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Surfaces: Two-dimensional manifolds.




MCG(S) = Homeo(S)/Homotopy

DN
< Y < “Group of symmetries of a surface”
Y
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Dehn (1938) — Lickorish (1964): The mapping class
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(Generating Set

Dehn (1938) — Lickorish (1964): The mapping class
ogroup is generated by finitely many Dehn twists.

Humphries (1979): Require twists about 2g + 1
curves for a surface of genus g.
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MCG(S)? is Trivial for g > 3 (Harer [1983])

Fact: Dehn twists about nonseparating curves are all conjugate.

— h® = h?
1.e. h is trivial

~» each maps to same element h.

Lantern Relation:
D.D,D, = Dy, Dy, Dy, Dy,



Types of Mapping
Classes



Nielsen—Thurston Classification




Periodic




Pseudo-Anosov

Thurston (1976): 3 a
number A > 1 and a pair of
foliations F* and F°

such that f(F*) = AF" and
F(F*) = A1

f maps no curve back
to itself



Reducible

There is a set of disjoint curves
fixed by some power of f
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“Jordan Form”

Normal form of f* € MCG(S) : Each subsurface is fixed.

Shaded regions are either pseudo-Anosov components or Dehn-twists.
Unshaded regions are fixed.
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Connection to 3-Manitolds
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Connection to 3-Manitolds

_ Sgx[0,1]
My = Go~U@n

K\C\\ Thurston: g > 2, then
" " e f periodic <= M/, admits metric locally
W isometric to H?* x R

[0, 1] f e f reducible <= M contains an

M incompressible torus
w e [ pseudo-Anosov <= M admits a
hyperbolic metric




Constructing Pseudo-Anosov Maps

A multicurve in S is the union of a finite collection of disjoint
simple closed curves in S

A and B are filling multicurves if the complement of AU B is a
union of disks and once punctured disks

Da =][;_; Da, is a multitwist
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Constructing Pseudo-Anosov Maps

Thurston: A and B are filling multicurves in .S. There is a
representation p : (D4, Dpg) — PSL(2,R) such that
f € (Da,Dp) is pseudo-Anosov if and only if |Tr(p(f))| > 2.

MCG(S1.0) 2 SL(2,Z)

(< 13;@@@ ) ( ()

Thurston’s construction — fg pseudo-Anosov

ie. positive twist around a followed by negative twist around b is
pseudo-Anosov



Constructing Pseudo-Anosov Maps

Penner: Let A ={a1,...,a,} and B = {by,...,b,} be filling
multicurves on S. Then any product of positive Dehn twists about
a; and negative Dehn about by is pseudo—Anosov provided that all

n + m Dehn twists appear in the product at least once.



Constructing Pseudo-Anosov Maps

Penner: Let A = {a4,...,a,} and B = {by,...,b,} be filling
multicurves on S. Then any product of positive Dehn twists about
a; and negative Dehn about by is pseudo—Anosov provided that all

n + m Dehn twists appear in the product at least once.

A S {al, CLQ}
aq a2
B = {b17b27b3} b2
Positive Dehn twists - _______ -
around curves in A ‘ ‘
b]_ I :bg

Negative Dehn twists , ,
around curves in B

Penner’s construction =— pseudo-Anosov



Pseudo-Anosov

f maps no curve back
to itself

Thurston (1976): 3 a
number A > 1 and a pair of
U foliations F* and F°

f(U such that f(F*) = AF" and
f(F) =152,

Fried (1985): Which real numbers arise as A?



Fried (1985): Which real numbers arise as \7



Fried (1985): Which real numbers arise as \7

Thurston (1976): All stretch factors are algebraic
integers with degree between 2 and 6g — 6.



Fried (1985): Which real numbers arise as \7

Thurston (1976): All stretch factors are algebraic
integers with degree between 2 and 6g — 6.

Classical Constructions of pseudo-Anosovs:
e Thurston (1976) e Penner (1988)



Fried (1985): Which real numbers arise as \7

Thurston (1976): All stretch factors are algebraic
integers with degree between 2 and 6g — 6.

Classical Constructions of pseudo-Anosovs:
e Thurston (1976) e Penner (1988)

Shin—Strenner (2015): Not all stretch factors come
from Penner’s construction.



Fried (1985): Which real numbers arise as \7

Thurston (1976): All stretch factors are algebraic
integers with degree between 2 and 6g — 6.

Classical Constructions of pseudo-Anosovs:
e Thurston (1976) e Penner (1988)

Shin—Strenner (2015): Not all stretch factors come
from Penner’s construction.
Q. Do all stretch factors come from the classical
constructions of Thurston and Penner?



Fried (1985): Which real numbers arise as \7

Thurston (1976): All stretch factors are algebraic
integers with degree between 2 and 6g — 6.

Classical Constructions of pseudo-Anosovs:
e Thurston (1976) e Penner (1988)

Shin—Strenner (2015): Not all stretch factors come
from Penner’s construction.
Q. Do all stretch factors come from the classical
constructions of Thurston and Penner?

Theorem (V.): No.
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homeomorphisms are different?



Main difficulty: How can you tell two pseudo-Anosov
homeomorphisms are different?

Tool: Use number theoretic properties associated
to the stretch factor.
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Twist red curves
Twist blue curves
Twist magenta curve
Twist green curve

~+ pseudo-Anosov map
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Theorem (V.): There exists a construction of
pseudo-Anosov mapping classes which produce new
pseudo-Anosovs unique from Thurston and Penner.

Proof Sketch: Construct pseudo-Anosov maps using
Dehn twists about multi-curves.

Study number theoretic properties:
Hubert — Lanneau (2006):

Thurston’s construction ~ always 1) Trace ﬁ@ld: @()\ -+ )\_1)

totally real

Shin — Strenner (2015): Penner’s . .
construction ~» Galois conjugates 2) Galois conj ugateS of A

never on unit circle.



A geodesic metric space is Gromov hyperbolic if it
satisfies the thin triangle condition.



Curve Graph (Harvey [1988])

Vertices: Homotopy classes of essential simple closed curves

Edges: Disjointness




Curve Graph (Harvey [1988])

Vertices: Homotopy classes of essential simple closed curves

Edges: Disjointness

Masur—Minsky (1999): The curve graph is Gromov
hyperbolic.
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MCG(S) =2 AutMCG(S) = Aut(C(9))

Natural map: MCG(S) — Aut(C(S))

f € MCG(S) maps disjoint curves
to disjoint curves.

[vanov(1997): For g > 3, the natural map
MCG(S,) — Aut(C(S5,))

1S an 1somorphism.
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Ivanov:
MCG(S) =2 AutMCG(S) = Aut(C(5))
MCG(S) — Aut(MCG(S))
f — conjugation by f

Automorphisms of MCG(SS) preserve powers
of Dehn twists.

Reduce to problem using curve graph.
~+ C(S) a combinatorial tool to study MCG(S)



MCG(S) ~ C(S)

Masur—Minsky(1999): f € MCG(S) acts on C(S5):

o clliptic if every orbit of f is bounded
i.e. periodic and reducible
e hyperbolic if f translates along an axis.

i.e. pseudo-Anosov

Consequence: The curve graph is infinite diameter.
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Mapping class groups

S is finite-type if the fundamental
group is finitely generated

Y. 1s infinite-type if the fundamental

group is infinitely generated b O D D D e

Mapping class groups of infinite type surfaces are called
big mapping class groups
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Why study infinite type surtaces?

e Connections to complex dynamics

The family of polynomials
is F' = {f.(2) = 2% + c}eec

Consider the Julia set

Vary the parameter ¢ € C

$.. P P

Julia set when ¢ = 0.285 + 0.012



Recall: Connection to 3-Manifolds

My

Sg

X [0,1]

0,1]

— (.0 (f(2),1) K‘\
G/\/\\%
f

Irrational

foliation ~~
Of Mf

Infinite

type
surface
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What about infinite type surfaces”

Can we find a graph on which big mapping class
eroups admit a hyperbolic action?




Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in
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Image by J. Bavard



Ray Graph (Calegari)

Vertices: Isotopy classes of proper rays, with interior in
the complement of K, from a point in K to infinity

Edges: Disjointness

Theorem (Bavard): The ray
ocraph has infinite diameter,
is Gromov hyperbolic, and there
exists an element of MCG(R? \ K)

which acts by translation on a geodesic axis of the ray graph.

Image by J. Bavard
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An end is a way of exiting every compact set of the surface.
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Omnipresent Arc Graph (Fanoni—-Ghaswala—McLeay)

One-cut subsurtface: complementary component of a separating loop.

One-cut homeomorphic subsurface: A one-cut subsurface which is
homeomorphic to the full surface

Image by Fanoni—Ghaswala—McLeay

An arc joining distinct ends is omnipresent if it intersects every
one-cut homeomorphic subsurface.
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Omnipresent Arc Graph (Fanoni—-Ghaswala—McLeay)

Arc Graph, A(X) Vertices: Isotopy classes of essential arcs

Edges: Disjointess

Omnipresent arc graph: Subgraph of A(3) spanned by all
omnipresent arcs

Theorem (Fanoni—-Ghaswala—McLeay): For any stable surface

Y. with at least three finite-orbit ends, the omnipresent arc graph
is a connected J-hyperbolic graph on which MCG(X) acts

with unbounded orbits



Mann—Rafi (2019): There exists equivalence classes
of ends.



Mann—Rafi (2019): There exists equivalence classes
of ends.

Use these to define a graph using bi-infinite arcs.


















=
oF
©
r
O
)
el
<
O
-
av
r
O
<)
=
-




Theorem (Bar-Natan — V.): For a large class of
surfaces, the grand arc graph is connected,
hyperbolic, has infinite diameter, and there exist
elements of MCG(X) which act hyperbolically
on the grand arc graph.
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Proof Sketch
Unicorn paths (Hensel-Przytycki—-Webb [2013]):

First unicorn arc: Second unicorn arc:

F=s E=g

Consecutive unicorn arcs are disjoint.
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Proof Sketch
Unicorn paths (Hensel-Przytycki—-Webb [2013]):

Fanoni—Ghaswala—McLeay: Generalized unicorn
paths for infinite-type surfaces.

Unicorn paths allow us to show the graph is:

e Connected

e Hyperbolic



Hyperbolic Actions

g € G acts hyperbolically if for any x € X, d(x, gx) is uniformly
bounded from below.



Hyperbolic Actions

g € G acts hyperbolically if for any x € X, d(x, gx) is uniformly
bounded from below.

Theorem (Bar-Natan — V.): Let ¢
be a pseudo-Anosov mapping class
that fixes the boundary of V. Let
¢ € MCG(X) be the homeomorphism -
fixing W° and acting as ¢ on W.
Then ¢ acts hyperbolically

on G(3).




