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Galois Adjunctions

Let A and B be posets:

Galois Adjunction Dual Galois Adjunction (Galois
f ; Connection)
A 1 B f
g A 10p B
f(a) <b <« a<g(b) g
YacA VYbeB b <f(a) & a<g(b)
YacA VbeB
« Complete lattices: left
adjoints are precisely the « Complete lattices:
complete join f:A— B°% and g: B — A°
homomorphisms are complete join
flVie @il = Vi, f(@)). homomorphisms.
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Some adjunctions in frames

Examples in frames: Recall that a frame L is complete lattice with
distributive law: aA\/S=\{aAs|s e S}
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Some adjunctions in frames

Recall that a L is complete lattice with
distributive law: aA\/S=\V{aAs|seS}

an_: L — L = a—_: L — L
X — aNX y — a—-Yy

aAx <y« x<a-—y (Heyting operator)

We have the pseducomplement of an element a € L: a* =

a— O.
P: L — L

X — X*
P is a self-dual Galois adjoint: a < b* < b < a*.
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The frame of Reals

Recall the frame of reals £(R). We define it as the frame presented
by:

- generators: (p, —) and (—, q) for all rationals p and q.
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The frame of Reals

Recall the frame of reals £(R). We define it as the frame presented
by:

- generators: (p, —) and (—, q) for all rationals p and q.

« relations:
(1) (p,-)A(-q) =0 ifg<p,
(r2) (p,—)V(-.q)=1ifp<gq,
(r3) (p,—) = \/r>p( 7_)’
(”F) (—,Q) = \/S<q(—,5),
(r5) Vpeo(Ps—) =1,
(r6) Voeo(—q) =1

For rationals p < g, the element (p, —) A (—, q) in L(R) is denoted by
(p,q).
A continuous real-valued function on a frame L is a frame

homomorphism £(R) — L. 3/15
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« We say U refines V and write U < V, if Vu € U Jv € V such that
u<v.

+ The largest common refinement for covers U and V is:
UANV={uAv]|ueUyveV}

« Foracover U C L and x € L the star of x in U is the element:
Ux=\{ueU|uAnx#o}.

- For any pair of covers U,V C L, set UV = {Uv | v € V} . Notice
UV is also a cover.

U(VieXi) = Vie Ux;
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Covers

A cover of a frame L is a nonempty subset U C L such that \/ U = 1.

« We say U refines V and write U < V, if Vu € U Jv € V such that
u<v.

+ The largest common refinement for covers U and V is:
UANV={uAv]|ueUyveV}

« Foracover U C L and x € L the star of x in U is the element:
Ux=\{ueU|uAnx#o}.

- For any pair of covers U,V C L, set UV = {Uv | v € V} . Notice
UV is also a cover.
U\ xi) = iz, Ux; : For every cover U of L we have an adjunction
Sy: L — L 4 Syr L — L
X — Ux y — y/U=\{b|Ub<y}.
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A (covering) uniformity on L is a nonempty system ¢/ of covers of L
such that

(U1) UcU and U < Vimplies V € U,

(U2) U,VelUimpliesUAV eU,

(U3) for every U € U thereisa V € U/ such that V¥ < U, and

(Ug) foreveryaceL,a=\/{b|b <y a} (whereb <, aif Ub < a for
some U € U).
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A (covering) uniformity on L is a nonempty system ¢/ of covers of L

such that

(U1) Ueldand U < VimpliesV € U,

(U2) U,V el impliesUAV e,

(U3) for every U € U there is a V € U such that VW < U, and

(Us) foreveryacL,a=\/{b|b <y a} (whereb <, aif Ub < a for
some U € U).

(pre-)uniformity: (U1), (U2), (U3)
basis of a uniformity: (U2), (U3), (Us)
basis of a (pre-)uniformity: (U2), (U3)
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A (covering) uniformity on L is a nonempty system ¢/ of covers of L
such that

(U1) UcU and U < Vimplies V € U,

(U2) U,VelUimpliesUAV eU,

(U3) for every U € U thereisa V € U/ such that V¥ < U, and

(Ug) foreveryaceL,a=\/{b|b <y a} (whereb <, aif Ub < a for

some U € U).

A frame homomorphism h: L — M is a uniform homomorphism
h: (L,U) — (M, V)

if h[U] € V for every U € U.
for bases: For every U € U, V < h[U] for some V € V.
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Metric Uniformity of £(R)

For every n natural

Dn={(p,q) €LR)|q—p=1}

is a cover in L(R).
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Metric Uniformity of £(R)

For every n natural
Dn={(p,q) € L(R) |g—p =1}

is a cover in L(R). Then {D, | n € N} is a basis for the metric
uniformity of £(R). In general, we consider for every j € Q:

Ds = {(p,q) € LR) [g—p=13}.

A uniform continuous real-valued function on a (pre-)uniform
frame (L,U/) is a frame homomorphism f: £(R) — L such that

Vn e N U < f[Dy] for some U € U.
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Let U be a cover of L, aand b in L are U-far if

(1) YueU anu#o=bAu=0
& YuelU bAu#o0=aAu=0
& YuelU aAu=0 or bAu=o0
(2) UaAb=0 < Ubra=o0
(3 Ua<b* = b<(Ua)* < Ub<a* < a<(Ub)>
(4) U < {a*,b*}
Properties:
- aand b are U-farand V < U = a and b are V-far.
- aand b are U-far,c <aand d < b = cand d are U-far.
« aand b are U-far & a** and b** are U-far.
- a and b are U-far for some U € Y & a < b*.
« aand b are U-far = a* v b* = 1.
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Characterization Uniformly continuous real-valued functions

Theorem

Let (L,U) be a (pre-)uniform frame and f: L(R) — L a frame
homomorphism, then the following are equivalent:

(i) f is uniformly continuous.
That is, for every § € Q* there is U € U such that
U<fDs]={f(p.a)|a—p =3}

(ii) Forevery s € QT thereis U € U such that f(—,r) and
f(s,-) are U-far fors,r € Qwiths —r > 3.

8/15
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Farness + Galois Adjunctions

Let U be a cover of L
P. L — L Sy: L — L Sy: L —
a — a* a — Ua b — b/U=\{y|Uy<b}

—

We define Fy = PSy.
Forany a,b € L we have
Ua < b* & b< (Ua)r & Ub < a* &
Su(a) <P(b) & b<Fy(a) & Sylb)<Pa) &
Fy is a self-dual Galois adjoint.
9/15
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Fy is a self-dual Galois adjoint (Fy - Fy), thus :

(F1) Fu(V a;) = A Fu(a;)
(F2) F? > id,
(F3) F, =Fu

Remember a,b € L are U-far if b < (Ua)* (equiv. a < (Ub)*).
» Definition: a and b are U-far if a < Fy(b) (equiv. b < Fy(a))

* Fy(a) is the largest element in L that is U-far from a:
« From (F2): a < Fy(Fy(a)) so a and Fy(a) are U-far.

- By defintion, if b is U-far from a, then b < Fy(a).
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with o < f < 1such that f(o,-) Aa=o0andf(-,1)Ab=o0.
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Separation Theorem

Theorem

Let (L,U4) be a (pre-)uniform frame. If a and b are U-far for
some U € U then there is a uniformly continuous f: L(R) — L
with o < f < 1such that f(o,-) Aa=o0andf(-,1)Ab=o0.

Idea:
+ Define f for generators of L(R): {a,}req C L and
{bs}seq C L such that
f(=,r)=ar and f(s,-) = bs.
« Check relations (r1)-(r6).

+ Check that Vs € QT there is U € U such that a, and
bs are U-far for every s — r > 1 (uniformity).
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={o,1}uU U {2’;;1 \k:1,...2”—1}.
neN

« aand b are U-far so we set U, := U. By (U3) thereis V € U
such that V < V2 < U,, and we define U, := V. We iterate
and obtain a chain of covers

§U3§U2§U1§U02U
Fu Fu Fu Fu

where Upyq < U, < Uy for every natural n.

3 2 1 o

12/15



« We will build {ar}rep € L and {bs}sep C L where

D={&|n=12--,m=o,--,2"}
={o, U U {& [k=1,-2"}.
neN

« aand b are U-far so we set U, := U. By (U3) thereis V € U
such that V < V2 < U,, and we define U, := V. We iterate
and obtain a chain of covers

§U3§U2§U1§U02U
Fu
where Upyq < U, < Uy for every natural n.

+ ldea of construction: When we have a distance of ; in D

(s — r = ;) we want a, and bs to be U,-far.

! Fu, Fu, Fu,
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Idea: When we have a distance of .. in D (s — r = -;) we want a, and
bs to be U,-far.
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Idea: When we have a distance of .. in D (s — r = -;) we want a, and
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