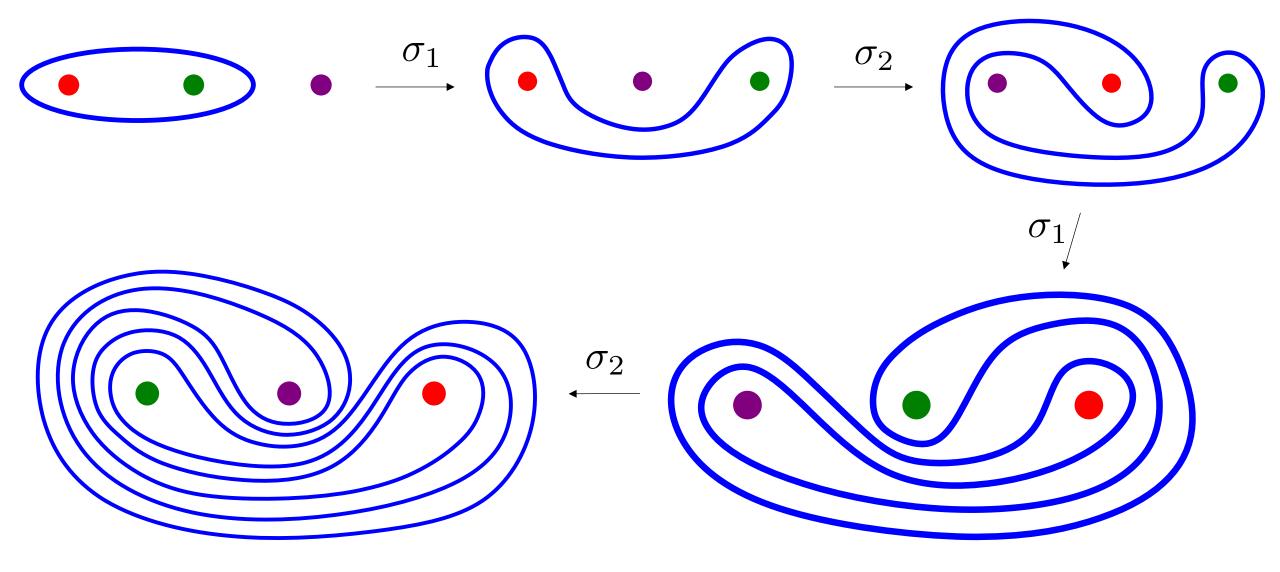


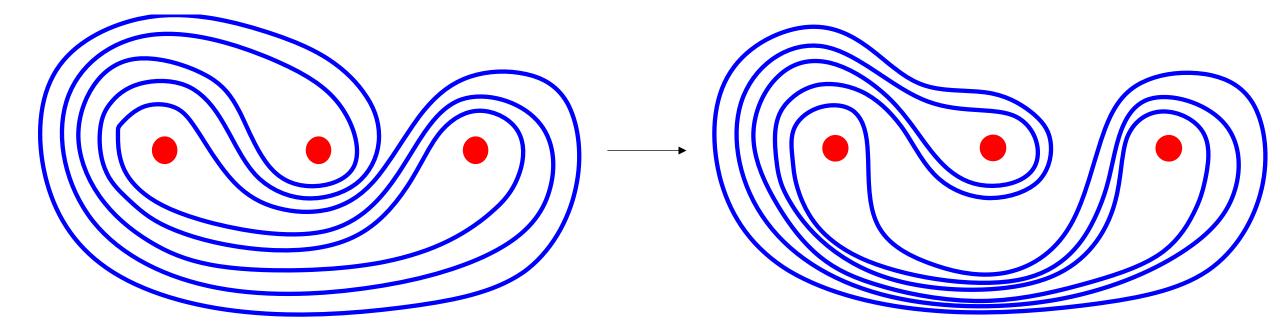
• $\xrightarrow{\sigma_1}$ (• • • - σ_2 •)

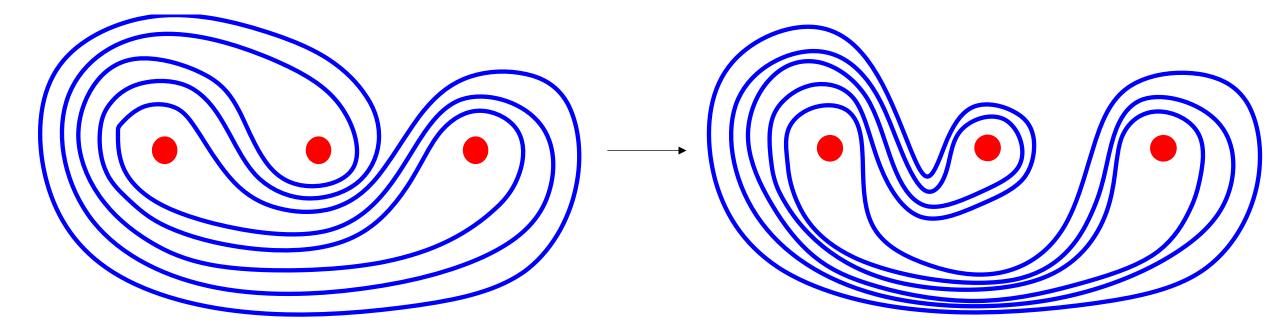
 $\sigma_1 \longrightarrow$ σ_2 ' / •) –

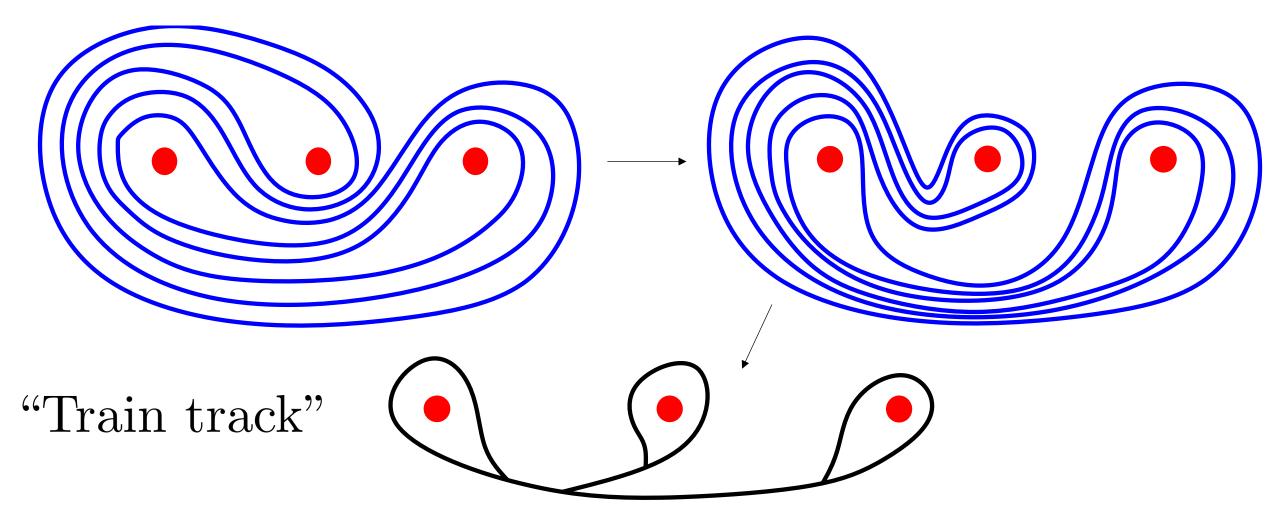
 σ_1

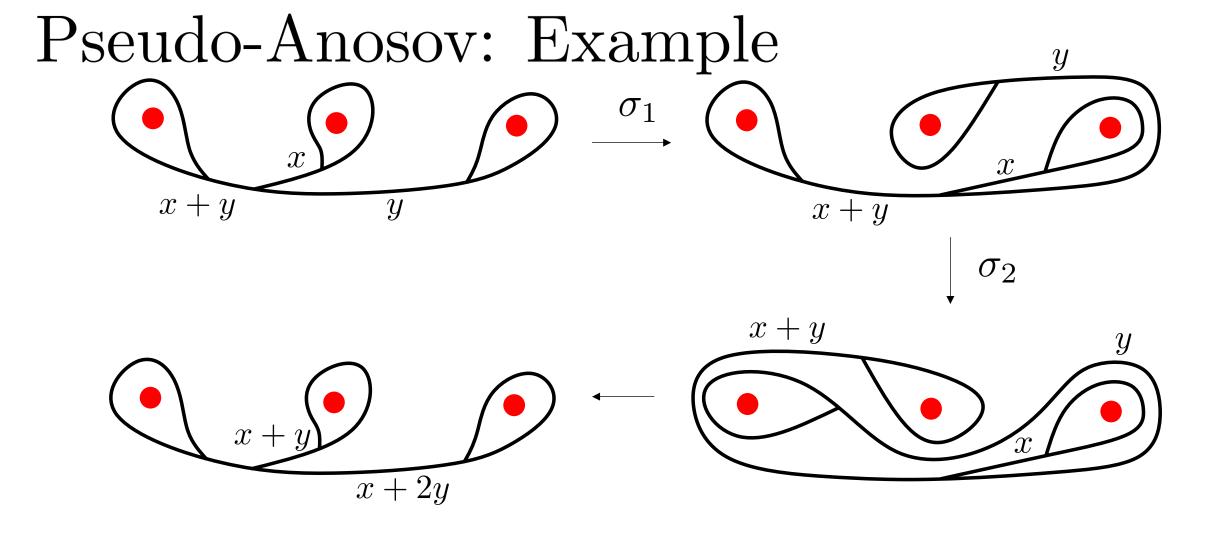


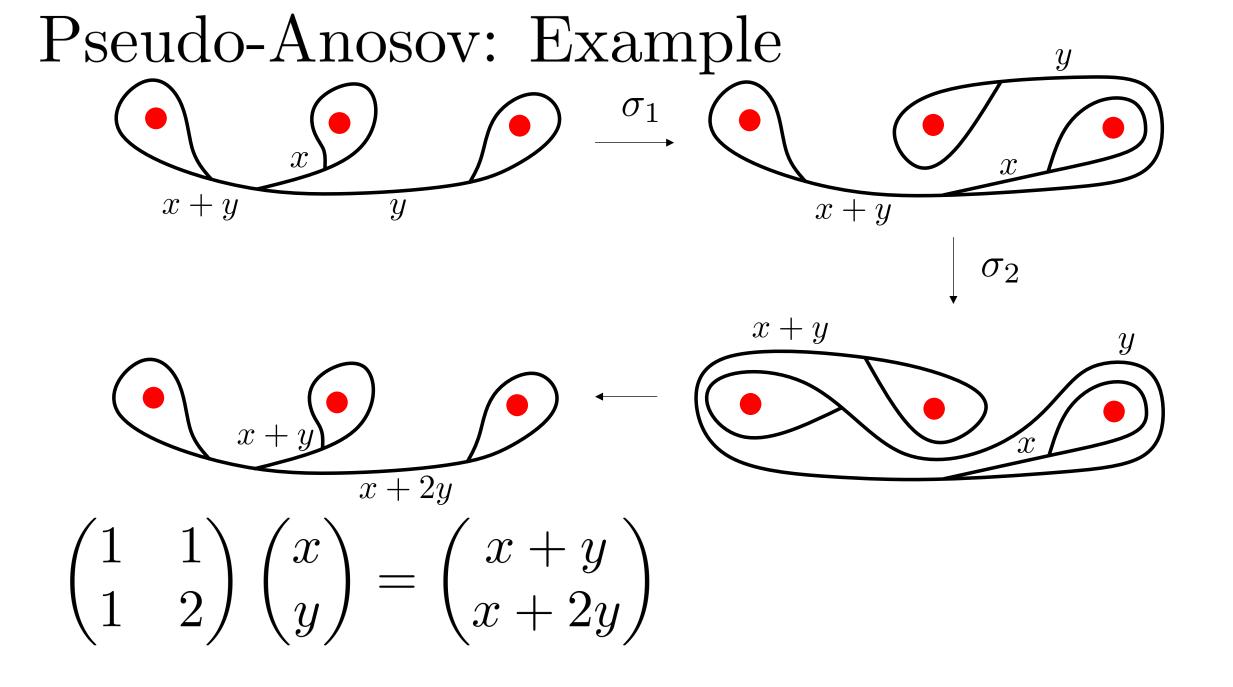


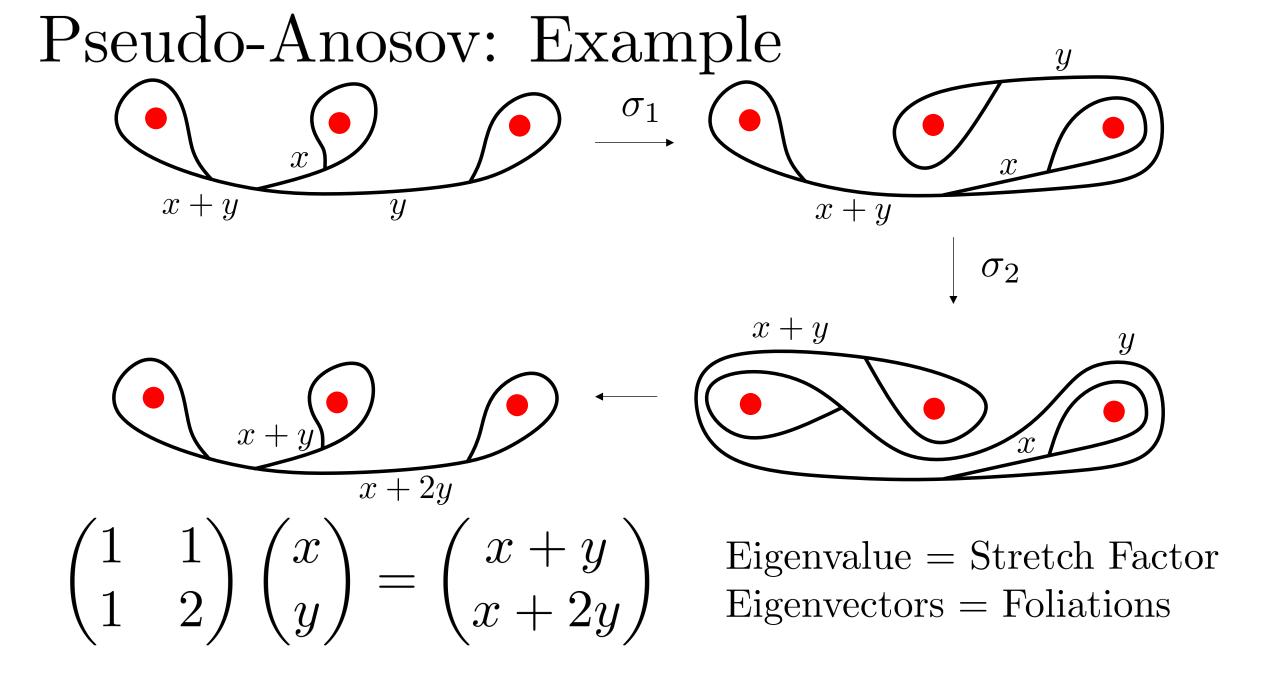


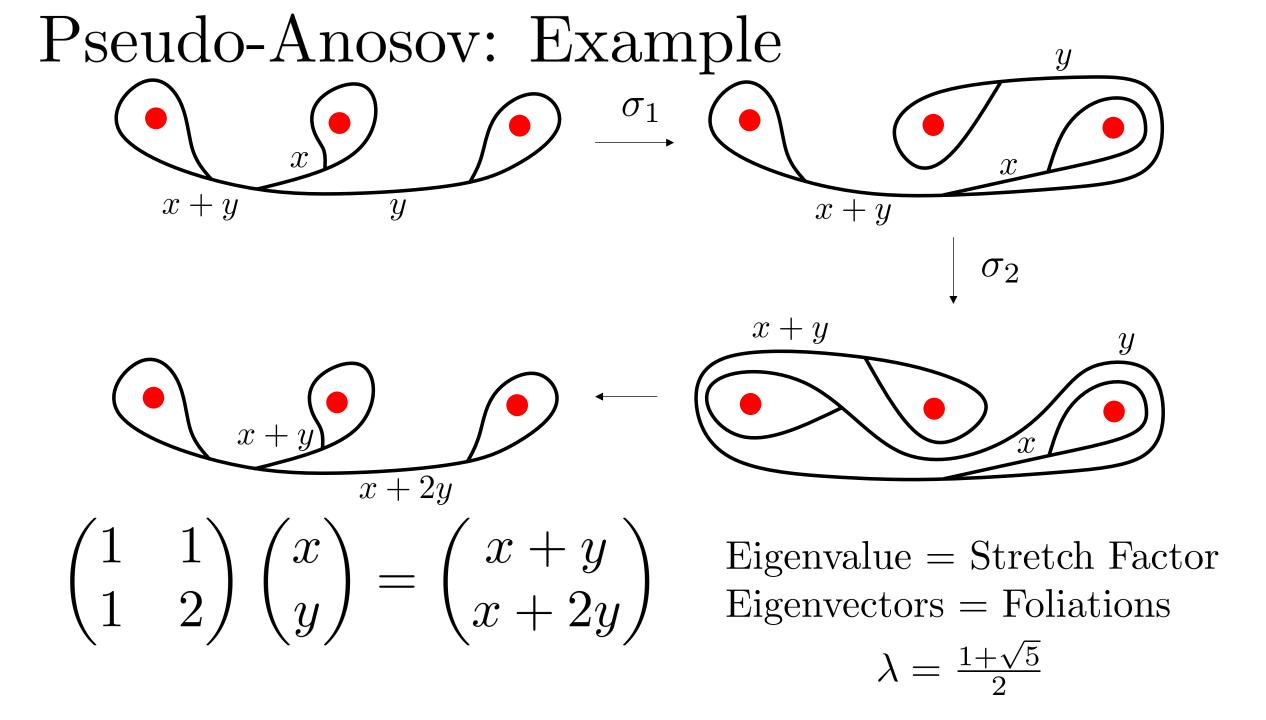


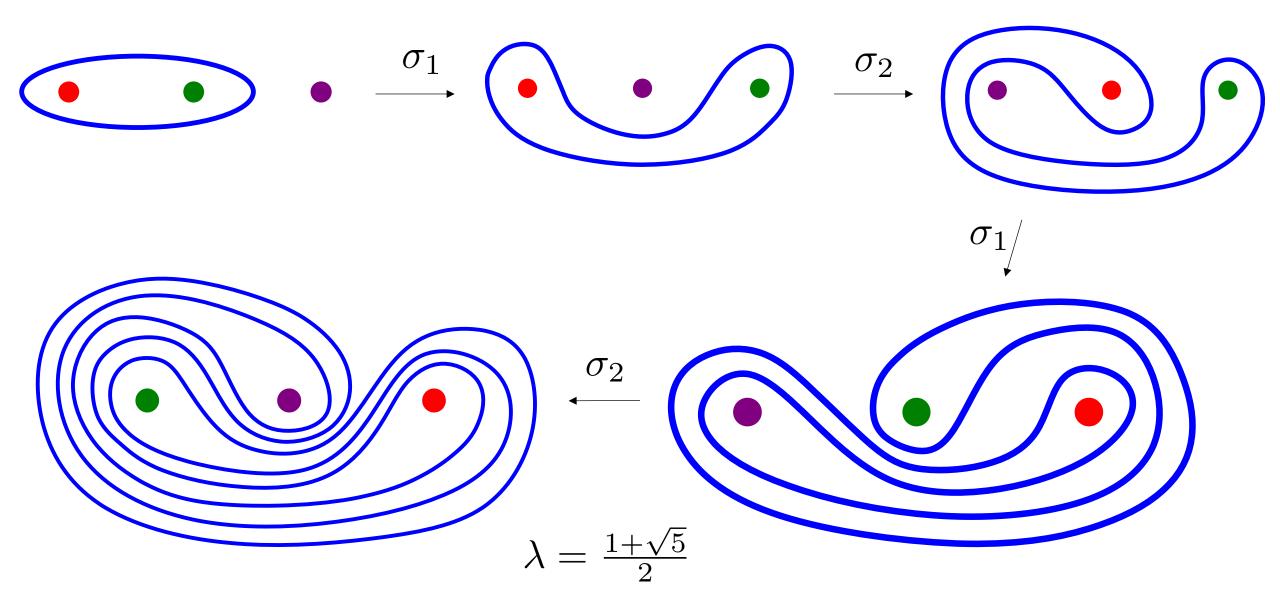


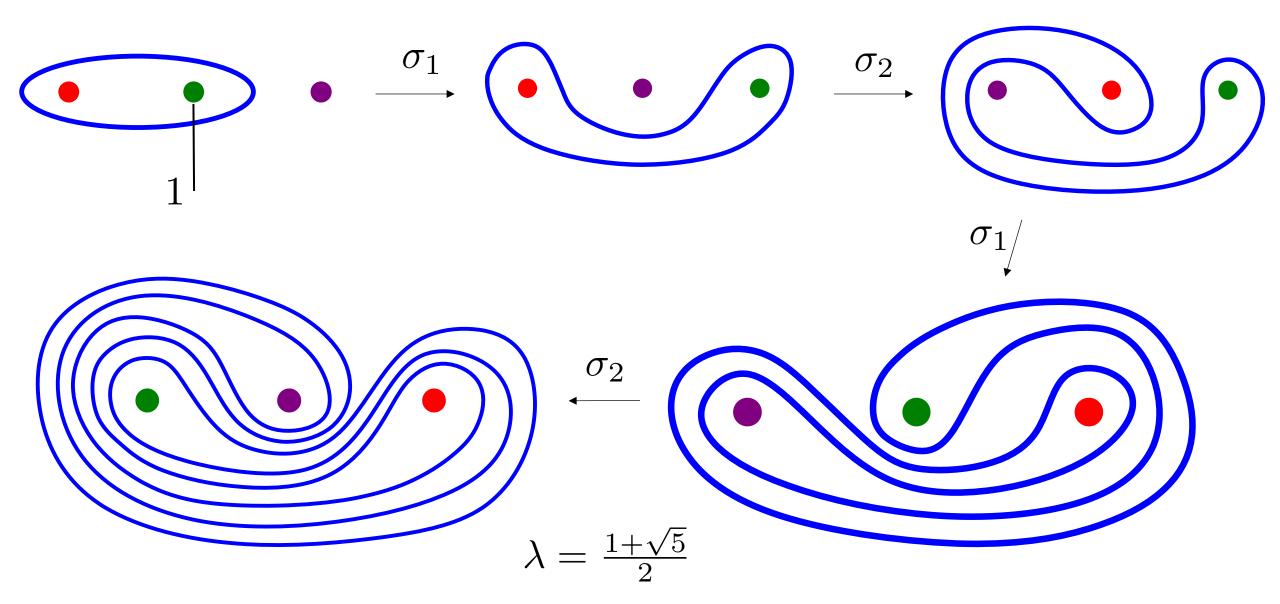


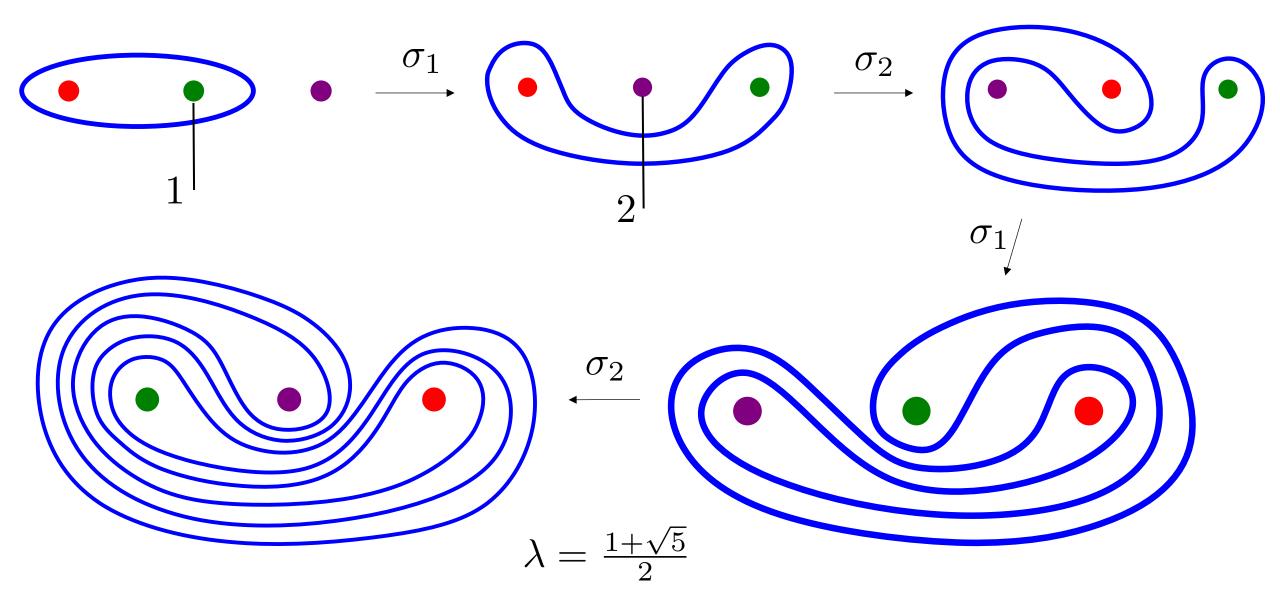


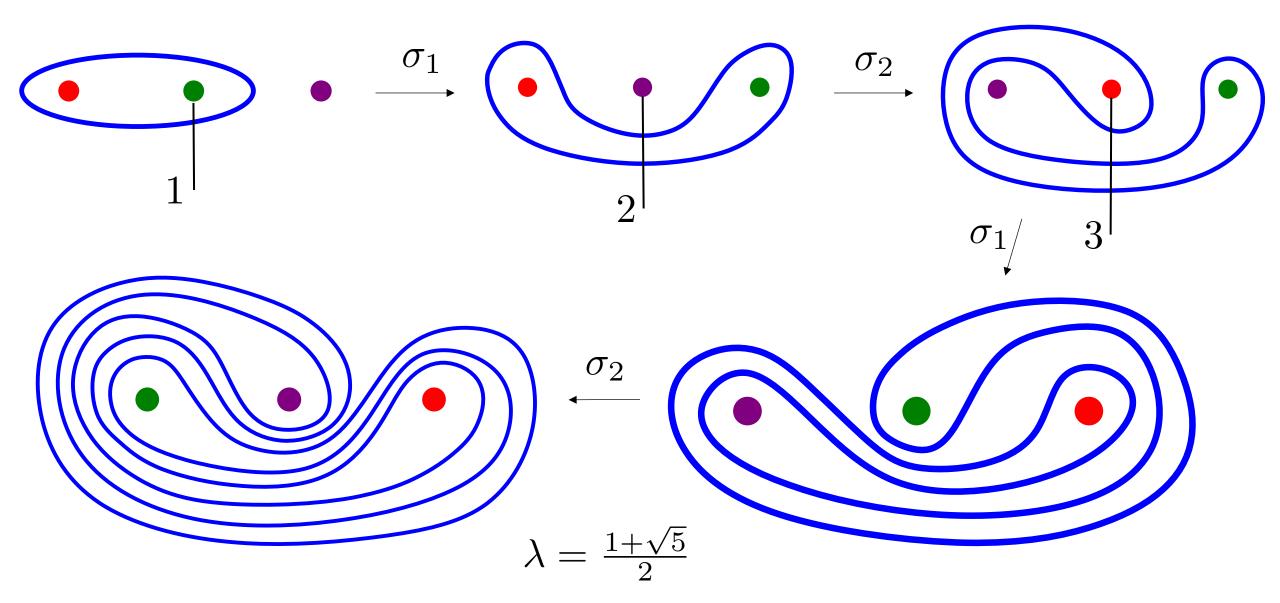


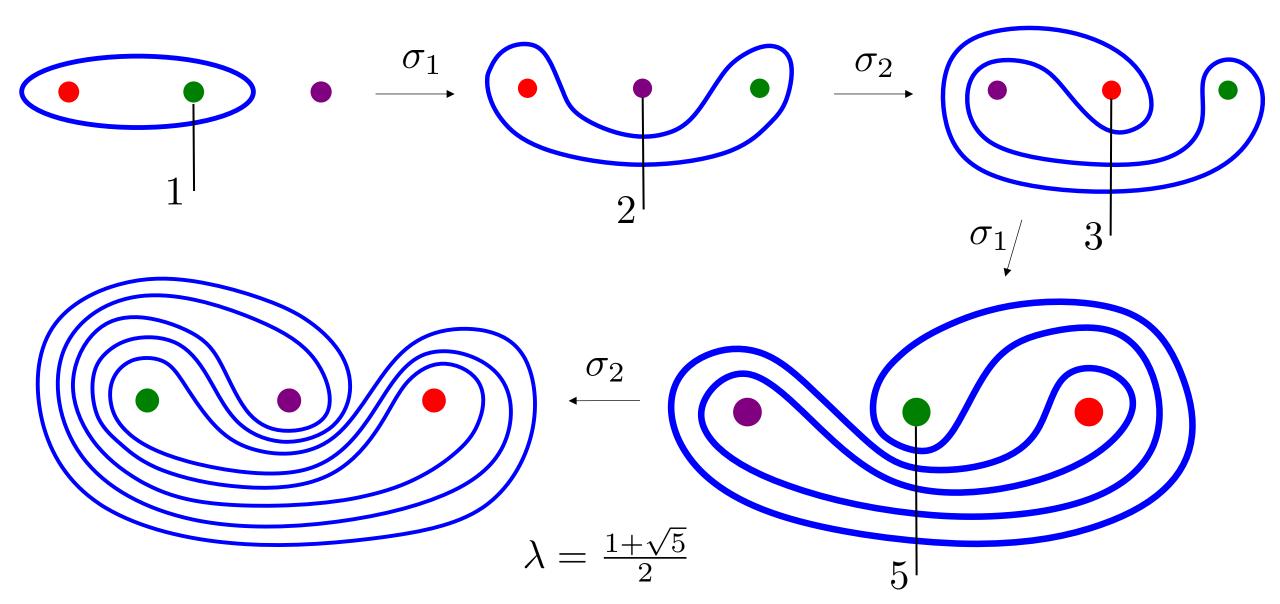


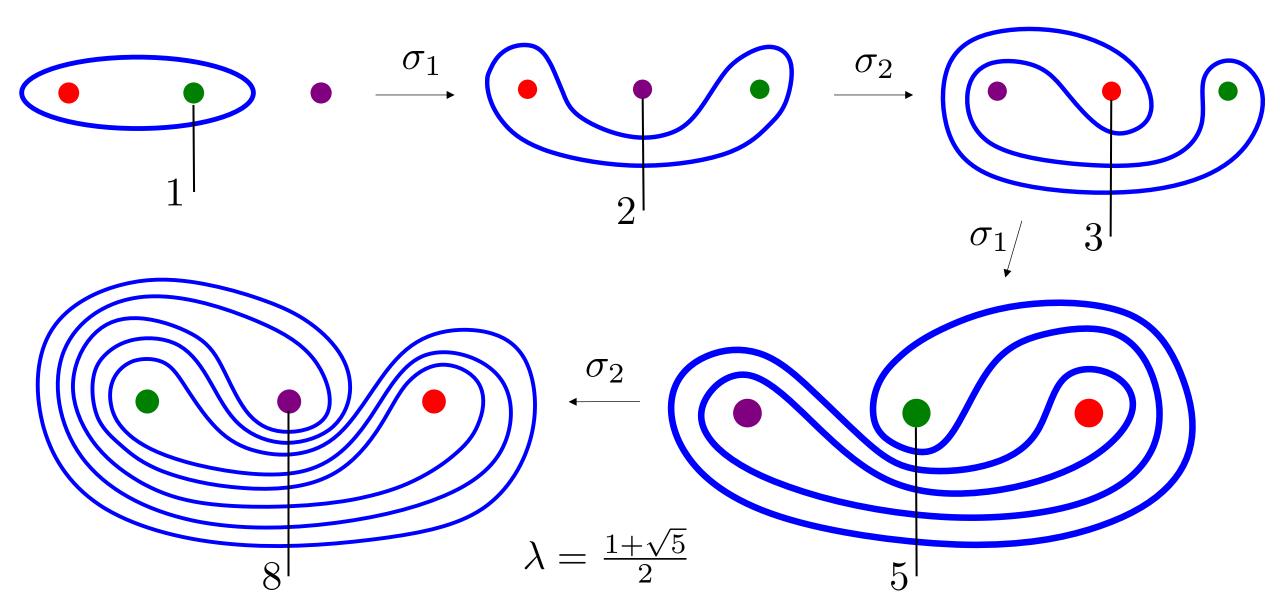




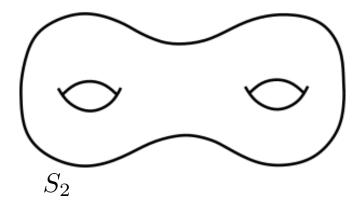




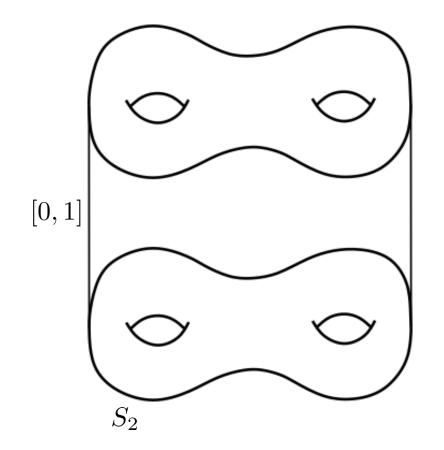


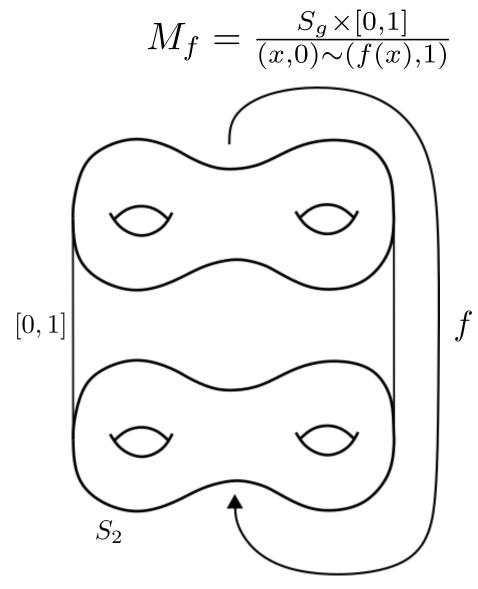


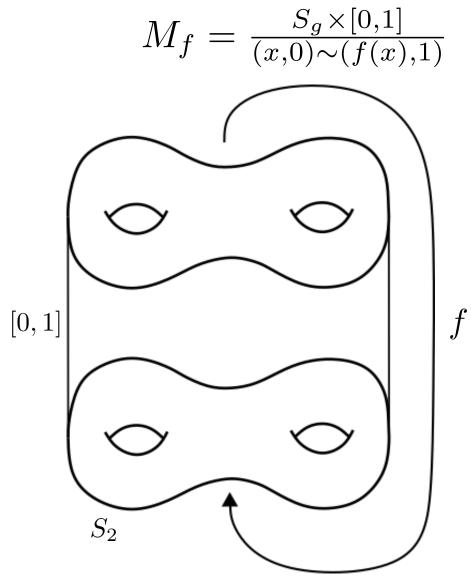
 $M_f = \frac{S_g \times [0,1]}{(x,0) \sim (f(x),1)}$



$$M_f = \frac{S_g \times [0,1]}{(x,0) \sim (f(x),1)}$$







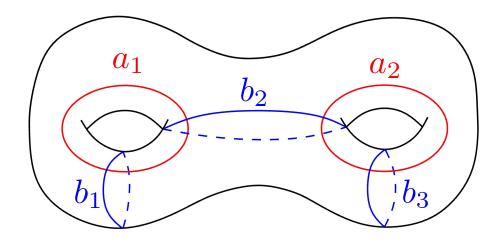
Thurston: $g \ge 2$, then

- f periodic $\iff M_f$ admits metric locally isometric to $\mathbb{H}^2 \times \mathbb{R}$
- f reducible $\iff M_f$ contains an incompressible torus
- f pseudo-Anosov $\iff M_f$ admits a hyperbolic metric

A multicurve in S is the union of a finite collection of disjoint simple closed curves in S

A and B are filling multicurves if the complement of $A \cup B$ is a union of disks and once punctured disks

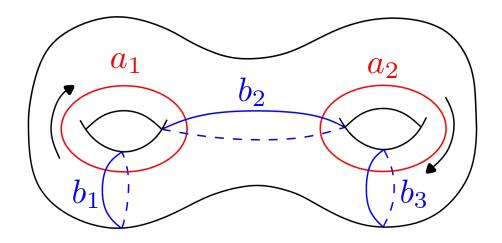
 $D_A = \prod_{i=1}^n D_{\alpha_i}$ is a multitwist



A multicurve in S is the union of a finite collection of disjoint simple closed curves in S

A and B are filling multicurves if the complement of $A \cup B$ is a union of disks and once punctured disks

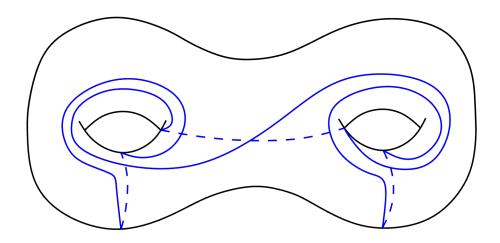
 $D_A = \prod_{i=1}^n D_{\alpha_i}$ is a multitwist



A multicurve in S is the union of a finite collection of disjoint simple closed curves in S

A and B are filling multicurves if the complement of $A \cup B$ is a union of disks and once punctured disks

 $D_A = \prod_{i=1}^n D_{\alpha_i}$ is a multitwist



Constructing Pseudo-Anosov Maps Thurston: A and B are filling multicurves in S. There is a representation $\rho : \langle D_A, D_B \rangle \longrightarrow PSL(2, \mathbb{R})$ such that $f \in \langle D_A, D_B \rangle$ is pseudo-Anosov if and only if $|Tr(\rho(f))| > 2$. Constructing Pseudo-Anosov Maps **Thurston:** A and B are filling multicurves in S. There is a representation $\rho: \langle D_A, D_B \rangle \longrightarrow PSL(2, \mathbb{R})$ such that $f \in \langle D_A, D_B \rangle$ is pseudo-Anosov if and only if $|Tr(\rho(f))| > 2$. $MCG(S_{1,0}) \cong SL(2,\mathbb{Z})$ \boldsymbol{a} $f = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } g = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ $fg = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

Constructing Pseudo-Anosov Maps **Thurston:** A and B are filling multicurves in S. There is a representation $\rho: \langle D_A, D_B \rangle \longrightarrow PSL(2, \mathbb{R})$ such that $f \in \langle D_A, D_B \rangle$ is pseudo-Anosov if and only if $|Tr(\rho(f))| > 2$. $MCG(S_{1,0}) \cong SL(2,\mathbb{Z})$ \boldsymbol{a} $f = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } g = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ $fg = \begin{pmatrix} 2 & 1\\ 1 & 1 \end{pmatrix}$ Thurston's construction $\implies fg$ pseudo-Anosov ie. positive twist around a followed by negative twist around b is

pseudo-Anosov

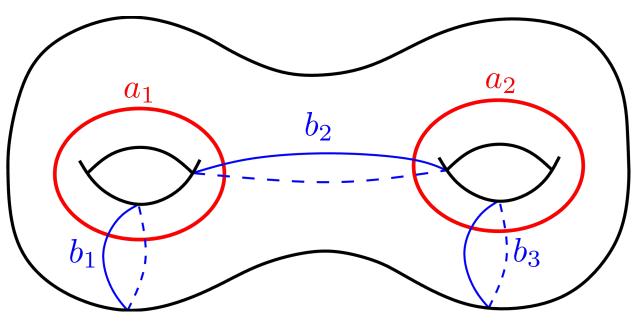
Penner: Let $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$ be filling multicurves on S. Then any product of positive Dehn twists about a_j and negative Dehn about b_k is pseudo-Anosov provided that all n + m Dehn twists appear in the product at least once.

Penner: Let $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$ be filling multicurves on S. Then any product of positive Dehn twists about a_j and negative Dehn about b_k is pseudo-Anosov provided that all n+m Dehn twists appear in the product at least once.

 $A = \{a_1, a_2\}$ $B = \{b_1, b_2, b_3\}$

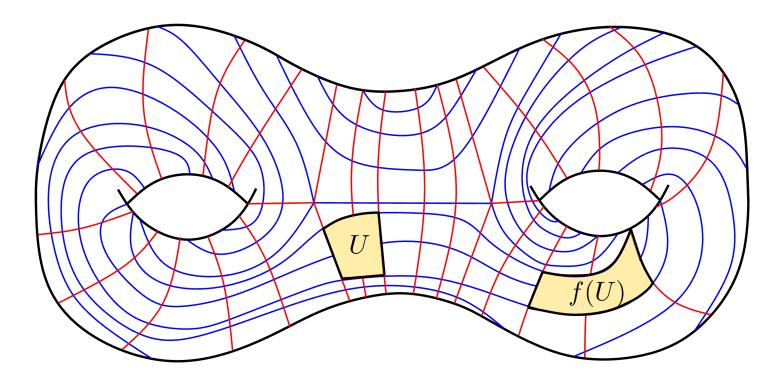
Positive Dehn twists around curves in A

Negative Dehn twists around curves in B



Penner's construction \implies pseudo-Anosov

Pseudo-Anosov



f maps no curve back to itself

Thurston (1976): \exists a number $\lambda > 1$ and a pair of foliations \mathcal{F}^{u} and $\mathcal{F}^{\mathfrak{s}}$ such that $f(\mathcal{F}^{u}) = \lambda \mathcal{F}^{u}$ and $f(\mathcal{F}^{\mathfrak{s}}) = \lambda^{-1} \mathcal{F}^{\mathfrak{s}}$.

Fried (1985): Which real numbers arise as λ ?

Fried (1985): Which real numbers arise as λ ?

Fried (1985): Which real numbers arise as λ ? Thurston (1976): All stretch factors are algebraic integers with degree between 2 and 6g - 6. Fried (1985): Which real numbers arise as λ?
Thurston (1976): All stretch factors are algebraic integers with degree between 2 and 6g - 6.
Classical Constructions of pseudo-Anosovs:
Thurston (1976) • Penner (1988)

Fried (1985): Which real numbers arise as λ ? Thurston (1976): All stretch factors are algebraic integers with degree between 2 and 6q - 6. Classical Constructions of pseudo-Anosovs: • Thurston (1976) • Penner (1988) Shin–Strenner (2015): Not all stretch factors come from Penner's construction.

Fried (1985): Which real numbers arise as λ ? Thurston (1976): All stretch factors are algebraic integers with degree between 2 and 6q - 6. Classical Constructions of pseudo-Anosovs: • Thurston (1976) • Penner (1988) Shin–Strenner (2015): Not all stretch factors come from Penner's construction. Q. Do all stretch factors come from the classical constructions of Thurston and Penner?

Fried (1985): Which real numbers arise as λ ? Thurston (1976): All stretch factors are algebraic integers with degree between 2 and 6q - 6. Classical Constructions of pseudo-Anosovs: • Thurston (1976) • Penner (1988) Shin–Strenner (2015): Not all stretch factors come from Penner's construction. Q. Do all stretch factors come from the classical constructions of Thurston and Penner? Theorem (V.): No.

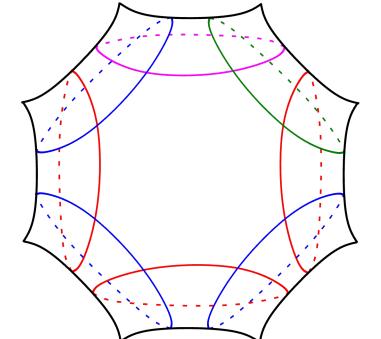
Main difficulty: How can you tell two pseudo-Anosov homeomorphisms are different?

Main difficulty: How can you tell two pseudo-Anosov homeomorphisms are different?

Tool: Use number theoretic properties associated to the stretch factor.

Proof Sketch: Construct pseudo-Anosov maps using Dehn twists about multi-curves.

Proof Sketch: Construct pseudo-Anosov maps using Dehn twists about multi-curves.



Twist red curves Twist blue curves Twist magenta curve Twist green curve → pseudo-Anosov map

Proof Sketch: Construct pseudo-Anosov maps using Dehn twists about multi-curves.

Study number theoretic properties:

Proof Sketch: Construct pseudo-Anosov maps using Dehn twists about multi-curves.

Study number theoretic properties:

1) Trace field: $\mathbb{Q}(\lambda + \lambda^{-1})$

Proof Sketch: Construct pseudo-Anosov maps using Dehn twists about multi-curves.

Study number theoretic properties:

Hubert – Lanneau (2006): Thurston's construction \rightsquigarrow always 1) Trace field: $\mathbb{Q}(\lambda + \lambda^{-1})$ totally real

Proof Sketch: Construct pseudo-Anosov maps using Dehn twists about multi-curves.

Study number theoretic properties:

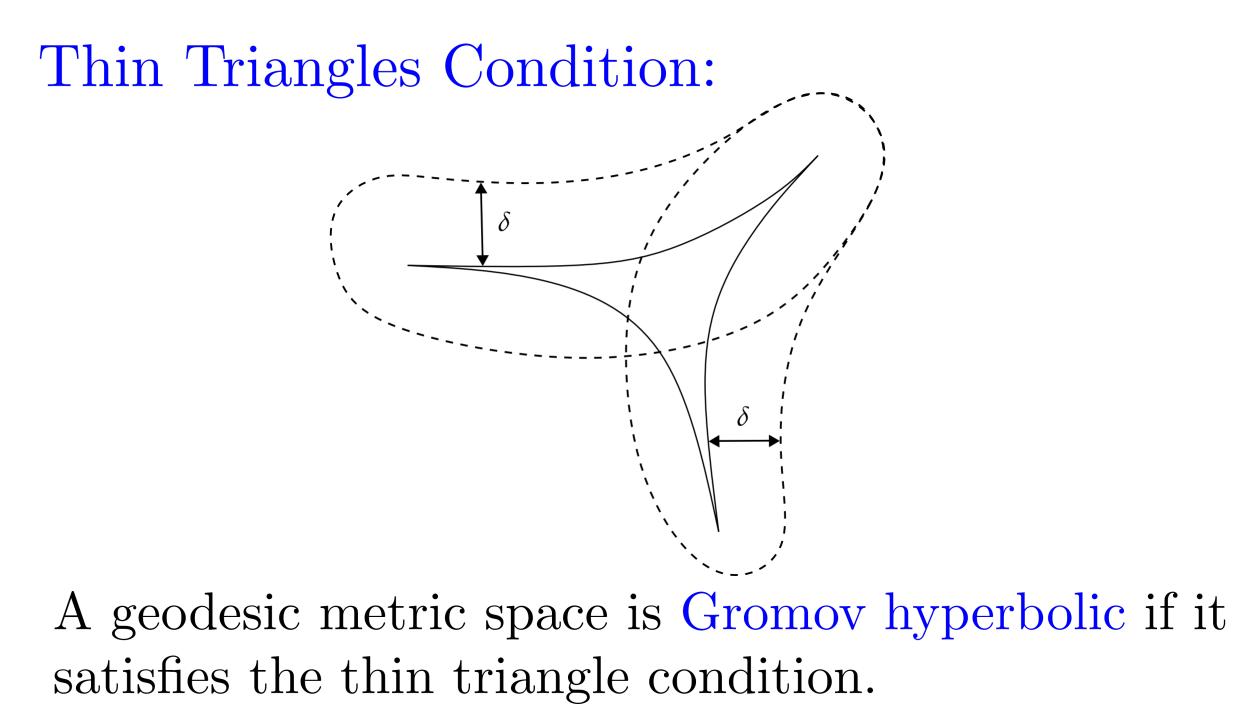
Hubert – Lanneau (2006): Thurston's construction \rightsquigarrow always 1) Trace field: $\mathbb{Q}(\lambda + \lambda^{-1})$ totally real

2) Galois conjugates of λ

Proof Sketch: Construct pseudo-Anosov maps using Dehn twists about multi-curves.

Study number theoretic properties:

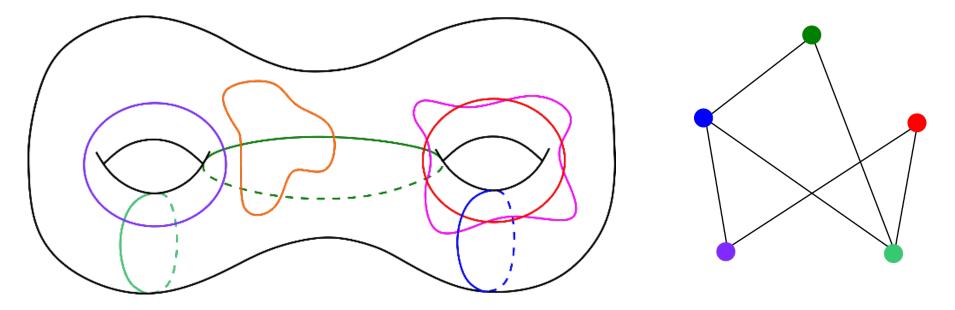
Hubert - Lanneau (2006):
Thurston's construction \rightsquigarrow always
totally real1) Trace field: $\mathbb{Q}(\lambda + \lambda^{-1})$ Shin - Strenner (2015): Penner's
construction \rightsquigarrow Galois conjugates
never on unit circle.2) Galois conjugates of λ



Curve Graph (Harvey [1988])

Vertices: Homotopy classes of essential simple closed curves

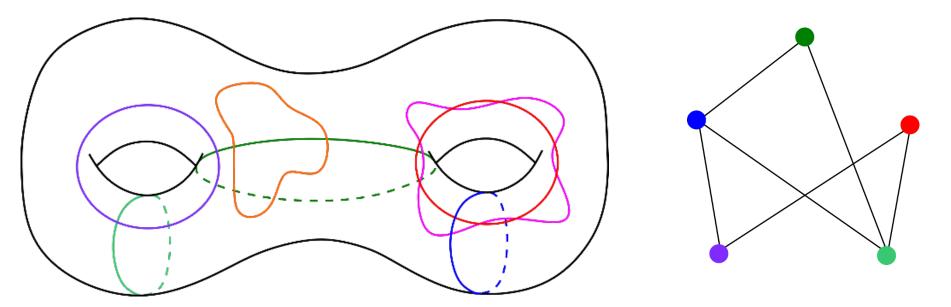
Edges: Disjointness



Curve Graph (Harvey [1988])

Vertices: Homotopy classes of essential simple closed curves

Edges: Disjointness



Masur–Minsky (1999): The curve graph is Gromov hyperbolic.

Natural map: $MCG(S) \to Aut(\mathcal{C}(S))$

 $f \in MCG(S)$ maps disjoint curves to disjoint curves.

Natural map: $MCG(S) \to Aut(\mathcal{C}(S))$

 $f \in MCG(S)$ maps disjoint curves to disjoint curves.

Ivanov(1997): For $g \ge 3$, the natural map $MCG(S_g) \to Aut(C(S_g))$ is an isomorphism.

$MCG(S) \cong AutMCG(S) \cong Aut(\mathcal{C}(S))$ $MCG(S) \to Aut(MCG(S))$ $f \mapsto \text{conjugation by } f$

$MCG(S) \cong AutMCG(S) \cong Aut(\mathcal{C}(S))$ $MCG(S) \rightarrow Aut(MCG(S))$ $f \mapsto \text{conjugation by } f$

Automorphisms of MCG(S) preserve powers of Dehn twists.

$MCG(S) \cong AutMCG(S) \cong Aut(\mathcal{C}(S))$ $MCG(S) \rightarrow Aut(MCG(S))$ $f \mapsto \text{conjugation by } f$

Automorphisms of MCG(S) preserve powers of Dehn twists.

Reduce to problem using curve graph.

$MCG(S) \cong AutMCG(S) \cong Aut(\mathcal{C}(S))$ $MCG(S) \rightarrow Aut(MCG(S))$ $f \mapsto \text{conjugation by } f$

Automorphisms of MCG(S) preserve powers of Dehn twists.

Reduce to problem using curve graph. $\rightsquigarrow \mathcal{C}(S)$ a combinatorial tool to study MCG(S)

 $MCG(S) \curvearrowright \mathcal{C}(S)$

• elliptic if every orbit of f is bounded

i.e. periodic and reducible

• hyperbolic if f translates along an axis.

i.e. pseudo-Anosov

Consequence: The curve graph is infinite diameter.

 $MCG(S) \curvearrowright \mathcal{C}(S)$

 $MCG(S) \curvearrowright \mathcal{C}(S)$

• elliptic if every orbit of f is bounded

i.e. periodic and reducible

 $MCG(S) \curvearrowright \mathcal{C}(S)$

• elliptic if every orbit of f is bounded

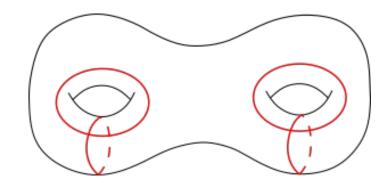
i.e. periodic and reducible

• hyperbolic if f translates along an axis.

i.e. pseudo-Anosov

Mapping class groups

S is finite-type if the fundamental group is finitely generated



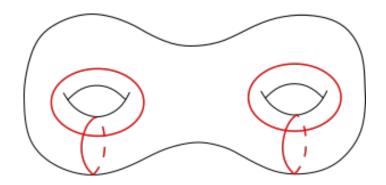
Mapping class groups

S is finite-type if the fundamental group is finitely generated



 Σ is infinite-type if the fundamental group is infinitely generated … Mapping class groups

S is finite-type if the fundamental group is finitely generated



 Σ is infinite-type if the fundamental group is infinitely generated

 $\cdots \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cdots$

Mapping class groups of infinite type surfaces are called big mapping class groups

Why study infinite type surfaces?

• Connections to complex dynamics

Why study infinite type surfaces?

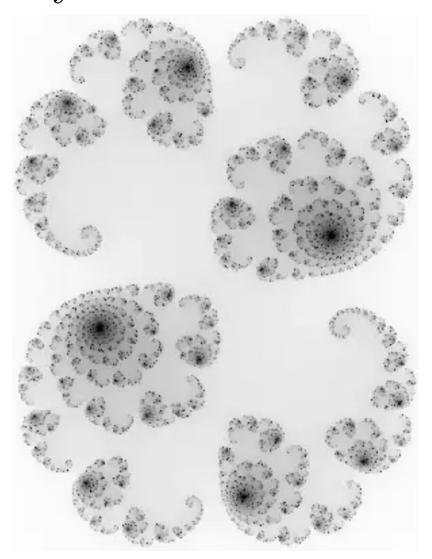
• Connections to complex dynamics

The family of polynomials is $F = \{f_c(z) = z^2 + c\}_{c \in \mathbb{C}}$

Why study infinite type surfaces?Connections to complex dynamics

The family of polynomials is $F = \{f_c(z) = z^2 + c\}_{c \in \mathbb{C}}$

Consider the Julia set



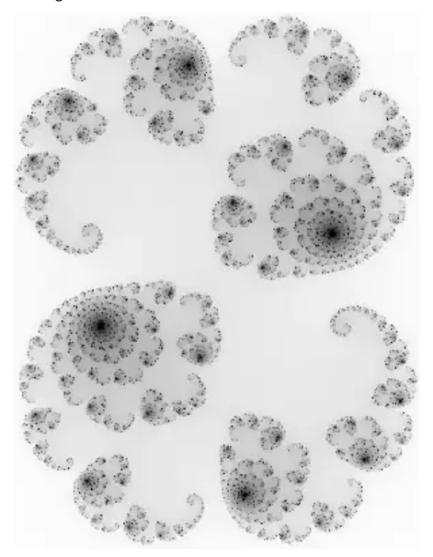
Julia set when c = 0.285 + 0.01i

Why study infinite type surfaces?Connections to complex dynamics

The family of polynomials is $F = \{f_c(z) = z^2 + c\}_{c \in \mathbb{C}}$

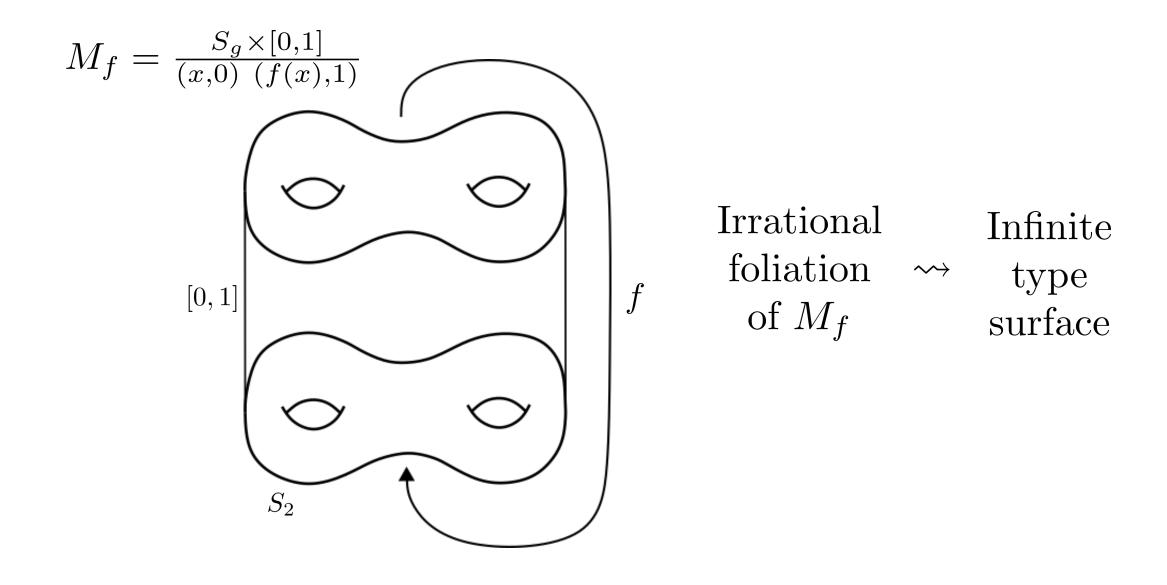
Consider the Julia set

Vary the parameter $c \in \mathbb{C}$

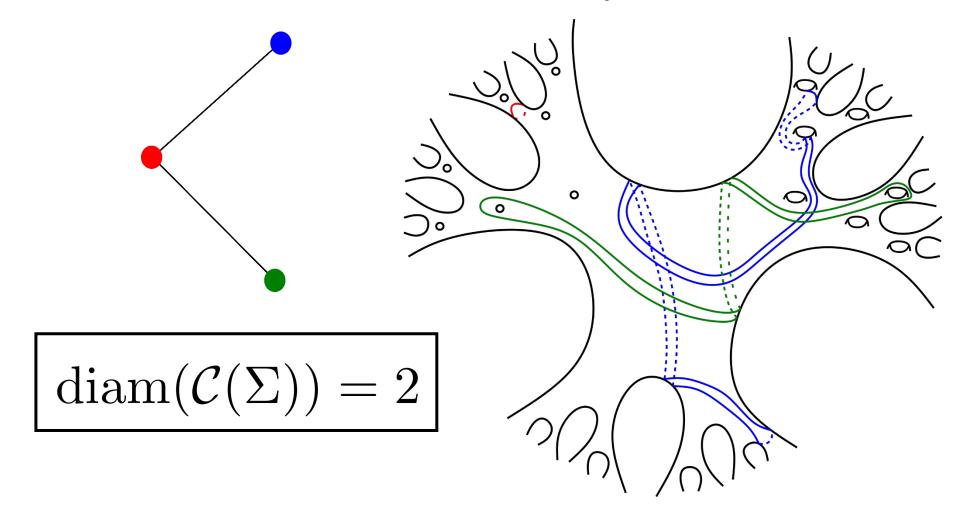


Julia set when c = 0.285 + 0.01i

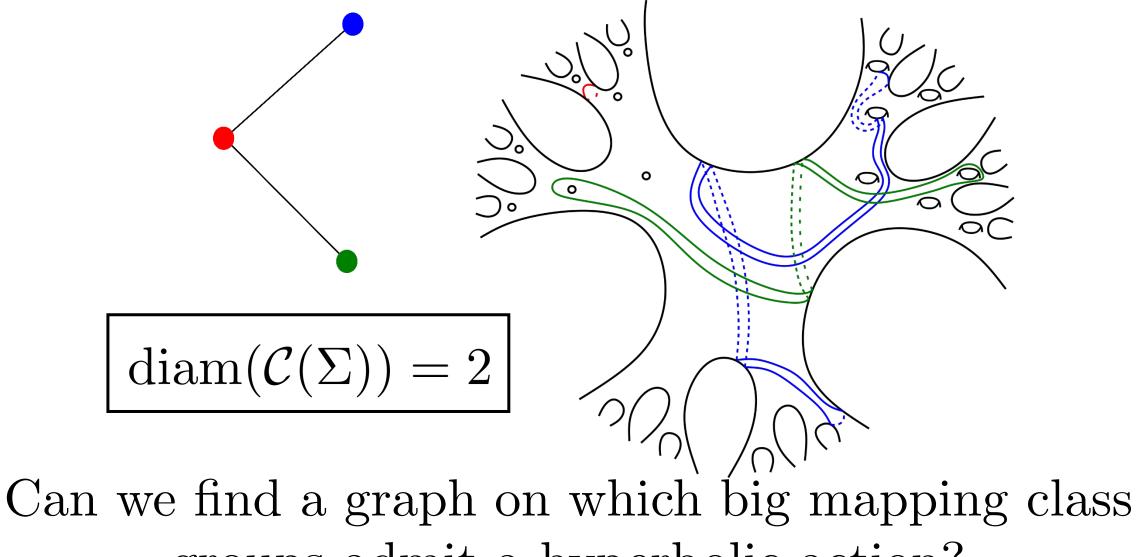
Recall: Connection to 3-Manifolds



What about infinite type surfaces?



What about infinite type surfaces?



groups admit a hyperbolic action?

Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in the complement of K, from a point in K to infinity

Edges: Disjointness

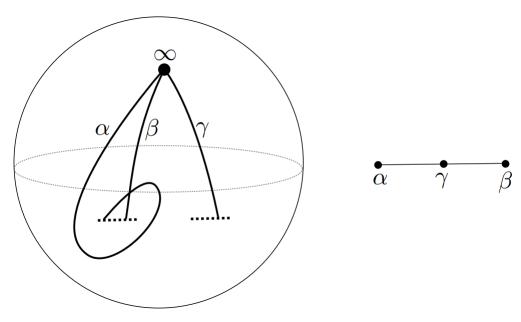


Image by J. Bavard

Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in the complement of K, from a point in K to infinity

Edges: Disjointness

Theorem (Bavard): The ray graph has infinite diameter, is Gromov hyperbolic, and there exists an element of $MCG(\mathbb{R}^2 \setminus K)$ which acts by translation on a geodesic axis of the ray graph.

в

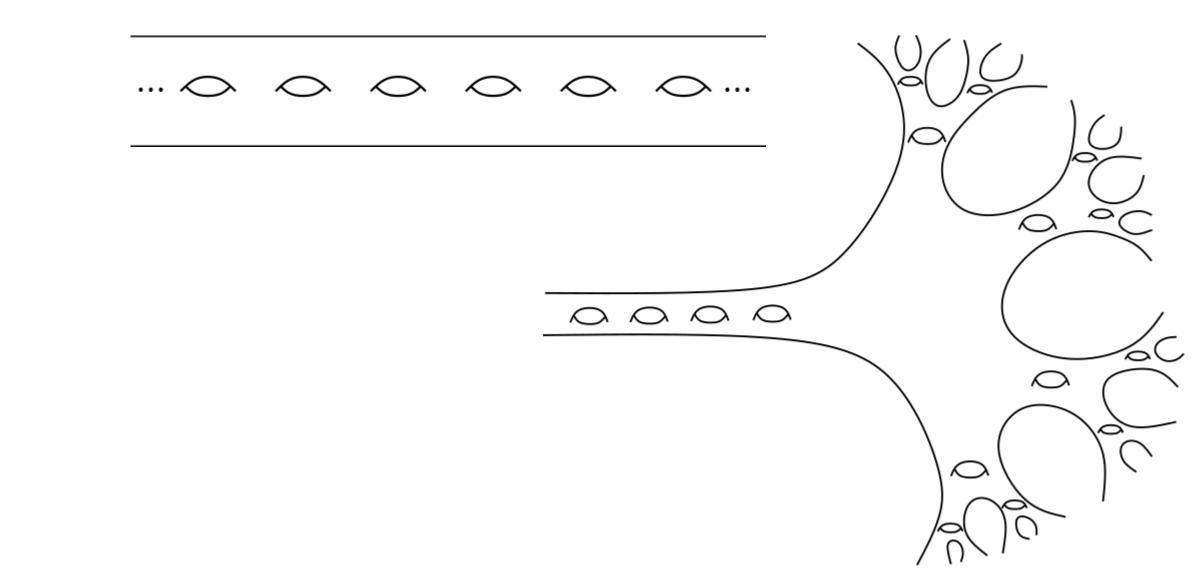
Image by J. Bavard

Ends

An end is a way of exiting every compact set of the surface.

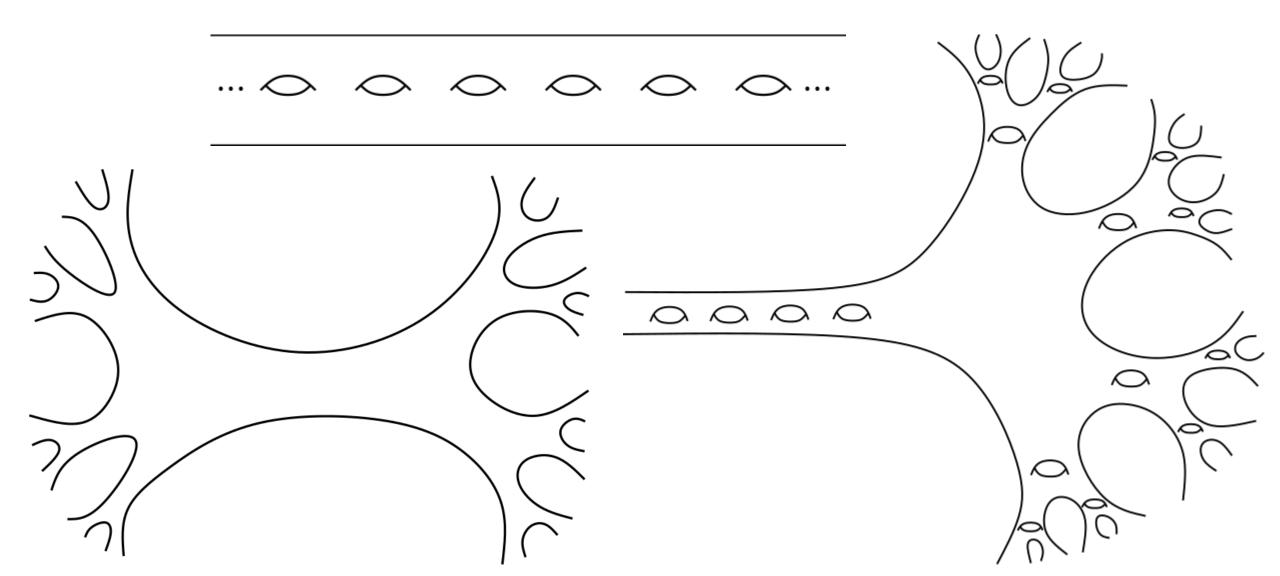
Ends

An end is a way of exiting every compact set of the surface.



Ends

An end is a way of exiting every compact set of the surface.



One-cut subsurface: complementary component of a separating loop.

One-cut subsurface: complementary component of a separating loop.

One-cut homeomorphic subsurface: A one-cut subsurface which is homeomorphic to the full surface

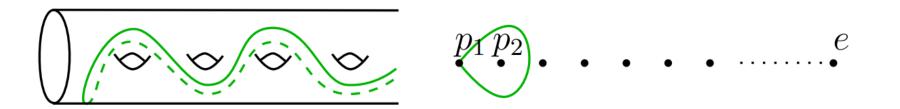


Image by Fanoni–Ghaswala–McLeay

One-cut subsurface: complementary component of a separating loop.

One-cut homeomorphic subsurface: A one-cut subsurface which is homeomorphic to the full surface

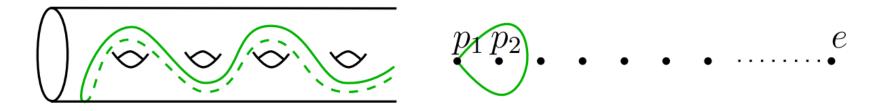


Image by Fanoni–Ghaswala–McLeay

An arc joining distinct ends is **omnipresent** if it intersects every one-cut homeomorphic subsurface.

Arc Graph, $\mathcal{A}(\Sigma)$ Vertices: Isotopy classes of essential arcs

Edges: Disjointess

Arc Graph, $\mathcal{A}(\Sigma)$ Vertices: Isotopy classes of essential arcs

Edges: Disjointess

Omnipresent arc graph: Subgraph of $\mathcal{A}(\Sigma)$ spanned by all omnipresent arcs

Omnipresent Arc Graph (Fanoni–Ghaswala–McLeay)

Arc Graph, $\mathcal{A}(\Sigma)$ Vertices: Isotopy classes of essential arcs

Edges: Disjointess

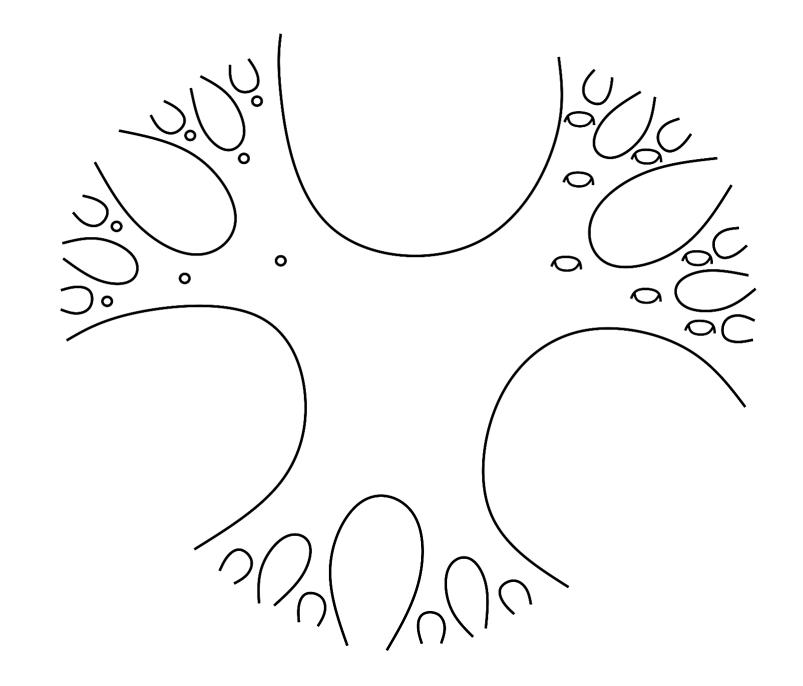
Omnipresent arc graph: Subgraph of $\mathcal{A}(\Sigma)$ spanned by all omnipresent arcs

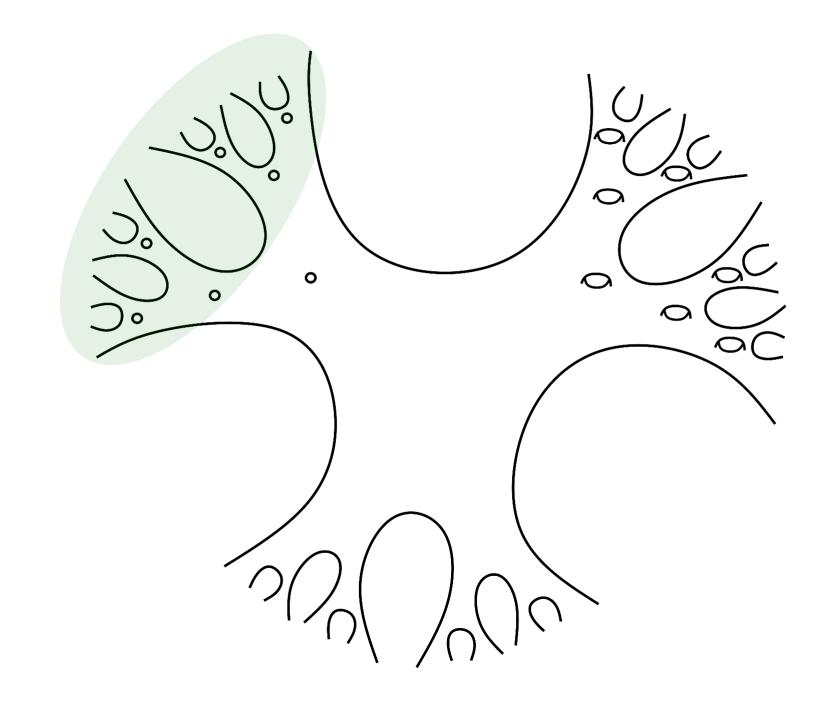
Theorem (Fanoni–Ghaswala–McLeay): For any stable surface Σ with at least three finite-orbit ends, the omnipresent arc graph is a connected δ -hyperbolic graph on which MCG(Σ) acts with unbounded orbits

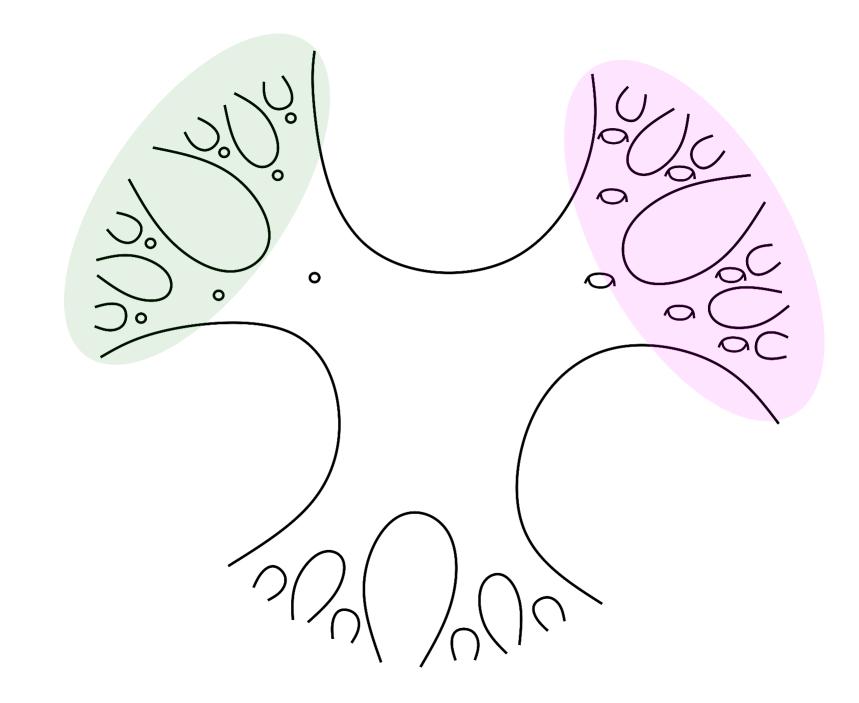
Mann–Rafi (2019): There exists equivalence classes of ends.

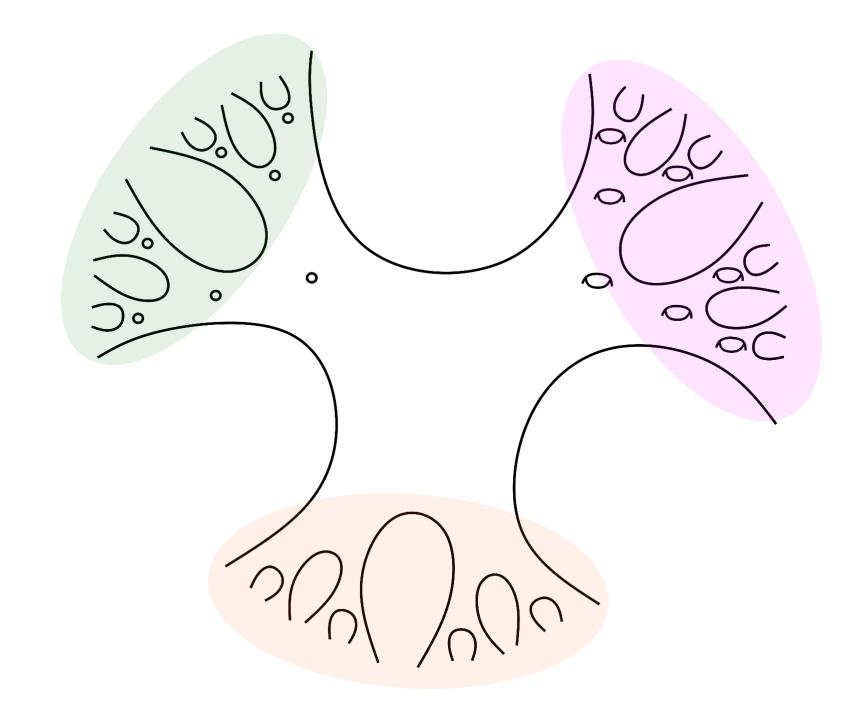
Mann-Rafi (2019): There exists equivalence classes of ends.

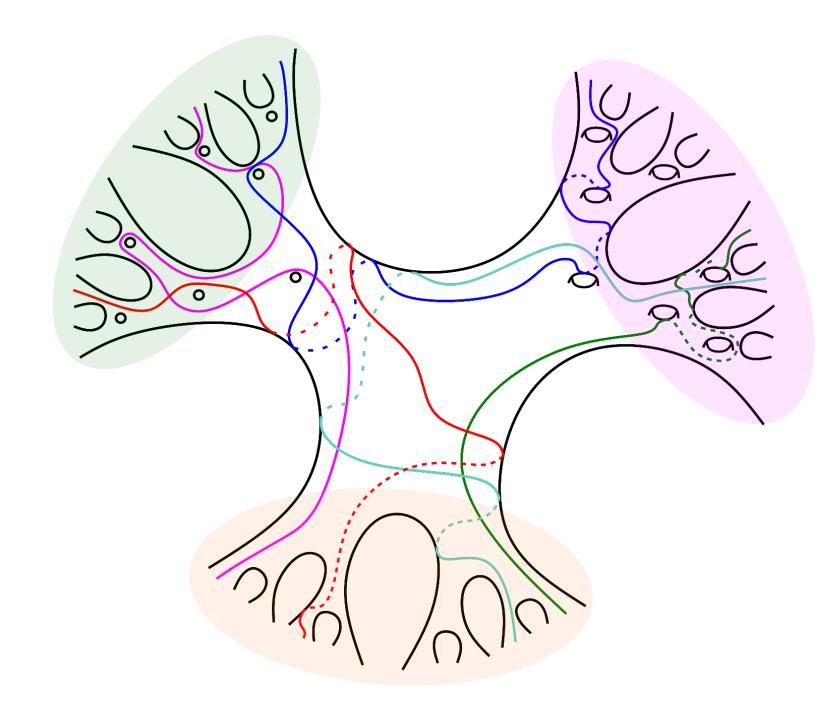
Use these to define a graph using bi-infinite arcs.

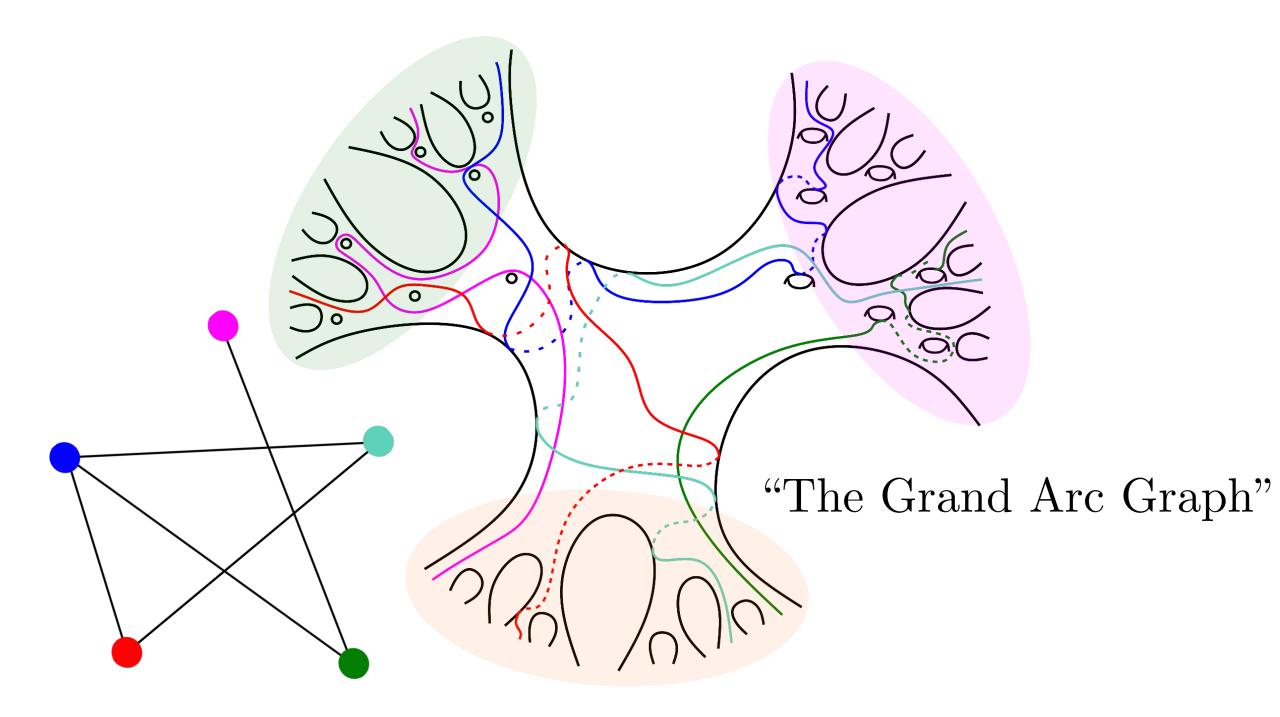




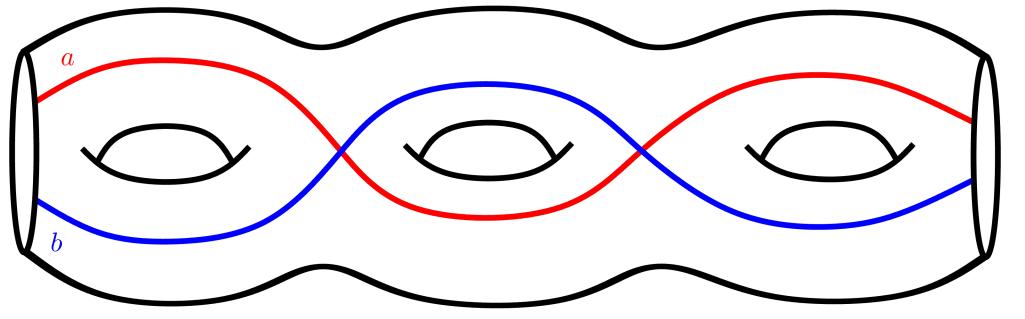


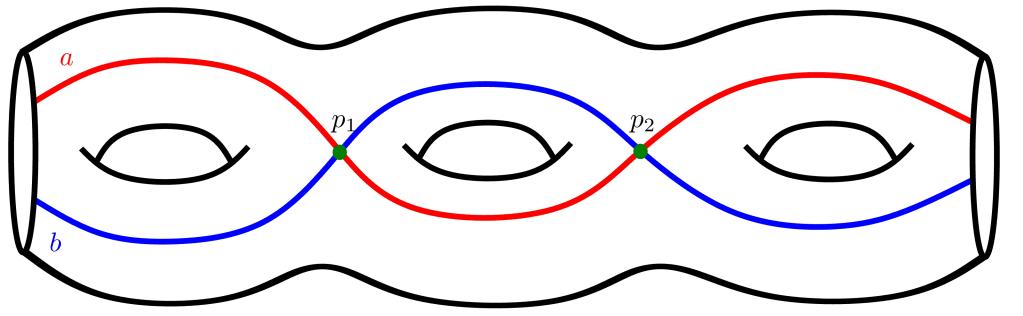


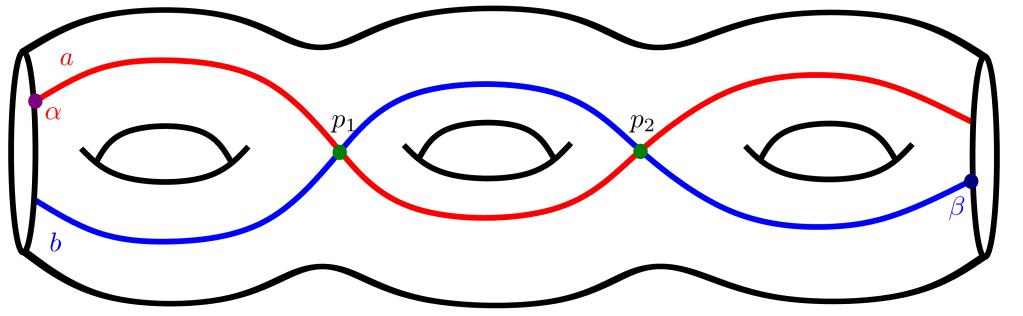


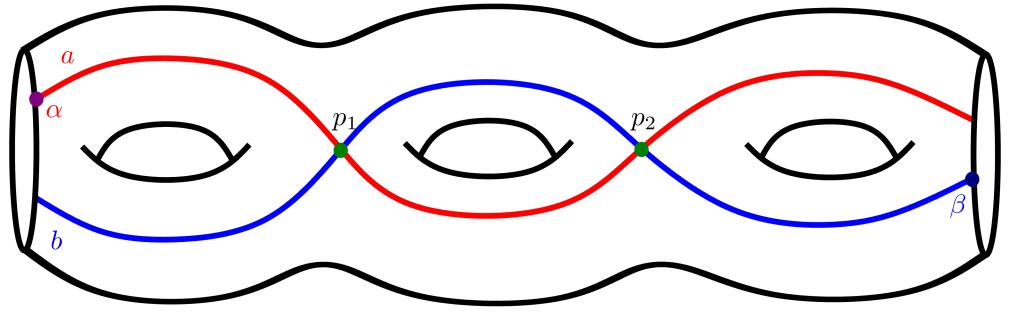


Theorem (Bar-Natan – V.): For a large class of surfaces, the grand arc graph is connected, hyperbolic, has infinite diameter, and there exist elements of $MCG(\Sigma)$ which act hyperbolically on the grand arc graph.

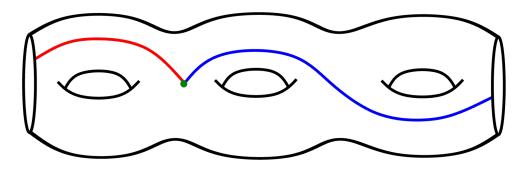


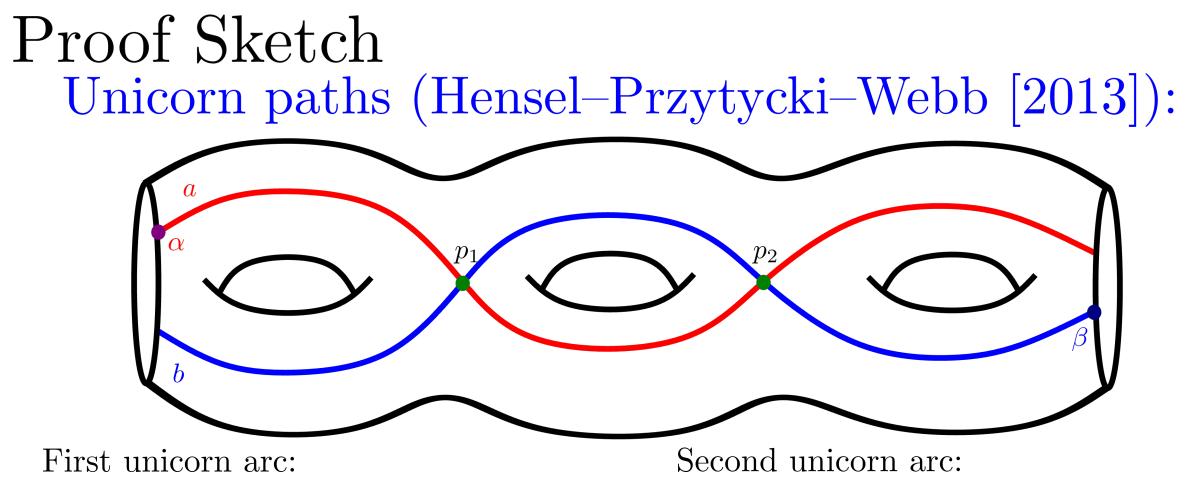


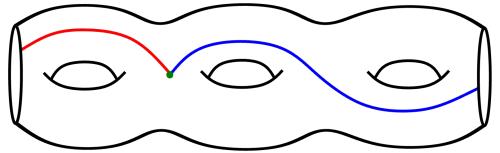


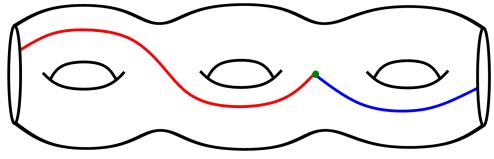


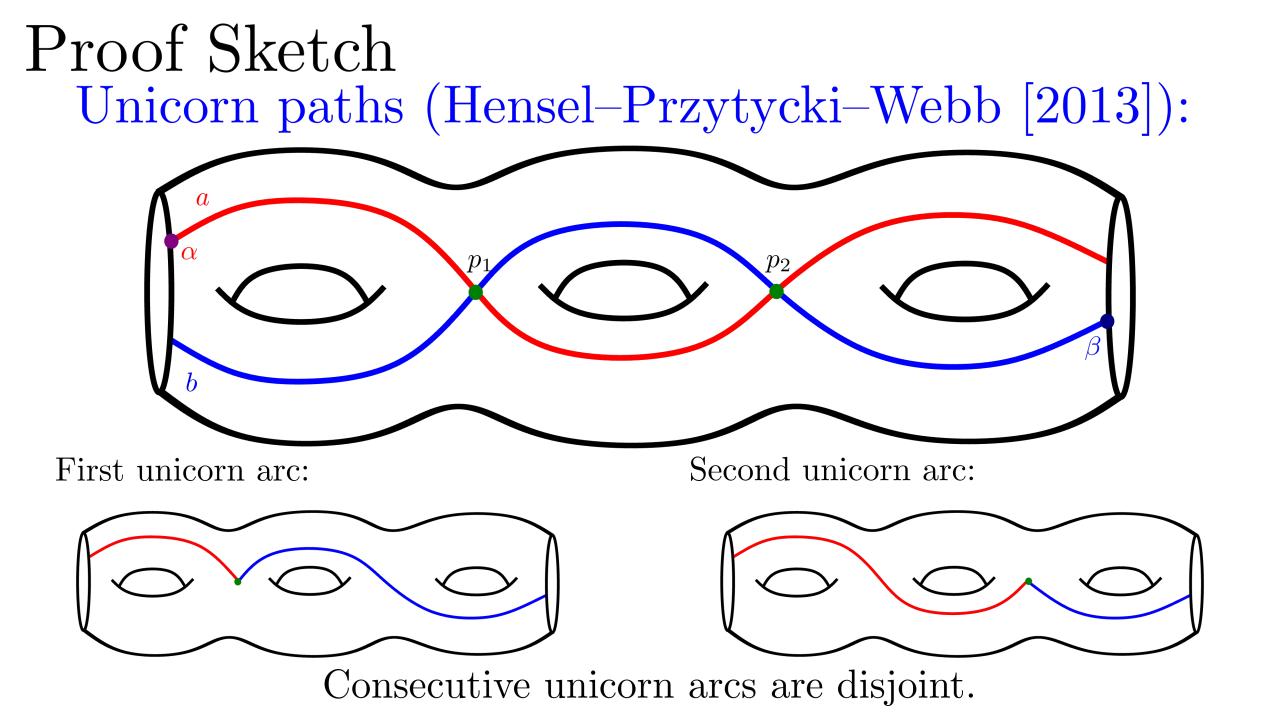
First unicorn arc:











Fanoni–Ghaswala–McLeay: Generalized unicorn paths for infinite-type surfaces.

Fanoni–Ghaswala–McLeay: Generalized unicorn paths for infinite-type surfaces.

Unicorn paths allow us to show the graph is:

Fanoni–Ghaswala–McLeay: Generalized unicorn paths for infinite-type surfaces.

- Unicorn paths allow us to show the graph is:
 - Connected

Fanoni–Ghaswala–McLeay: Generalized unicorn paths for infinite-type surfaces.

- Unicorn paths allow us to show the graph is:
 - Connected
 - Hyperbolic

Hyperbolic Actions

 $g \in G$ acts hyperbolically if for any $x \in X$, d(x, gx) is uniformly bounded from below.

Hyperbolic Actions

 $g \in G$ acts hyperbolically if for any $x \in X$, d(x, gx) is uniformly bounded from below.

Theorem (Bar-Natan – V.): Let φ be a pseudo-Anosov mapping class that fixes the boundary of W. Let $\bar{\varphi} \in MCG(\Sigma)$ be the homeomorphism fixing W^c and acting as φ on W. Then $\bar{\varphi}$ acts hyperbolically on $\mathcal{G}(\Sigma)$.

