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Goal

We present a novel uniform method for studying modal companions of superintuitionistic
deductive systems and related notions.
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Notation

IPC Intuitionistic propositional calculus
S4 K⊕�p → p ⊕�p → ��p
Grz S4⊕�(�(p → �p)→ p)→ p
HA Heyting algebras
MA Modal algebras

S4,Grz Modal algebras validating S4, Grz



The Gödel Translation

Gödel [1933] defined the following translation of intuitionistic formulae into modal formulae.
T (⊥) := ⊥
T (>) := >
T (p) := �p

T (ϕ ∧ ψ) := T (ϕ) ∧ T (ψ)

T (ϕ ∨ ψ) := T (ϕ) ∨ T (ψ)

T (ϕ→ ψ) := �(¬T (ϕ) ∨ T (ψ))

Theorem (McKinsey and Tarski 1944)

ϕ ∈ IPC ⇐⇒ T (ϕ) ∈ S4
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Modal companions...

Definition
A normal modal logic M is a modal companion of a superintuitionistic logic L if

L = {ϕ : T (ϕ) ∈ M}

τ : Ext(IPC)→ NExt(S4) σ : Ext(IPC)→ NExt(S4)

L 7→ S4⊕ {T (ϕ) : ϕ ∈ L} L 7→ Grz⊕ τL

ρ : NExt(S4)→ Ext(IPC)

M 7→ {ϕ : T (ϕ) ∈ M}
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Modal companions...

Some central results on modal companions

Theorem (Characterization theorem, Maksimova and Rybakov 1974)

The set ρ−1(L) of modal companions of L ∈ Ext(IPC) forms an interval

ρ−1(L) = {M ∈ NExt(S4) : τL ⊆ M ⊆ σL}.

Theorem (Blok-Esakia theorem, Blok 1976; Esakia 1976)

The mappings σ : Ext(IPC)→ NExt(S4) and ρ : NExt(S4)→ Ext(IPC) are mutually inverse
complete lattice isomorphisms.

Theorem (Dummett-Lemmon conjecture, Dummett and Lemmon 1959; Zakharyashchev 1991)

For every L ∈ Ext(IPC), we have that L is Kripke complete iff τL is.



Modal companions...

Some central results on modal companions

Theorem (Characterization theorem, Maksimova and Rybakov 1974)

The set ρ−1(L) of modal companions of L ∈ Ext(IPC) forms an interval

ρ−1(L) = {M ∈ NExt(S4) : τL ⊆ M ⊆ σL}.

Theorem (Blok-Esakia theorem, Blok 1976; Esakia 1976)

The mappings σ : Ext(IPC)→ NExt(S4) and ρ : NExt(S4)→ Ext(IPC) are mutually inverse
complete lattice isomorphisms.

Theorem (Dummett-Lemmon conjecture, Dummett and Lemmon 1959; Zakharyashchev 1991)

For every L ∈ Ext(IPC), we have that L is Kripke complete iff τL is.



Modal companions...

Some central results on modal companions

Theorem (Characterization theorem, Maksimova and Rybakov 1974)

The set ρ−1(L) of modal companions of L ∈ Ext(IPC) forms an interval

ρ−1(L) = {M ∈ NExt(S4) : τL ⊆ M ⊆ σL}.

Theorem (Blok-Esakia theorem, Blok 1976; Esakia 1976)

The mappings σ : Ext(IPC)→ NExt(S4) and ρ : NExt(S4)→ Ext(IPC) are mutually inverse
complete lattice isomorphisms.

Theorem (Dummett-Lemmon conjecture, Dummett and Lemmon 1959; Zakharyashchev 1991)

For every L ∈ Ext(IPC), we have that L is Kripke complete iff τL is.



Modal companions...

Some central results on modal companions

Theorem (Characterization theorem, Maksimova and Rybakov 1974)

The set ρ−1(L) of modal companions of L ∈ Ext(IPC) forms an interval

ρ−1(L) = {M ∈ NExt(S4) : τL ⊆ M ⊆ σL}.

Theorem (Blok-Esakia theorem, Blok 1976; Esakia 1976)

The mappings σ : Ext(IPC)→ NExt(S4) and ρ : NExt(S4)→ Ext(IPC) are mutually inverse
complete lattice isomorphisms.

Theorem (Dummett-Lemmon conjecture, Dummett and Lemmon 1959; Zakharyashchev 1991)

For every L ∈ Ext(IPC), we have that L is Kripke complete iff τL is.



Modal companions...

Various approaches:

Blok [1976] used algebraic methods
Esakia [1976] used duality
Zakharyashchev [1991] used canonical formulae
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...and related notions

The notion of a modal companion was generalized along two dimensions.

1 Applied to rule systems rather than logics [Jeřábek, 2009; Stronkowski, 2016].
2 Applied to richer signatures:

Bi-superintuitionistic and tense logics [Wolter, 1998].
Modal superintuitionistic and (poly)modal logics [Kuznetsov and Muravitsky, 1986; Wolter
and Zakharyaschev, 1997, 1998; Esakia, 2006]
More!
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Our approach

We develop a new, uniform method for studying modal companions and notions in the vicinity,
based on stable canonical rules [Bezhanishvili et al., 2016a].

Our method is an alternative to those of Zakharyashchev [1991] and Jeřábek [2009], which use
canonical formulae and canonical rules respectively.

Advantages of our method vs. Zakharyashchev and Jeřábek’s: stable canonical rules use
filtration, canonical formulae and rules use (a version of) selective filtration.

Filtration is simpler.
Filtration is more easily generalizable to alternative signatures.
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3 The Kuznetsov-Muravitsky isomorphism between NExt(KM) and NExt(GL), and its

generalization to rule systems
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Main results

Modal companions Tense companions Kuznetsov Muravitsky
Logics Rule systems Logics Rule systems Logics Rule systems

Characterization
theorem

X X X X − −

Blok-Esakia theo-
rem

X X X X X X

Dummett-Lemmon
conjecture

7 X 7 X − −

Axiomatic charac-
terization of ρ, τ, σ
via scr

7 X 7 X 7 X(σ, ρ) only

Table: X: proved and known, X: proved and new, −: not applicable, 7: not proved

Uniform approach: all main results are proved using essentially the same techniques, with
minor adaptations to fit signature
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Rule systems

A rule is a pair Γ/∆, where Γ,∆ are finite sets of formulae in a common signature.

Si rule systems, (normal) modal rule systems: sets of si (resp. modal) rules satisfying
certain conditions.

Ext(IPC) Ext(IPCR)

Var(HA) Uni(HA)

(·)R

Alg Alg

id

Th ThR

NExt(K) NExt(KR)

Var(MA) Uni(MA)

(·)R

Alg Alg

id

Th ThR
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Stable canonical rules

Si stable canonical rules
Let F be a finite Esakia space, D ⊆ ℘(F )

(F,D) 7→ η(F,D)

Modal stable canonical rules
Let F be a finite S4 modal space, D ⊆ ℘(F )

(F,D) 7→ µ(F,D)
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Refutation conditions

Proposition

For every Esakia space X we have X 2 η(F,D) iff there is a continuous surjection f : X→ F
such that

f is stable: x ≤ y implies f (x) ≤ f (y);
f satisfies the bounded domain condition for D, i.e., for all d ∈ D we have

↑f (x) ∩ d 6= ∅⇒ f [↑x ] ∩ d 6= ∅.
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Refutation conditions

Proposition

For every modal space X we have X 2 µ(F,D) iff there is a continuous surjection f : X→ F
such that

f is stable: Rxy implies Rf (x)f (y);
f satisfies the bounded domain condition for D, i.e., for all d ∈ D we have
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Rewriting

Bezhanishvili et al. [2016a,b] prove the following results.

Theorem (Rewriting theorem (si))

Every si rule is equivalent to a conjunction of finitely many si stable canonical rules.

Theorem (Rewriting theorem (modal))

Every modal rule is equivalent, over S4 to finitely many modal stable canonical rules of the
form µ(F,D), for F a finite S4 frame

Proof sketch.
Use filtration to construct finite countermodels, then encode the latter into stable canonical
rules.
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Let X be an S4-modal space. Let ρX be the skeleton of X.

⇒

Both operations have algebraic duals σ : HA→ Grz, ρ : S4→ HA
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Modal companion maps

Extend σ, ρ to class operators
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Modal companions

Extend the Gödel translation to rules by setting T (Γ/∆) := T [Γ]/T [∆].

Definition
Let L ∈ Ext(IPCR) be a si-rule system and M ∈ NExt(S4R) a modal rule system. We say that M is
a modal companion of L (or that L is the si fragment of M) whenever Γ/∆ ∈ L iff T (Γ/∆) ∈ M.
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Our Method

Basic idea
Use geometric refutation conditions for stable canonical rules to translate the target problems
into order-topological problems.



The Blok-Esakia theorem for rule systems

Theorem
The mappings σ : Ext(IPCR)→ NExt(GrzR) and ρ : NExt(GrzR)→ Ext(IPCR) are complete
lattice isomorphisms and mutual inverses.



Proof strategy

The tricky part consists in showing that for all M ∈ NExt(GrzR) we have σρM = M.

0

1

2

...

ω0 ω1

Main lemma
For all Grz-spaces X, if X 2 Γ/∆ then σρX 2 Γ/∆.
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Proof strategy

Our approach:
Wlog, Γ/∆ = µ(F,D)

X 2 µ(F,D) ⇐⇒ there is a continuous stable surjection f : X→ F satisfying the BDC
for D
Transform f into a continuous stable surjection g : σρX→ F satisfying the BDC for D
Ingredients: separation properties of Stone spaces, order-theoretic properties of Grz-spaces
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The Dummett-Lemmon conjecture

Theorem (Dummett-Lemmon conjecture for si-rule systems)

For every si-rule system L ∈ Ext(IPCR), we have that L is Kripke complete iff τL is.



Proof strategy

The non-trivial direction is left-to-right.

Our approach:
Assume L is Kripke complete, suppose Γ/∆ /∈ τL
Wlog, Γ/∆ = µ(F,D)

µ(F,D) /∈ τL implies η(ρF, ρD) /∈ L, where

ρD = {ρ[d] : d ∈ D}

Use Kripke completeness of L to get a Kripke frame X validating L and a stable map
f : X→ ρF satisfying the BDC for ρD
Expand X into a Kripke frame Y for τL by adding clusters, use f to define a map
g : Y→ F satisfying the BDC for D
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