Translational Embeddings via Stable Canonical Rules

Nick Bezhanishvili¹ Antonio Maria Cleani²

¹Institute for Logic, Language and Computation, University of Amsterdam

²Department of Philosophy, University of Southern California

TACL 2022, University of Coimbra

■ Stable canonical rules, filtration, duality

- Stable canonical rules, filtration, duality
- Rule systems and logics

- Stable canonical rules, filtration, duality
- Rule systems and logics
- Generalizable to several signatures

Overview

1 Background

2 Summary of Contributions

3 Some Details on our Method

4 Further Work

Notation

IPC	Intuitionistic propositional calculus
S4	$\mathtt{K} \oplus \Box p o p \oplus \Box p o \Box \Box p$
Grz	${ m S4} \oplus \Box (\Box (ho o \Box ho) o ho) o ho) o ho$
HA	Heyting algebras
MA	Modal algebras
S4, Grz	Modal algebras validating S4, Grz

The Gödel Translation

Gödel [1933] defined the following translation of intuitionistic formulae into modal formulae.

- $T(\perp) := \perp$
- $T(\top) := \top$
- $\bullet T(p) := \Box p$
- $\bullet \ T(\varphi \land \psi) := T(\varphi) \land T(\psi)$
- $T(\varphi \lor \psi) := T(\varphi) \lor T(\psi)$
- $T(\varphi \to \psi) := \Box(\neg T(\varphi) \lor T(\psi))$

The Gödel Translation

Gödel [1933] defined the following translation of intuitionistic formulae into modal formulae.

- $T(\perp) := \perp$
- $T(\top) := \top$
- $\bullet T(p) := \Box p$
- $\bullet \ T(\varphi \land \psi) := T(\varphi) \land T(\psi)$
- $T(\varphi \lor \psi) := T(\varphi) \lor T(\psi)$
- $T(\varphi \to \psi) := \Box(\neg T(\varphi) \lor T(\psi))$

Theorem (McKinsey and Tarski 1944)

$$arphi \in ext{IPC} \iff extsf{T}(arphi) \in ext{S4}$$

Definition

A normal modal logic ${\tt M}$ is a **modal companion** of a superintuitionistic logic L if

$$L = \{ \varphi : T(\varphi) \in M \}$$

Definition

A normal modal logic M is a **modal companion** of a superintuitionistic logic L if

$$\mathtt{L} = \{ arphi : \mathcal{T}(arphi) \in \mathtt{M} \}$$

$$\begin{split} \tau : \mathsf{Ext}(\mathtt{IPC}) &\to \mathsf{NExt}(\mathtt{S4}) & \sigma : \mathsf{Ext}(\mathtt{IPC}) \to \mathsf{NExt}(\mathtt{S4}) \\ \mathtt{L} &\mapsto \mathtt{S4} \oplus \{T(\varphi) : \varphi \in \mathtt{L}\} & \mathtt{L} \mapsto \mathtt{Grz} \oplus \tau \mathtt{L} \end{split}$$

 $\rho : \mathsf{NExt}(\mathsf{S4}) \to \mathsf{Ext}(\mathtt{IPC})$ $\mathsf{M} \mapsto \{\varphi : T(\varphi) \in \mathsf{M}\}$

Some central results on modal companions

Some central results on modal companions

Theorem (Characterization theorem, Maksimova and Rybakov 1974) The set $\rho^{-1}(L)$ of modal companions of $L \in Ext(IPC)$ forms an interval

 $\rho^{-1}(L) = \{M \in \mathsf{NExt}(S4) : \tau L \subseteq M \subseteq \sigma L\}.$

Some central results on modal companions

Theorem (Characterization theorem, Maksimova and Rybakov 1974) The set $\rho^{-1}(L)$ of modal companions of $L \in Ext(IPC)$ forms an interval $\rho^{-1}(L) = \{M \in NExt(S4) : \tau L \subseteq M \subseteq \sigma L\}.$

Theorem (Blok-Esakia theorem, Blok 1976; Esakia 1976)

The mappings $\sigma : Ext(IPC) \rightarrow NExt(S4)$ and $\rho : NExt(S4) \rightarrow Ext(IPC)$ are mutually inverse complete lattice isomorphisms.

Some central results on modal companions

Theorem (Characterization theorem, Maksimova and Rybakov 1974) The set $\rho^{-1}(L)$ of modal companions of $L \in Ext(IPC)$ forms an interval $\rho^{-1}(L) = \{M \in NExt(S4) : \tau L \subseteq M \subseteq \sigma L\}.$

Theorem (Blok-Esakia theorem, Blok 1976; Esakia 1976)

The mappings $\sigma : Ext(IPC) \rightarrow NExt(S4)$ and $\rho : NExt(S4) \rightarrow Ext(IPC)$ are mutually inverse complete lattice isomorphisms.

Theorem (Dummett-Lemmon conjecture, Dummett and Lemmon 1959; Zakharyashchev 1991) For every $L \in Ext(IPC)$, we have that L is Kripke complete iff τL is.

Various approaches:

Various approaches:

Blok [1976] used algebraic methods

Various approaches:

- Blok [1976] used algebraic methods
- Esakia [1976] used duality

Various approaches:

- Blok [1976] used algebraic methods
- Esakia [1976] used duality
- Zakharyashchev [1991] used canonical formulae

...and related notions

The notion of a modal companion was generalized along two dimensions.

I Applied to rule systems rather than logics [Jeřábek, 2009; Stronkowski, 2016].

Applied to rule systems rather than logics [Jeřábek, 2009; Stronkowski, 2016].
 Applied to richer signatures:

- Applied to rule systems rather than logics [Jeřábek, 2009; Stronkowski, 2016].
 Applied to richer signatures:
 - Bi-superintuitionistic and tense logics [Wolter, 1998].

- I Applied to rule systems rather than logics [Jeřábek, 2009; Stronkowski, 2016].
- 2 Applied to richer signatures:
 - Bi-superintuitionistic and tense logics [Wolter, 1998].
 - Modal superintuitionistic and (poly)modal logics [Kuznetsov and Muravitsky, 1986; Wolter and Zakharyaschev, 1997, 1998; Esakia, 2006]

I Applied to rule systems rather than logics [Jeřábek, 2009; Stronkowski, 2016].

2 Applied to richer signatures:

- Bi-superintuitionistic and tense logics [Wolter, 1998].
- Modal superintuitionistic and (poly)modal logics [Kuznetsov and Muravitsky, 1986; Wolter and Zakharyaschev, 1997, 1998; Esakia, 2006]
- More!

Overview

1 Background

2 Summary of Contributions

3 Some Details on our Method

4 Further Work

Our approach

We develop a new, uniform method for studying modal companions and notions in the vicinity, based on **stable canonical rules** [Bezhanishvili et al., 2016a].

Our method is an alternative to those of Zakharyashchev [1991] and Jeřábek [2009], which use canonical formulae and canonical rules respectively.

Our method is an alternative to those of Zakharyashchev [1991] and Jeřábek [2009], which use canonical formulae and canonical rules respectively.

Advantages of our method vs. Zakharyashchev and Jeřábek's: stable canonical rules use **filtration**, canonical formulae and rules use (a version of) **selective filtration**.

Our method is an alternative to those of Zakharyashchev [1991] and Jeřábek [2009], which use canonical formulae and canonical rules respectively.

Advantages of our method vs. Zakharyashchev and Jeřábek's: stable canonical rules use **filtration**, canonical formulae and rules use (a version of) **selective filtration**.

■ Filtration is simpler.

Our method is an alternative to those of Zakharyashchev [1991] and Jeřábek [2009], which use canonical formulae and canonical rules respectively.

Advantages of our method vs. Zakharyashchev and Jeřábek's: stable canonical rules use **filtration**, canonical formulae and rules use (a version of) **selective filtration**.

- Filtration is simpler.
- Filtration is more easily generalizable to alternative signatures.

Our approach

We apply our method to study the following topics

Our approach

We apply our method to study the following topics

1 Modal companions of superintuitionistic logics and rule systems

We apply our method to study the following topics

1 Modal companions of superintuitionistic logics and rule systems

2 Tense companions of bi-superintuitionistic logics and rule systems

We apply our method to study the following topics

- **I** Modal companions of superintuitionistic logics and rule systems
- **2** Tense companions of bi-superintuitionistic logics and rule systems
- **3** The **Kuznetsov-Muravitsky isomorphism** between NExt(KM) and NExt(GL), and its generalization to rule systems

Main results

	Modal companions		Tense companions		Kuznetsov Muravitsky	
	Logics	Rule systems	Logics	Rule systems	Logics	Rule systems
Characterization	\checkmark	\checkmark	\checkmark	\checkmark	—	—
theorem						
Blok-Esakia theo-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
rem						
Dummett-Lemmon	X	\checkmark	×	\checkmark	—	_
conjecture						
Axiomatic charac-	X	\checkmark	×	\checkmark	X	$\checkmark(\sigma, ho)$ only
terization of $ ho, au,\sigma$						
via scr						

Table: \checkmark : proved and known, \checkmark : proved and new, -: not applicable, X: not proved
Main results

	Modal companions		Tense companions		Kuznetsov Muravitsky	
	Logics	Rule systems	Logics	Rule systems	Logics	Rule systems
Characterization	\checkmark	\checkmark	\checkmark	\checkmark	—	—
theorem						
Blok-Esakia theo-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
rem						
Dummett-Lemmon	X	\checkmark	×	\checkmark	—	_
conjecture						
Axiomatic charac-	X	\checkmark	×	\checkmark	X	$\checkmark(\sigma, ho)$ only
terization of $ ho, au,\sigma$						
via scr						

Table: \checkmark : proved and known, \checkmark : proved and new, -: not applicable, X: not proved

Uniform approach: all main results are proved using essentially the same techniques, with minor adaptations to fit signature

Overview

1 Background

2 Summary of Contributions

3 Some Details on our Method

4 Further Work

Rule systems

A rule is a pair Γ/Δ , where Γ, Δ are finite sets of formulae in a common signature.

A rule is a pair Γ/Δ , where Γ, Δ are finite sets of formulae in a common signature.

Si rule systems, (normal) modal rule systems: sets of si (resp. modal) rules satisfying certain conditions.

A **rule** is a pair Γ/Δ , where Γ, Δ are finite sets of formulae in a common signature.

Si rule systems, (normal) modal rule systems: sets of si (resp. modal) rules satisfying certain conditions.

A rule is a pair Γ/Δ , where Γ, Δ are finite sets of formulae in a common signature.

Si rule systems, (normal) modal rule systems: sets of si (resp. modal) rules satisfying certain conditions.

Stable canonical rules

Si stable canonical rules

Let \mathfrak{F} be a finite Esakia space, $\mathfrak{D}\subseteq \wp(F)$

 $(\mathfrak{F},\mathfrak{D}) \qquad \mapsto \qquad \eta(\mathfrak{F},\mathfrak{D})$

Stable canonical rules

Si stable canonical rules

Let \mathfrak{F} be a finite Esakia space, $\mathfrak{D} \subseteq \wp(F)$

 $(\mathfrak{F},\mathfrak{D}) \qquad \mapsto \qquad \eta(\mathfrak{F},\mathfrak{D})$

Modal stable canonical rules

Let \mathfrak{F} be a finite S4 modal space, $\mathfrak{D} \subseteq \wp(F)$

 $(\mathfrak{F},\mathfrak{D}) \qquad \mapsto \qquad \mu(\mathfrak{F},\mathfrak{D})$

Proposition

For every Esakia space \mathfrak{X} we have $\mathfrak{X} \nvDash \eta(\mathfrak{F}, \mathfrak{D})$ iff there is a continuous surjection $f : \mathfrak{X} \to \mathfrak{F}$ such that

Proposition

For every Esakia space \mathfrak{X} we have $\mathfrak{X} \nvDash \eta(\mathfrak{F}, \mathfrak{D})$ iff there is a continuous surjection $f : \mathfrak{X} \to \mathfrak{F}$ such that

• f is stable: $x \le y$ implies $f(x) \le f(y)$;

Proposition

For every Esakia space \mathfrak{X} we have $\mathfrak{X} \nvDash \eta(\mathfrak{F}, \mathfrak{D})$ iff there is a continuous surjection $f : \mathfrak{X} \to \mathfrak{F}$ such that

- f is stable: $x \le y$ implies $f(x) \le f(y)$;
- *f* satisfies the **bounded domain condition** for \mathfrak{D} , i.e., for all $\mathfrak{d} \in \mathfrak{D}$ we have

 $\uparrow f(x) \cap \mathfrak{d} \neq \varnothing \Rightarrow f[\uparrow x] \cap \mathfrak{d} \neq \varnothing.$

Proposition

For every modal space \mathfrak{X} we have $\mathfrak{X} \nvDash \mu(\mathfrak{F}, \mathfrak{D})$ iff there is a continuous surjection $f : \mathfrak{X} \to \mathfrak{F}$ such that

- f is **stable**: Rxy implies Rf(x)f(y);
- *f* satisfies the **bounded domain condition** for \mathfrak{D} , i.e., for all $\mathfrak{d} \in \mathfrak{D}$ we have

 $R[f(x)] \cap \mathfrak{d} \neq \varnothing \Rightarrow f[R[x]] \cap \mathfrak{d} \neq \varnothing.$

Rewriting

Bezhanishvili et al. [2016a,b] prove the following results.

Theorem (Rewriting theorem (si))

Every si rule is equivalent to a conjunction of finitely many si stable canonical rules.

Theorem (Rewriting theorem (modal))

Every modal rule is equivalent, over S4 to finitely many modal stable canonical rules of the form $\mu(\mathfrak{F}, \mathfrak{D})$, for \mathfrak{F} a finite S4 frame

Rewriting

Bezhanishvili et al. [2016a,b] prove the following results.

Theorem (Rewriting theorem (si))

Every si rule is equivalent to a conjunction of finitely many si stable canonical rules.

Theorem (Rewriting theorem (modal))

Every modal rule is equivalent, over S4 to finitely many modal stable canonical rules of the form $\mu(\mathfrak{F}, \mathfrak{D})$, for \mathfrak{F} a finite S4 frame

Proof sketch.

Use filtration to construct finite countermodels, then encode the latter into stable canonical rules.

Let \mathfrak{X} be an Esakia space. Set $\sigma \mathfrak{X} := \mathfrak{X}$.

Let \mathfrak{X} be an Esakia space. Set $\sigma \mathfrak{X} := \mathfrak{X}$.

Let \mathfrak{X} be an S4-modal space. Let $\rho \mathfrak{X}$ be the **skeleton** of \mathfrak{X} .

Let \mathfrak{X} be an Esakia space. Set $\sigma \mathfrak{X} := \mathfrak{X}$.

Let \mathfrak{X} be an S4-modal space. Let $\rho \mathfrak{X}$ be the **skeleton** of \mathfrak{X} .

Let \mathfrak{X} be an Esakia space. Set $\sigma \mathfrak{X} := \mathfrak{X}$.

Let \mathfrak{X} be an S4-modal space. Let $\rho \mathfrak{X}$ be the **skeleton** of \mathfrak{X} .

Both operations have algebraic duals σ : HA \rightarrow Grz, ρ : S4 \rightarrow HA

Extend σ,ρ to class operators

 $\sigma : \mathsf{Uni}(\mathsf{HA}) \to \mathsf{Uni}(\mathsf{Grz})$ $\mathcal{U} \mapsto \mathsf{Uni}\{\sigma\mathfrak{H} : \mathfrak{H} \in \mathcal{U}\}$ ho : Uni(S4)
ightarrow Uni(HA) $\mathcal{U} \mapsto \{
ho \mathfrak{A} : \mathfrak{A} \in \mathcal{U} \}$

Extend σ, ρ to class operators

$$\begin{split} \sigma &: \mathsf{Uni}(\mathsf{HA}) \to \mathsf{Uni}(\mathsf{Grz}) & \rho : \mathsf{Uni}(\mathsf{S4}) \to \mathsf{Uni}(\mathsf{HA}) \\ \mathcal{U} &\mapsto \mathsf{Uni}\{\sigma\mathfrak{H} : \mathfrak{H} \in \mathcal{U}\} & \mathcal{U} \mapsto \{\rho\mathfrak{A} : \mathfrak{A} \in \mathcal{U}\} \end{split}$$

 $\tau: \mathsf{Uni}(\mathsf{HA}) \to \mathsf{Uni}(\mathsf{S4})$ $\mathcal{U} \mapsto \{\mathfrak{A} \in \mathsf{S4} : \rho \mathfrak{A} \in \mathcal{U}\}$

Modal companions

Extend the Gödel translation to rules by setting $T(\Gamma/\Delta) := T[\Gamma]/T[\Delta]$.

Modal companions

Extend the Gödel translation to rules by setting $T(\Gamma/\Delta) := T[\Gamma]/T[\Delta]$.

Definition

Let $L \in Ext(IPC_R)$ be a si-rule system and $M \in NExt(S4_R)$ a modal rule system. We say that M is a *modal companion* of L (or that L is the si fragment of M) whenever $\Gamma/\Delta \in L$ iff $T(\Gamma/\Delta) \in M$.

Modal companions

Extend the Gödel translation to rules by setting $T(\Gamma/\Delta) := T[\Gamma]/T[\Delta]$.

Definition

Let $L \in Ext(IPC_R)$ be a si-rule system and $M \in NExt(S4_R)$ a modal rule system. We say that M is a *modal companion* of L (or that L is the si fragment of M) whenever $\Gamma/\Delta \in L$ iff $T(\Gamma/\Delta) \in M$.

$$\begin{split} \tau : \mathsf{Ext}(\mathtt{IPC}_{\mathtt{R}}) & \to \mathsf{NExt}(\mathtt{S4}_{\mathtt{R}}) & \sigma : \mathsf{Ext}(\mathtt{IPC}_{\mathtt{R}}) \to \mathsf{NExt}(\mathtt{S4}_{\mathtt{R}}) \\ \mathtt{L} & \mapsto \mathtt{S4}_{\mathtt{R}} \oplus \{\mathcal{T}(\mathsf{\Gamma}/\Delta) : \mathsf{\Gamma}/\Delta \in \mathtt{L}\} & \mathtt{L} \mapsto \mathtt{Grz}_{\mathtt{R}} \oplus \tau \mathtt{L} \end{split}$$

 $\rho:\mathsf{NExt}(\mathsf{S4}_{\mathsf{R}})\to\mathsf{Ext}(\mathtt{IPC}_{\mathsf{R}})$ $\mathsf{M}\mapsto\{\Gamma/\Delta:\mathcal{T}(\Gamma/\Delta)\in\mathsf{M}\}$

Our Method

Basic idea

Use geometric refutation conditions for stable canonical rules to translate the target problems into order-topological problems.

The Blok-Esakia theorem for rule systems

Theorem

The mappings $\sigma : \mathsf{Ext}(\mathtt{IPC}_R) \to \mathsf{NExt}(\mathtt{Grz}_R)$ and $\rho : \mathsf{NExt}(\mathtt{Grz}_R) \to \mathsf{Ext}(\mathtt{IPC}_R)$ are complete lattice isomorphisms and mutual inverses.

The tricky part consists in showing that for all $M \in NExt(Grz_R)$ we have $\sigma \rho M = M$.

The tricky part consists in showing that for all $M \in NExt(Grz_R)$ we have $\sigma \rho M = M$.

The tricky part consists in showing that for all $M \in NExt(Grz_R)$ we have $\sigma \rho M = M$.

Main lemma

For all Grz-spaces \mathfrak{X} , if $\mathfrak{X} \nvDash \Gamma/\Delta$ then $\sigma \rho \mathfrak{X} \nvDash \Gamma/\Delta$.

Our approach:

• Wlog, $\Gamma/\Delta = \mu(\mathfrak{F},\mathfrak{D})$

- Wlog, $\Gamma/\Delta = \mu(\mathfrak{F}, \mathfrak{D})$
- $\mathfrak{X} \nvDash \mu(\mathfrak{F}, \mathfrak{D}) \iff$ there is a continuous stable surjection $f : \mathfrak{X} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D}

- Wlog, $\Gamma/\Delta = \mu(\mathfrak{F},\mathfrak{D})$
- $\mathfrak{X} \nvDash \mu(\mathfrak{F}, \mathfrak{D}) \iff$ there is a continuous stable surjection $f : \mathfrak{X} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D}
- Transform f into a continuous stable surjection $g: \sigma \rho \mathfrak{X} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D}

- Wlog, $\Gamma/\Delta = \mu(\mathfrak{F},\mathfrak{D})$
- $\mathfrak{X} \nvDash \mu(\mathfrak{F}, \mathfrak{D}) \iff$ there is a continuous stable surjection $f : \mathfrak{X} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D}
- Transform f into a continuous stable surjection $g : \sigma \rho \mathfrak{X} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D}
- Ingredients: separation properties of Stone spaces, order-theoretic properties of Grz-spaces

The Dummett-Lemmon conjecture

Theorem (Dummett-Lemmon conjecture for si-rule systems)

For every si-rule system $L \in Ext(IPC_R)$, we have that L is Kripke complete iff τL is.

The non-trivial direction is left-to-right.

The non-trivial direction is left-to-right.

Our approach:

• Assume L is Kripke complete, suppose $\Gamma/\Delta \notin \tau L$

The non-trivial direction is left-to-right.

- Assume L is Kripke complete, suppose $\Gamma/\Delta \notin \tau L$
- Wlog, $\Gamma/\Delta = \mu(\mathfrak{F},\mathfrak{D})$
Proof strategy

The non-trivial direction is left-to-right.

Our approach:

- Assume L is Kripke complete, suppose $\Gamma/\Delta \notin \tau L$
- Wlog, $\Gamma/\Delta = \mu(\mathfrak{F},\mathfrak{D})$
- $\mu(\mathfrak{F},\mathfrak{D}) \notin \tau L$ implies $\eta(\rho \mathfrak{F}, \rho \mathfrak{D}) \notin L$, where

$$\rho\mathfrak{D}=\{\rho[\mathfrak{d}]:\mathfrak{d}\in\mathfrak{D}\}$$

Proof strategy

The non-trivial direction is left-to-right.

Our approach:

- Assume L is Kripke complete, suppose $\Gamma/\Delta \notin \tau L$
- Wlog, $\Gamma/\Delta = \mu(\mathfrak{F}, \mathfrak{D})$
- $\mu(\mathfrak{F},\mathfrak{D}) \notin \tau L$ implies $\eta(\rho \mathfrak{F}, \rho \mathfrak{D}) \notin L$, where

$$\rho\mathfrak{D}=\{\rho[\mathfrak{d}]:\mathfrak{d}\in\mathfrak{D}\}$$

• Use Kripke completeness of L to get a Kripke frame \mathfrak{X} validating L and a stable map $f: \mathfrak{X} \to \rho \mathfrak{F}$ satisfying the BDC for $\rho \mathfrak{D}$

Proof strategy

The non-trivial direction is left-to-right.

Our approach:

- Assume L is Kripke complete, suppose $\Gamma/\Delta \notin \tau L$
- Wlog, $\Gamma/\Delta = \mu(\mathfrak{F}, \mathfrak{D})$
- $\mu(\mathfrak{F},\mathfrak{D}) \notin \tau L$ implies $\eta(\rho \mathfrak{F}, \rho \mathfrak{D}) \notin L$, where

$$\rho\mathfrak{D}=\{\rho[\mathfrak{d}]:\mathfrak{d}\in\mathfrak{D}\}$$

- Use Kripke completeness of L to get a Kripke frame \mathfrak{X} validating L and a stable map $f: \mathfrak{X} \to \rho \mathfrak{F}$ satisfying the BDC for $\rho \mathfrak{D}$
- Expand \mathfrak{X} into a Kripke frame \mathfrak{Y} for τL by adding clusters, use f to define a map $g: \mathfrak{Y} \to \mathfrak{F}$ satisfying the BDC for \mathfrak{D}

Overview

1 Background

2 Summary of Contributions

3 Some Details on our Method

4 Further Work

Further Work

 Full theory of bi-modal companions of modal superintuitionistic deductive systems (of which the Kuznetsov-Muravitsky is a special case.)

Further Work

- Full theory of bi-modal companions of modal superintuitionistic deductive systems (of which the Kuznetsov-Muravitsky is a special case.)
- Modal companions of deductive systems extending Heyting-Lemmon logic

Further Work

- Full theory of bi-modal companions of modal superintuitionistic deductive systems (of which the Kuznetsov-Muravitsky is a special case.)
- Modal companions of deductive systems extending Heyting-Lemmon logic
- Modal companions of deductive systems for Ortholattices

Thank You!

- Bezhanishvili, G., Bezhanishvili, N., and lemhoff, R. [2016a]. Stable canonical rules. *The Journal of Symbolic Logic*, 81(1):284–315.
- Bezhanishvili, G., Bezhanishvili, N., and Ilin, J. [2016b]. Cofinal Stable Logics. *Studia Logica*, 104(6):1287–1317.
- Blok, W. [1976]. Varieties of Interior Algebras. Ph.D. thesis, Universiteit van Amsterdam.
- Cleani, A. M. [2021]. *Translational Embeddings via Stable Canonical Rules*. Master's thesis, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam.
- Dummett, M. a. E. and Lemmon, E. J. [1959]. Modal Logics Between S4 and S5. *Mathematical Logic Quarterly*, 5(14-24):250–264.
- Esakia, L. [1976]. On Modal Companions of Superintuitionistic Logics. In VII Soviet symposium on logic (Kiev, 1976), pp. 135–136.

[2006]. The modalized Heyting calculus: a Conservative Modal Extension of the Intuitionistic Logic. *Journal of Applied Non-Classical Logics*, 16(3-4):349–366.

- Gödel, K. [1933]. Eine Interpretation des Intuitionistischen Aussagenkalküls. *Ergebnisse* einesmathematischen Kolloquiums, 4:39–40.
- Jeřábek, E. [2009]. Canonical rules. The Journal of Symbolic Logic, 74(4):1171-1205.
- Kuznetsov, A. V. and Muravitsky, A. Y. [1986]. On Superintuitionistic Logics as Fragments of Proof Logic Extensions. *Studia Logica*, 45(1):77–99.
- Maksimova, L. L. and Rybakov, V. V. [1974]. A lattice of normal modal logics. *Algebra and Logic*, 13(2):105–122.
- McKinsey, J. C. C. and Tarski, A. [1944]. The Algebra of Topology. *Annals of Mathematics*, 45(1):141–191.
- Stronkowski, M. M. [2016]. Universal freeness and admissibility. In *Informal Proceedings of the* 30th International Workshop on Unification (UNIF 2016), p. 57.
- Wolter, F. [1998]. On Logics with Coimplication. *Journal of Philosophical Logic*, 27(4):353–387.

- Wolter, F. and Zakharyaschev, M. [1997]. On the Relation Between Intuitionistic and Classical Modal Logics. *Algebra and Logic*, 36(2):73–92.
- [1998]. Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics. In *Logic at Work: Essays in Honour of Helena Rasiowa*, pp. 168–186. Dodrecht: Springer.
- Zakharyashchev, M. V. [1991]. Modal Companions of Superintuitionistic Logics: Syntax, Semantics, and Preservation Theorems. *Mathematics of the USSR-Sbornik*, 68(1).