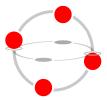
First order doctrines as finitely bipresentable 2-categories

Axel Osmond (joint work with Ivan Di Liberti)

TACL, June 2022



Introduction

Fragments of propositional logic correspond to varieties of propositional algebras:

- ∧-**SLat** for propositional cartesian logic
- DLat for propositional coherent logic
- Heyt for propositional first order logic
- Bool for propositional classical logic
- also diverse varieties of residuated lattices for substructural logics: ResLat, FL, FL₀, BL, GBL, MV...

Those varieties are often studied in the context of *universal algebra*.

Fragments of propositional logic correspond to varieties of propositional algebras:

- ∧-SLat for propositional cartesian logic
- DLat for propositional coherent logic
- Heyt for propositional first order logic
- Bool for propositional classical logic
- also diverse varieties of residuated lattices for substructural logics: ResLat, FL, FL₀, BL, GBL, MV...

Those varieties are often studied in the context of *universal algebra*.

Fragments of propositional logic correspond to varieties of propositional algebras:

- ∧-SLat for propositional cartesian logic
- DLat for propositional coherent logic
- Heyt for propositional first order logic
- Bool for propositional classical logic
- also diverse varieties of residuated lattices for substructural logics: ResLat, FL, FL₀, BL, GBL, MV...

Those varieties are often studied in the context of *universal algebra*.

Fragments of propositional logic correspond to varieties of propositional algebras:

- ∧-SLat for propositional cartesian logic
- DLat for propositional coherent logic
- Heyt for propositional first order logic
- Bool for propositional classical logic
- also diverse varieties of residuated lattices for substructural logics: ResLat, FL, FL₀, BL, GBL, MV...

Those varieties are often studied in the context of *universal algebra*.

Filteredness and finitely accessible categories

Locally finitely presentable categories are categories having:

- small colimits (in particular, filtered colimits)
- an essentially small subcategory of finitely presented objects such that any object is a filtered colimits of finitely presented objects

(Requiring existence only of filtered colimits gets the more general notion of *finitely accessible categories*)

Filtered colimits: those indexed by category I where

$$i_1 \underset{j \not\leftarrow}{\swarrow} i_2 \qquad i_1 \rightrightarrows i_2 \dashrightarrow j$$

Finitely presented (aka compact) objects: those that are "small against filtered colimits" (whose covariant homset preserve filtered colimits).

Filteredness and finitely accessible categories

Locally finitely presentable categories are categories having:

- small colimits (in particular, filtered colimits)
- an essentially small subcategory of finitely presented objects such that any object is a filtered colimits of finitely presented objects

(Requiring existence only of filtered colimits gets the more general notion of *finitely accessible categories*)

Filtered colimits: those indexed by category I where

$$\stackrel{i_1}{\searrow}_{j} \rightleftharpoons \stackrel{i_2}{\longrightarrow} \quad i_1 \rightrightarrows i_2 \dashrightarrow j$$

Finitely presented (aka compact) objects: those that are "small against filtered colimits" (whose covariant homset preserve filtered colimits).

Filteredness and finitely accessible categories

Locally finitely presentable categories are categories having:

- small colimits (in particular, filtered colimits)
- an essentially small subcategory of finitely presented objects such that any object is a filtered colimits of finitely presented objects

(Requiring existence only of filtered colimits gets the more general notion of *finitely accessible categories*)

Filtered colimits: those indexed by category I where

$$i_1 \underbrace{\qquad \qquad i_2 \qquad \qquad }_{j} \xrightarrow{i_2} \qquad i_1 \rightrightarrows i_2 \dashrightarrow j$$

Finitely presented (aka compact) objects: those that are "small against filtered colimits" (whose covariant homset preserve filtered colimits).

Locally finitely presentable categories

Locally finitely presentable enjoy a lot of pleasant properties:

- completeness and commutation of finite limits with filtered colimits,
- well (co)poweredness,
- special small object argument,
- good interactions of monomorphisms and colimits...

They also encompass actually far more examples, as:

- sets, posets,
- monoids, groups, rings,
- or also the 1-categories of small categories...

The celebrated *Gabriel-Ulmer duality* says that locally finitely presentable categories are exactly categories of models of essentially algebraic theories.

Locally finitely presentable categories

Locally finitely presentable enjoy a lot of pleasant properties:

- completeness and commutation of finite limits with filtered colimits,
- well (co)poweredness,
- special small object argument,
- good interactions of monomorphisms and colimits...

They also encompass actually far more examples, as:

- sets, posets,
- monoids, groups, rings,
- or also the 1-categories of small categories...

The celebrated *Gabriel-Ulmer duality* says that locally finitely presentable categories are exactly categories of models of essentially algebraic theories.

Locally finitely presentable categories

Locally finitely presentable enjoy a lot of pleasant properties:

- completeness and commutation of finite limits with filtered colimits,
- well (co)poweredness,
- special small object argument,
- good interactions of monomorphisms and colimits...

They also encompass actually far more examples, as:

- sets, posets,
- monoids, groups, rings,
- or also the 1-categories of small categories...

The celebrated *Gabriel-Ulmer duality* says that locally finitely presentable categories are exactly categories of models of essentially algebraic theories.

While fragments of propositional logic correspond to varieties of propositional algebras, fragments of first order logic correspond to *doctrines*:

Those are 2-categories whose objects are *syntactic categories* associated to first order theories and functors preserving the associated internal logic.

Some instance of first order doctrines include:

- Lex (lex categories) for cartesian logic (categorifying ∧-SLat)
- **Prod** (categories with finite product) for algebraic theories
- **Reg** (regular categories) for regular logic
- **Coh** (coherent categories) for coherent logics (categorifying **DLat**)

- **Ex** (exact categories)
- Ext_ω (lextensives categories)
- **Pretop**_{*ω*} (finitary pretopoi)

While fragments of propositional logic correspond to varieties of propositional algebras, fragments of first order logic correspond to *doctrines*:

Those are 2-categories whose objects are *syntactic categories* associated to first order theories and functors preserving the associated internal logic.

Some instance of first order doctrines include:

- Lex (lex categories) for cartesian logic (categorifying ∧-SLat)
- **Prod** (categories with finite product) for algebraic theories
- **Reg** (regular categories) for regular logic
- **Coh** (coherent categories) for coherent logics (categorifying **DLat**)

- **Ex** (exact categories)
- Ext_ω (lextensives categories)
- **Pretop**_{*ω*} (finitary pretopoi)

While fragments of propositional logic correspond to varieties of propositional algebras, fragments of first order logic correspond to *doctrines*:

Those are 2-categories whose objects are *syntactic categories* associated to first order theories and functors preserving the associated internal logic.

Some instance of first order doctrines include:

- Lex (lex categories) for cartesian logic (categorifying ∧-SLat)
- Prod (categories with finite product) for algebraic theories
- **Reg** (regular categories) for regular logic
- **Coh** (coherent categories) for coherent logics (categorifying **DLat**)

- **Ex** (exact categories)
- **Ext**_ω (lextensives categories)
- **Pretop**_{*ω*} (finitary pretopoi)

While fragments of propositional logic correspond to varieties of propositional algebras, fragments of first order logic correspond to *doctrines*:

Those are 2-categories whose objects are *syntactic categories* associated to first order theories and functors preserving the associated internal logic.

Some instance of first order doctrines include:

- Lex (lex categories) for cartesian logic (categorifying ∧-SLat)
- Prod (categories with finite product) for algebraic theories
- **Reg** (regular categories) for regular logic
- Coh (coherent categories) for coherent logics (categorifying DLat)

- **Ex** (exact categories)
- **Ext**_{*ω*} (lextensives categories)
- **Pretop**_{\u03c6} (finitary pretopoi)

Are those doctrines finitely presentable in some 2-dimensional sense ?

When categorifying a notion, several degrees of strictness are possible. A first, *enriched* version of presentability was investigated in

Kelly. Structures defined by finite limits in the enriched context, 1982

Bourke. Accessible aspects of 2-category theory, 2020

However our conjectured examples required a less strict framework.

We relied rather on the recent theory of *flat pseudofunctors* developed in Descotte, Dubuc, and Szyld. Sigma limits in 2-categories and flat pseudofunctors, 2018

This led us to a new, less strict approach of 2-dimensional presentability, which is the topic of this talk, based on our work

Are those doctrines finitely presentable in some 2-dimensional sense ?

When categorifying a notion, several degrees of strictness are possible. A first, *enriched* version of presentability was investigated in

Kelly. Structures defined by finite limits in the enriched context, 1982 Bourke. Accessible aspects of 2-category theory, 2020

However our conjectured examples required a less strict framework.

We relied rather on the recent theory of *flat pseudofunctors* developed in Descotte, Dubuc, and Szyld. Sigma limits in 2-categories and flat pseudofunctors, 2018

This led us to a new, less strict approach of 2-dimensional presentability, which is the topic of this talk, based on our work

Are those doctrines finitely presentable in some 2-dimensional sense ?

When categorifying a notion, several degrees of strictness are possible. A first, *enriched* version of presentability was investigated in

Kelly. Structures defined by finite limits in the enriched context, 1982

Bourke. Accessible aspects of 2-category theory, 2020

However our conjectured examples required a less strict framework.

We relied rather on the recent theory of *flat pseudofunctors* developed in Descotte, Dubuc, and Szyld. Sigma limits in 2-categories and flat pseudofunctors, 2018

This led us to a new, less strict approach of 2-dimensional presentability, which is the topic of this talk, based on our work

Are those doctrines finitely presentable in some 2-dimensional sense ?

When categorifying a notion, several degrees of strictness are possible. A first, *enriched* version of presentability was investigated in

Kelly. Structures defined by finite limits in the enriched context, 1982

Bourke. Accessible aspects of 2-category theory, 2020

However our conjectured examples required a less strict framework.

We relied rather on the recent theory of *flat pseudofunctors* developed in Descotte, Dubuc, and Szyld. Sigma limits in 2-categories and flat pseudofunctors, 2018

This led us to a new, less strict approach of 2-dimensional presentability, which is the topic of this talk, based on our work

A short discussion on 2-dimensional filteredness

In 1-dimension, a key result is that finitely accessible categories corresponds are exactly categories of flat functors Flat[C, Set] with C small.

A functor $F : C \rightarrow Set$ can be decomposed as conical colimit of representables, using its category of elements:

 $F \simeq \operatorname{colim}_{(C,a) \in (\int F)^{\operatorname{op}}} \exists c$

(with $\exists : \mathcal{C}^{\mathsf{op}} \to [\mathcal{C}, \mathbf{Set}]$ the Yoneda embedding).

Then flat functors can be defined equivalently as:

• those F whose left Kan extension $\operatorname{Lan}_{k}F : [C^{\operatorname{op}}, \operatorname{\mathbf{Set}}] \to \operatorname{\mathbf{Set}}$ is lex

• those F that are filtered colimits of representables

In particular when $\ensuremath{\mathcal{C}}$ is lex, being flat amounts to being lex.

Hence finitely presentable categories are those $Lex[\mathcal{C}, Set]$ with \mathcal{C} lex.

In 1-dimension, a key result is that finitely accessible categories corresponds are exactly categories of flat functors Flat[C, Set] with C small.

A functor $F : C \rightarrow \mathbf{Set}$ can be decomposed as conical colimit of representables, using its category of elements:

 $F \simeq \operatorname*{colim}_{(C,a)\in (\int F)^{\operatorname{op}}} \exists c$

(with $\exists : \mathcal{C}^{op} \rightarrow [\mathcal{C}, \textbf{Set}]$ the Yoneda embedding).

Then flat functors can be defined equivalently as:

• those F whose left Kan extension $\operatorname{Lan}_{\downarrow}F : [C^{\operatorname{op}}, \mathbf{Set}] \to \mathbf{Set}$ is lex

• those *F* that are filtered colimits of representables

In particular when $\mathcal C$ is lex, being flat amounts to being lex.

Hence finitely presentable categories are those $Lex[\mathcal{C}, Set]$ with \mathcal{C} lex.

In 1-dimension, a key result is that finitely accessible categories corresponds are exactly categories of flat functors Flat[C, Set] with C small.

A functor $F : C \rightarrow \mathbf{Set}$ can be decomposed as conical colimit of representables, using its category of elements:

 $F \simeq \operatorname*{colim}_{(C,a)\in (\int F)^{\operatorname{op}}} \exists c$

(with $\exists : \mathcal{C}^{\mathsf{op}} \to [\mathcal{C}, \mathbf{Set}]$ the Yoneda embedding).

Then flat functors can be defined equivalently as:

• those F whose left Kan extension $\operatorname{Lan}_{\downarrow}F : [C^{\operatorname{op}}, \operatorname{Set}] \to \operatorname{Set}$ is lex

• those F that are filtered colimits of representables

In particular when ${\mathcal C}$ is lex, being flat amounts to being lex.

Hence finitely presentable categories are those Lex[C, Set] with C lex.

In 1-dimension, a key result is that finitely accessible categories corresponds are exactly categories of flat functors Flat[C, Set] with C small.

A functor $F : C \rightarrow \mathbf{Set}$ can be decomposed as conical colimit of representables, using its category of elements:

 $F \simeq \operatorname*{colim}_{(C,a)\in (\int F)^{\operatorname{op}}} \exists c$

(with $\exists : \mathcal{C}^{\mathsf{op}} \to [\mathcal{C}, \mathbf{Set}]$ the Yoneda embedding).

Then flat functors can be defined equivalently as:

• those F whose left Kan extension $\operatorname{Lan}_{\downarrow}F : [C^{\operatorname{op}}, \operatorname{Set}] \to \operatorname{Set}$ is lex

• those F that are filtered colimits of representables

In particular when $\ensuremath{\mathcal{C}}$ is lex, being flat amounts to being lex.

Hence finitely presentable categories are those Lex[C, Set] with C lex.

In 2-dimension, this complicates a bit.

For pseudofunctors, we have a decomposition into a weighted bicolimit:

 $F \simeq \operatorname{bicolim}_{c \in \mathcal{C}^{\operatorname{op}}}^F \exists c$

with F as the weight and $\exists : C^{op} \to [C, \mathbf{Cat}]$ the Yoneda embedding

However this expression is not equivalent to a conical bicolimit.

This makes impossible to detect any filteredness condition.

Is there a *conical* decomposition of pseudofunctors into representables, so we can detect eventual 2-dimensional filteredness in the indexing 2-category ?

In 2-dimension, this complicates a bit.

For pseudofunctors, we have a decomposition into a weighted bicolimit:

 $F \simeq \underset{c \in \mathcal{C}^{\operatorname{op}}}{\operatorname{bicolim}}^{F} \exists c$

with F as the weight and $\exists : C^{op} \rightarrow [C, \mathbf{Cat}]$ the Yoneda embedding

However this expression is not equivalent to a conical bicolimit.

This makes impossible to detect any filteredness condition.

Is there a *conical* decomposition of pseudofunctors into representables, so we can detect eventual 2-dimensional filteredness in the indexing 2-category ?

In 2-dimension, this complicates a bit.

For pseudofunctors, we have a decomposition into a *weighted* bicolimit:

$$F \simeq \underset{c \in \mathcal{C}^{\text{op}}}{\text{bicolim}}^F \exists c$$

with F as the weight and $\exists : C^{op} \rightarrow [C, \mathbf{Cat}]$ the Yoneda embedding

However this expression is not equivalent to a conical bicolimit.

This makes impossible to detect any filteredness condition.

Is there a *conical* decomposition of pseudofunctors into representables, so we can detect eventual 2-dimensional filteredness in the indexing 2-category ?

In 2-dimension, this complicates a bit.

For pseudofunctors, we have a decomposition into a weighted bicolimit:

$$F \simeq \underset{c \in \mathcal{C}^{\text{op}}}{\text{bicolim}}^F \exists c$$

with F as the weight and $\exists : C^{op} \rightarrow [C, \mathbf{Cat}]$ the Yoneda embedding

However this expression is not equivalent to a conical bicolimit.

This makes impossible to detect any filteredness condition.

Is there a *conical* decomposition of pseudofunctors into representables, so we can detect eventual 2-dimensional filteredness in the indexing 2-category ?

Dubuc-Descotte-Szyld theory of flatness

 σ -colimits are intermediate between pseudocolimits and oplax colimits: here, only *some* transition 2-cells in the oplax cocone are invertible.

One can turn any weighted bicolimit into a conical $\sigma\text{-bicolimit.}$

D.D.S. developed a suited notion of σ -filteredness for σ -bicolimits.

Then they introduced a notion of *flat pseudofunctors*, equivalently:

- those whose *left biKan extension* preserves finitely weighted bilimits
- those that are σ -filtered σ -bicolimits of representable.

Hence, at first sight, a theory of 2-dimensional accessibility in this framework would rely on σ -filteredness.

However, we proved that σ -filteredness simplified into a more practical notion of *bifilteredness*.

Dubuc-Descotte-Szyld theory of flatness

 σ -colimits are intermediate between pseudocolimits and oplax colimits: here, only *some* transition 2-cells in the oplax cocone are invertible.

One can turn any weighted bicolimit into a conical σ -bicolimit.

D.D.S. developed a suited notion of σ -filteredness for σ -bicolimits.

Then they introduced a notion of *flat pseudofunctors*, equivalently:

- those whose left biKan extension preserves finitely weighted bilimits
- those that are σ -filtered σ -bicolimits of representable.

Hence, at first sight, a theory of 2-dimensional accessibility in this framework would rely on $\sigma\text{-filteredness.}$

However, we proved that σ -filteredness simplified into a more practical notion of *bifilteredness*.

Dubuc-Descotte-Szyld theory of flatness

 σ -colimits are intermediate between pseudocolimits and oplax colimits: here, only *some* transition 2-cells in the oplax cocone are invertible.

One can turn any weighted bicolimit into a conical σ -bicolimit.

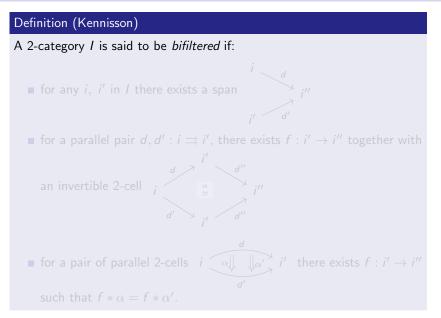
D.D.S. developed a suited notion of σ -filteredness for σ -bicolimits.

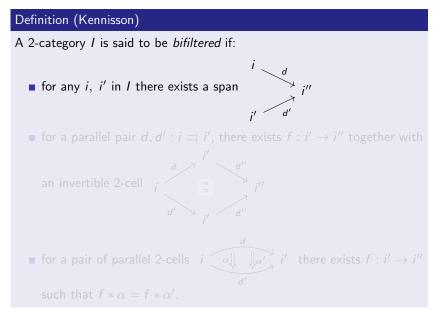
Then they introduced a notion of *flat pseudofunctors*, equivalently:

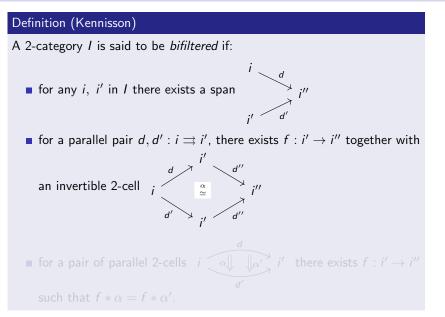
- those whose left biKan extension preserves finitely weighted bilimits
- those that are σ -filtered σ -bicolimits of representable.

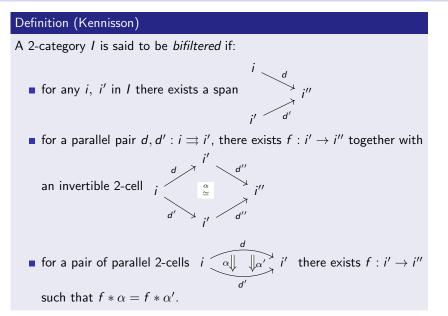
Hence, at first sight, a theory of 2-dimensional accessibility in this framework would rely on $\sigma\text{-filteredness.}$

However, we proved that σ -filteredness simplified into a more practical notion of *bifilteredness*.









Bifiltered reformulation of D.D.S.

Using a suited 2-dimensional form of *cofinality*, we observed the following:

Lemma (DL.O. 1.6.8)

Any σ -filtered σ -bicolimit is equivalent to a conical bifiltered bicolimit.

D.D.S. characterization of flat pseudofunctors could then be simplified:

Theorem (DL.O. 3.1.6)

Let C be a small 2-category. Then for a pseudofunctor $F:\mathcal{C}\to \textbf{Cat}$ we have the following equivalences

- F is flat, that is, $biLan_{\pm}F$ is bilex
- F decomposes as a bifiltered bicolimit of representables.

Knowing this, it appear we can ground a theory of 2-dimensional accessibility on D.D.S. results but involving only bifiltered bicolimits.

Bifiltered reformulation of D.D.S.

Using a suited 2-dimensional form of *cofinality*, we observed the following:

Lemma (DL.O. 1.6.8)

Any σ -filtered σ -bicolimit is equivalent to a conical bifiltered bicolimit.

D.D.S. characterization of flat pseudofunctors could then be simplified:

Theorem (DL.O. 3.1.6)

Let C be a small 2-category. Then for a pseudofunctor $F:\mathcal{C}\to \textbf{Cat}$ we have the following equivalences

- F is flat, that is, $biLan_{\pm}F$ is bilex
- F decomposes as a bifiltered bicolimit of representables.

Knowing this, it appear we can ground a theory of 2-dimensional accessibility on D.D.S. results but involving only bifiltered bicolimits.

Bifiltered reformulation of D.D.S.

Using a suited 2-dimensional form of *cofinality*, we observed the following:

Lemma (DL.O. 1.6.8)

Any σ -filtered σ -bicolimit is equivalent to a conical bifiltered bicolimit.

D.D.S. characterization of flat pseudofunctors could then be simplified:

Theorem (DL.O. 3.1.6)

Let C be a small 2-category. Then for a pseudofunctor $F:\mathcal{C}\to \textbf{Cat}$ we have the following equivalences

- F is flat, that is, $biLan_{k}F$ is bilex
- F decomposes as a bifiltered bicolimit of representables.

Knowing this, it appear we can ground a theory of 2-dimensional accessibility on D.D.S. results but involving only bifiltered bicolimits.

Bi-accessible and bipresentable 2-categories

First, what should be the analogs of finitely presented objects ?

Definition

An object K in a 2-category \mathcal{B} is *bicompact* if for any bifiltered 2-category I and any 2-functor $F: I \rightarrow \mathcal{B}$, we have an equivalence of categories

 $\mathcal{B}[K, \operatorname{bicolim}_{I} F] \simeq \operatorname{bicolim}_{i \in I} \mathcal{B}[K, F(i)]$

(In fact they enjoy the same property against σ -filtered σ -colimits.)

Proposition

First, what should be the analogs of finitely presented objects ?

Definition

An object *K* in a 2-category \mathcal{B} is *bicompact* if for any bifiltered 2-category *I* and any 2-functor $F : I \to \mathcal{B}$, we have an equivalence of categories

 $\mathcal{B}[K, \operatorname{bicolim}_{I} F] \simeq \operatorname{bicolim}_{i \in I} \mathcal{B}[K, F(i)]$

(In fact they enjoy the same property against σ -filtered σ -colimits.)

Proposition

First, what should be the analogs of finitely presented objects ?

Definition

An object K in a 2-category \mathcal{B} is *bicompact* if for any bifiltered 2-category I and any 2-functor $F : I \to \mathcal{B}$, we have an equivalence of categories

$$\mathcal{B}[\mathcal{K}, \operatorname{bicolim}_{I} \mathcal{F}] \simeq \operatorname{bicolim}_{i \in I} \mathcal{B}[\mathcal{K}, \mathcal{F}(i)]$$

(In fact they enjoy the same property against σ -filtered σ -colimits.)

Proposition

First, what should be the analogs of finitely presented objects ?

Definition

An object K in a 2-category \mathcal{B} is *bicompact* if for any bifiltered 2-category I and any 2-functor $F : I \to \mathcal{B}$, we have an equivalence of categories

$$\mathcal{B}[K, \operatorname{bicolim}_{I} F] \simeq \operatorname{bicolim}_{i \in I} \mathcal{B}[K, F(i)]$$

(In fact they enjoy the same property against σ -filtered σ -colimits.)

Proposition

Finitely bi-accessible 2-categories

Definition

- A 2-category $\mathcal B$ will be said *finitely bi-accessible* if
 - B has bifiltered bicolimits,
 - there is an essentially small (1,2)-full sub-2-category $\mathcal{B}_0 \hookrightarrow \mathcal{B}$ consisting of bicompact objects such that for any \mathcal{B} in \mathcal{B} is a bifiltered bicolimit of objects in \mathcal{B}_0 .

In fact, one can take the full sub-2-category of all bicompact objects.

Definition

A 2-category is said to be *finitely bipresentable* if it is finitely bi-accessible and has all small weighted bicolimits.

Finitely bi-accessible 2-categories

Definition

- A 2-category $\mathcal B$ will be said *finitely bi-accessible* if
 - B has bifiltered bicolimits,
 - there is an essentially small (1,2)-full sub-2-category $\mathcal{B}_0 \hookrightarrow \mathcal{B}$ consisting of bicompact objects such that for any \mathcal{B} in \mathcal{B} is a bifiltered bicolimit of objects in \mathcal{B}_0 .

In fact, one can take the full sub-2-category of all bicompact objects.

Definition

A 2-category is said to be *finitely bipresentable* if it is finitely bi-accessible and has all small weighted bicolimits.

Finitely bi-accessible 2-categories

Definition

- A 2-category $\mathcal B$ will be said *finitely bi-accessible* if
 - B has bifiltered bicolimits,
 - there is an essentially small (1,2)-full sub-2-category $\mathcal{B}_0 \hookrightarrow \mathcal{B}$ consisting of bicompact objects such that for any \mathcal{B} in \mathcal{B} is a bifiltered bicolimit of objects in \mathcal{B}_0 .

In fact, one can take the full sub-2-category of all bicompact objects.

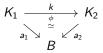
Definition

A 2-category is said to be *finitely bipresentable* if it is finitely bi-accessible and has all small weighted bicolimits.

The canonical pseudococone

For *B* in \mathcal{B} finitely bi-accessible, one can consider the *canonical pseudocone* of *B* given by the pseudoslice $\mathcal{B}_{\omega} \downarrow B$.

Its objects are pairs (K, a) with $a : K \to B$, and a morphism $(K_1, a_1) \to (K_2, a_2)$ is a pair (k, ϕ) coding for an invertible 2-cell



Its 2-cells are $\alpha: k_1 \Rightarrow k_2$ such that $\phi_2 a_2 * \alpha = \phi_1$.

Proposition

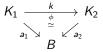
If \mathcal{B} is finitely bi-accessible, then for any B the canonical pseudocone $\mathcal{B}_{\omega} \downarrow B$ is bifiltered and

 $B \simeq \operatorname{bicolim} \mathcal{B}_{\omega} \downarrow B$

The canonical pseudococone

For *B* in \mathcal{B} finitely bi-accessible, one can consider the *canonical pseudocone* of *B* given by the pseudoslice $\mathcal{B}_{\omega} \downarrow B$.

Its objects are pairs (K, a) with $a : K \to B$, and a morphism $(K_1, a_1) \to (K_2, a_2)$ is a pair (k, ϕ) coding for an invertible 2-cell



Its 2-cells are $\alpha: k_1 \Rightarrow k_2$ such that $\phi_2 a_2 * \alpha = \phi_1$.

Proposition

If B is finitely bi-accessible, then for any B the canonical pseudocone $\mathcal{B}_\omega \downarrow B$ is bifiltered and

 $B \simeq \operatorname{bicolim} \mathcal{B}_\omega \downarrow B$

The binerve embedding

The formula above says that the inclusion $\iota_{\omega} : \mathcal{B}_{\omega} \hookrightarrow \mathcal{B}$ is *bidense*.

Equivalently, we have a 2-embedding into the pseudofunctors 2-category

 $\mathcal{B} \stackrel{
u}{\longrightarrow} \mathsf{ps}[(\mathcal{B}_\omega)^{\mathsf{op}},\mathsf{Cat}]$

sending B to $\mathcal{B}[\iota_{\omega}, B]$, the restriction of the representable at B along ι_{ω} . Moreover, for $\mathcal{B}_{\omega} \downarrow B$ is bifiltered, $\mathcal{B}[\iota_{\omega}, B]$ is flat. Hence :

Proposition (DL.O. 3.1.9)

For any finitely accessible category \mathcal{B} , ν reduces to a biequivalence

 $\mathcal{B}\simeq\mathsf{Flat}[(\mathcal{B}_\omega)^{\mathsf{op}},\mathsf{Cat}]$

The binerve embedding

The formula above says that the inclusion $\iota_{\omega} : \mathcal{B}_{\omega} \hookrightarrow \mathcal{B}$ is *bidense*.

Equivalently, we have a 2-embedding into the pseudofunctors 2-category

$$\mathcal{B} \stackrel{\nu}{\longrightarrow} \mathsf{ps}[(\mathcal{B}_{\omega})^{\mathsf{op}},\mathsf{Cat}]$$

sending B to $\mathcal{B}[\iota_{\omega}, B]$, the restriction of the representable at B along ι_{ω} . Moreover, for $\mathcal{B}_{\omega} \downarrow B$ is bifiltered, $\mathcal{B}[\iota_{\omega}, B]$ is flat. Hence :

Proposition (DL.O. 3.1.9)

For any finitely accessible category \mathcal{B} , ν reduces to a biequivalence

 ${\mathcal B}\simeq {\sf Flat}[({\mathcal B}_\omega)^{\operatorname{op}},{\sf Cat}]$

The binerve embedding

The formula above says that the inclusion $\iota_{\omega} : \mathcal{B}_{\omega} \hookrightarrow \mathcal{B}$ is *bidense*.

Equivalently, we have a 2-embedding into the pseudofunctors 2-category

$$\mathcal{B} \stackrel{\nu}{\longrightarrow} \mathsf{ps}[(\mathcal{B}_\omega)^{\mathsf{op}},\mathsf{Cat}]$$

sending B to $\mathcal{B}[\iota_{\omega}, B]$, the restriction of the representable at B along ι_{ω} . Moreover, for $\mathcal{B}_{\omega} \downarrow B$ is bifiltered, $\mathcal{B}[\iota_{\omega}, B]$ is flat. Hence :

Proposition (DL.O. 3.1.9)

For any finitely accessible category \mathcal{B} , ν reduces to a biequivalence

 $\mathcal{B} \simeq \mathsf{Flat}[(\mathcal{B}_\omega)^{\mathsf{op}},\mathsf{Cat}]$

For finitely bipresentable 2-category, it can be sufficient to exhibit a weaker kind of generator containing just "enough" bicompacts objects.

Definition

A a small sub 2-category $\iota : \mathcal{G} \hookrightarrow \mathcal{B}$ is a *strong generator* if its binerve

 $\mathcal{B} \stackrel{
u}{\longrightarrow} \mathsf{ps}[\mathcal{G}^{\mathsf{op}},\mathsf{Cat}]$

is biconservative, that is, reflects equivalences.

Theorem (DL.O. 2.4.3)

Let \mathcal{B} be a 2-category with weighted bicolimits. Then the following are equivalent:

- B is finitely bipresentable,
- \blacksquare \mathcal{B} has a strong generator $\mathcal{G} \hookrightarrow \mathcal{B}$ made of bicompact objects.

For finitely bipresentable 2-category, it can be sufficient to exhibit a weaker kind of generator containing just "enough" bicompacts objects.

Definition

A a small sub 2-category $\iota: \mathcal{G} \hookrightarrow \mathcal{B}$ is a strong generator if its binerve

$$\mathcal{B} \stackrel{\nu}{\longrightarrow} \mathsf{ps}[\mathcal{G}^{\mathsf{op}},\mathsf{Cat}]$$

is biconservative, that is, reflects equivalences.

Theorem (DL.O. 2.4.3)

Let \mathcal{B} be a 2-category with weighted bicolimits. Then the following are equivalent:

- B is finitely bipresentable,
- \blacksquare \mathcal{B} has a strong generator $\mathcal{G} \hookrightarrow \mathcal{B}$ made of bicompact objects.

For finitely bipresentable 2-category, it can be sufficient to exhibit a weaker kind of generator containing just "enough" bicompacts objects.

Definition

A a small sub 2-category $\iota : \mathcal{G} \hookrightarrow \mathcal{B}$ is a *strong generator* if its binerve

$$\mathcal{B} \stackrel{\nu}{\longrightarrow} \mathsf{ps}[\mathcal{G}^{\mathsf{op}},\mathsf{Cat}]$$

is biconservative, that is, reflects equivalences.

Theorem (DL.O. 2.4.3)

Let \mathcal{B} be a 2-category with weighted bicolimits. Then the following are equivalent:

- B is finitely bipresentable,
- B has a strong generator $\mathcal{G} \hookrightarrow \mathcal{B}$ made of bicompact objects.

For finitely bipresentable 2-category, it can be sufficient to exhibit a weaker kind of generator containing just "enough" bicompacts objects.

Definition

A a small sub 2-category $\iota : \mathcal{G} \hookrightarrow \mathcal{B}$ is a *strong generator* if its binerve

$$\mathcal{B} \stackrel{\nu}{\longrightarrow} \mathsf{ps}[\mathcal{G}^{\mathsf{op}},\mathsf{Cat}]$$

is biconservative, that is, reflects equivalences.

Theorem (DL.O. 2.4.3)

Let \mathcal{B} be a 2-category with weighted bicolimits. Then the following are equivalent:

- B is finitely bipresentable,
- B has a strong generator $\mathcal{G} \hookrightarrow \mathcal{B}$ made of bicompact objects.

For a finitely accessible ${\cal B},$ the embedding $\nu_{\cal B}$ restricts to an equivalence:

 $\mathcal{B}\simeq \text{Flat}_{\text{ps}}[(\mathcal{B}_{\omega})^{\text{op}},\text{Cat}]$

When \mathcal{B} is finitely bipresentable, $(\mathcal{B}_{\omega})^{op}$ is *bilex*, whence:

 ${\mathcal B}\simeq {\sf biLex}[({\mathcal B}_\omega)^{\sf op},{\sf Cat}]$

What about the converse ? Exactly as in 1-dimension:

Theorem (DL.O. 3.2.6)

For any small 2-category C, Flat[C, Cat] is finitely bi-accessible.

Theorem (DL.O. 3.3.5)

For any bilex 2-category C, **biLex**[C, **Cat**] is finitely bipresentable and

For a finitely accessible ${\cal B},$ the embedding $\nu_{\cal B}$ restricts to an equivalence:

 $\mathcal{B}\simeq \text{Flat}_{\text{ps}}[(\mathcal{B}_{\omega})^{\text{op}},\text{Cat}]$

When \mathcal{B} is finitely bipresentable, $(\mathcal{B}_{\omega})^{op}$ is *bilex*, whence:

 $\mathcal{B}\simeq \mathsf{biLex}[(\mathcal{B}_\omega)^{\mathsf{op}},\mathsf{Cat}]$

What about the converse ? Exactly as in 1-dimension:

Theorem (DL.O. 3.2.6)

For any small 2-category C, Flat[C, Cat] is finitely bi-accessible.

Theorem (DL.O. 3.3.5)

For any bilex 2-category C, **biLex**[C, **Cat**] is finitely bipresentable and

For a finitely accessible \mathcal{B} , the embedding $\nu_{\mathcal{B}}$ restricts to an equivalence:

 $\mathcal{B}\simeq \text{Flat}_{\text{ps}}[(\mathcal{B}_{\omega})^{\text{op}},\text{Cat}]$

When \mathcal{B} is finitely bipresentable, $(\mathcal{B}_{\omega})^{op}$ is *bilex*, whence:

 $\mathcal{B} \simeq \mathsf{biLex}[(\mathcal{B}_\omega)^{\mathsf{op}},\mathsf{Cat}]$

What about the converse ? Exactly as in 1-dimension:

Theorem (DL.O. 3.2.6)

For any small 2-category C, Flat[C, Cat] is finitely bi-accessible.

Theorem (DL.O. 3.3.5)

For any bilex 2-category C, **biLex**[C, **Cat**] is finitely bipresentable and

For a finitely accessible \mathcal{B} , the embedding $\nu_{\mathcal{B}}$ restricts to an equivalence:

 $\mathcal{B}\simeq \text{Flat}_{\text{ps}}[(\mathcal{B}_{\omega})^{\text{op}},\text{Cat}]$

When \mathcal{B} is finitely bipresentable, $(\mathcal{B}_{\omega})^{op}$ is *bilex*, whence:

 $\mathcal{B} \simeq \mathsf{biLex}[(\mathcal{B}_\omega)^{\mathsf{op}},\mathsf{Cat}]$

What about the converse ? Exactly as in 1-dimension:

Theorem (DL.O. 3.2.6)

For any small 2-category C, Flat[C, Cat] is finitely bi-accessible.

Theorem (DL.O. 3.3.5)

For any bilex 2-category C, biLex[C, Cat] is finitely bipresentable and

2-dimensional Gabriel-Ulmer duality

Definition

The tricategory **biLex** has objects small 2-categories with weighed finite bilimits. 1-cells are pseudofunctors preserving finite bilimits, 2-cells are pseudonatural transformations and 3-cells are modifications.

Definition

The tricategory **biP** $_{\omega}$ has objects finitely bipresentable 2-categories. 1-cells are right biadjoints preserving bifiltered bicolimits, 2-cells are pseudonatural transformations and 3-cells are modifications.

Theorem (DL.O. 4.3.3)

There is a three-equivalence of tricategories

 $\mathbf{biLex}^{\mathsf{op}}\simeq\mathbf{biP}_\omega$

2-dimensional Gabriel-Ulmer duality

Definition

The tricategory **biLex** has objects small 2-categories with weighed finite bilimits. 1-cells are pseudofunctors preserving finite bilimits, 2-cells are pseudonatural transformations and 3-cells are modifications.

Definition

The tricategory \mathbf{biP}_{ω} has objects finitely bipresentable 2-categories. 1-cells are right biadjoints preserving bifiltered bicolimits, 2-cells are pseudonatural transformations and 3-cells are modifications.

Theorem (DL.O. 4.3.3)

There is a three-equivalence of tricategories

 $biLex^{op} \simeq biP_{\omega}$

2-dimensional Gabriel-Ulmer duality

Definition

The tricategory **biLex** has objects small 2-categories with weighed finite bilimits. 1-cells are pseudofunctors preserving finite bilimits, 2-cells are pseudonatural transformations and 3-cells are modifications.

Definition

The tricategory \mathbf{biP}_{ω} has objects finitely bipresentable 2-categories. 1-cells are right biadjoints preserving bifiltered bicolimits, 2-cells are pseudonatural transformations and 3-cells are modifications.

Theorem (DL.O. 4.3.3)

There is a three-equivalence of tricategories

 $\mathbf{biLex}^{\mathsf{op}}\simeq\mathbf{biP}_\omega$

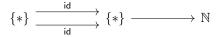
Examples

Cat is finitely bipresentable

Lemma

In Cat, finite categories are bicompact.

Not all bicompact objects in **Cat** are finite. For example, the monoid \mathbb{N} - seen as a 1-object category - is the coinserter of the diagram below and thus is bicompact:



In fact coincide with Street notion of finitely presented category.

Theorem

Cat is finitely bipresentable.

Proof.

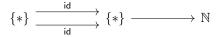
1 and 2 are strong generators, and they are bicompacts: hence **Cat** admits a strong generator of bicompact objects.

Cat is finitely bipresentable

Lemma

In Cat, finite categories are bicompact.

Not all bicompact objects in **Cat** are finite. For example, the monoid \mathbb{N} - seen as a 1-object category - is the coinserter of the diagram below and thus is bicompact:



In fact coincide with Street notion of finitely presented category.

Theorem

Cat is finitely bipresentable.

Proof.

1 and 2 are strong generators, and they are bicompacts: hence **Cat** admits a strong generator of bicompact objects.

A second class of examples will come from 2-categories of pseudoalgebras.

Pseudomonads are 2-functors equipped with pseudonatural unit and multiplication satisfying monad identities up to canonical invertible 2-cells.

Similarly, replacing strict equalities in the definition of algebras and morphisms of algebras by invertible 2-cells gives the notion of pseudoalgebras and pseudomorphisms.

A pseudomonad is said to be bifinitary if it preserves bifiltered bicolimits.

The following generalizes Blackwell, Kelly and Power result for 2-categories *strict* algebras and pseudomorphisms for *strict* 2-monad:

Theorem (O.)

A second class of examples will come from 2-categories of pseudoalgebras.

Pseudomonads are 2-functors equipped with pseudonatural unit and multiplication satisfying monad identities up to canonical invertible 2-cells.

Similarly, replacing strict equalities in the definition of algebras and morphisms of algebras by invertible 2-cells gives the notion of pseudoalgebras and pseudomorphisms.

A pseudomonad is said to be *bifinitary* if it preserves bifiltered bicolimits.

The following generalizes Blackwell, Kelly and Power result for 2-categories *strict* algebras and pseudomorphisms for *strict* 2-monad:

Theorem (O.)

A second class of examples will come from 2-categories of *pseudoalgebras*.

Pseudomonads are 2-functors equipped with pseudonatural unit and multiplication satisfying monad identities up to canonical invertible 2-cells.

Similarly, replacing strict equalities in the definition of algebras and morphisms of algebras by invertible 2-cells gives the notion of pseudoalgebras and pseudomorphisms.

A pseudomonad is said to be *bifinitary* if it preserves bifiltered bicolimits.

The following generalizes Blackwell, Kelly and Power result for 2-categories *strict* algebras and pseudomorphisms for *strict* 2-monad:

Theorem (O.)

A second class of examples will come from 2-categories of *pseudoalgebras*.

Pseudomonads are 2-functors equipped with pseudonatural unit and multiplication satisfying monad identities up to canonical invertible 2-cells.

Similarly, replacing strict equalities in the definition of algebras and morphisms of algebras by invertible 2-cells gives the notion of pseudoalgebras and pseudomorphisms.

A pseudomonad is said to be *bifinitary* if it preserves bifiltered bicolimits.

The following generalizes Blackwell, Kelly and Power result for 2-categories *strict* algebras and pseudomorphisms for *strict* 2-monad:

Theorem (O.)

Bipresentability of 2-categories of pseudo-algebras

As well as algebras for a finitary monad over a finitely presentable category are finitely presentable, we have the following:

Theorem (DL.O. 5.2.2)

Let \mathcal{B} be a finitely bipresentable 2-category and T a bifinitary pseudomonad on \mathcal{B} . Then T-**psAlg** is also finitely bipresentable. Moreover $U_T : T$ -**psAlg** $\rightarrow \mathcal{B}$ preserves bifiltered bicolimits.

Sketch of the proof :

- T-**psAlg** has bifiltered bicolimits preserved by U_T for T is bifinitary.
- Prove that free pseudo-algebras on bicompacts form a strong generator.
- As *T*-**psAlg** is bicocomplete, this ensures that it is finitely bipresentable.

Bipresentability of 2-categories of pseudo-algebras

As well as algebras for a finitary monad over a finitely presentable category are finitely presentable, we have the following:

Theorem (DL.O. 5.2.2)

Let \mathcal{B} be a finitely bipresentable 2-category and T a bifinitary pseudomonad on \mathcal{B} . Then T-**psAlg** is also finitely bipresentable. Moreover $U_T : T$ -**psAlg** $\rightarrow \mathcal{B}$ preserves bifiltered bicolimits.

Sketch of the proof :

- T-**psAlg** has bifiltered bicolimits preserved by U_T for T is bifinitary.
- Prove that free pseudo-algebras on bicompacts form a strong generator.
- As T-**psAlg** is bicocomplete, this ensures that it is finitely bipresentable.

Bipresentability of 2-categories of pseudo-algebras

As well as algebras for a finitary monad over a finitely presentable category are finitely presentable, we have the following:

Theorem (DL.O. 5.2.2)

Let \mathcal{B} be a finitely bipresentable 2-category and T a bifinitary pseudomonad on \mathcal{B} . Then T-**psAlg** is also finitely bipresentable. Moreover $U_T : T$ -**psAlg** $\rightarrow \mathcal{B}$ preserves bifiltered bicolimits.

Sketch of the proof :

- T-**psAlg** has bifiltered bicolimits preserved by U_T for T is bifinitary.
- Prove that free pseudo-algebras on bicompacts form a strong generator.
- As T-**psAlg** is bicocomplete, this ensures that it is finitely bipresentable.

Lex is the 2-category of small categories with finite limits. It is pseudomonadic on **Cat** through the free lex completion.

_emma

Lex is closed in Cat under bifiltered bicolimits.

This uses the description of pseudocolimits in **Cat** as localization of oplaxcolimit; the argument is that the finiteness of the diagram interacts well with the filteredness condition.

Theorem (DL.O. 5.3.3)

Lex is finitely bipresentable.

Lex is the 2-category of small categories with finite limits. It is pseudomonadic on **Cat** through the free lex completion.

Lemma

Lex is closed in Cat under bifiltered bicolimits.

This uses the description of pseudocolimits in **Cat** as localization of oplaxcolimit; the argument is that the finiteness of the diagram interacts well with the filteredness condition.

Theorem (DL.O. 5.3.3)

Lex is finitely bipresentable.

Lex is the 2-category of small categories with finite limits. It is pseudomonadic on **Cat** through the free lex completion.

Lemma

Lex is closed in Cat under bifiltered bicolimits.

This uses the description of pseudocolimits in **Cat** as localization of oplaxcolimit; the argument is that the finiteness of the diagram interacts well with the filteredness condition.

Theorem (DL.O. 5.3.3)

Lex is finitely bipresentable.

Lex is the 2-category of small categories with finite limits. It is pseudomonadic on **Cat** through the free lex completion.

Lemma

Lex is closed in Cat under bifiltered bicolimits.

This uses the description of pseudocolimits in **Cat** as localization of oplaxcolimit; the argument is that the finiteness of the diagram interacts well with the filteredness condition.

Theorem (DL.O. 5.3.3)

Lex is finitely bipresentable.

Further exactness conditions

What about other doctrines as **Reg**, **Coh**, **Ex**... ?

And other categories defined through exactness conditions, Ext, Pretop ?

Those examples can be captured at once through the theory of *lex colimits*.

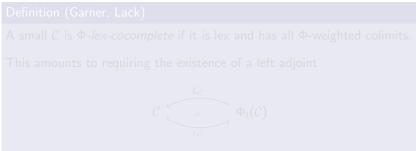
Further exactness conditions

What about other doctrines as **Reg**, **Coh**, **Ex**... ?

And other categories defined through exactness conditions, **Ext**, **Pretop**? Those examples can be captured at once through the theory of *lex colimits*.

In the following, Φ denotes a class of finite weights $W: I^{op} \to \mathbf{Set}$.

For Φ and a category C, consider the full subcategory $\Phi_I(C) \hookrightarrow \widehat{C}$ consisting of all Φ -weighted colimits of representables.



A Φ -lex-cocomplete category is Φ -exact if this left adjoint is lex.

This amounts to saying that (C, L_C) bears a structure of pseudo-algebra for the pseudomonad Φ_I on **Lex**.

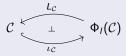
In the following, Φ denotes a class of finite weights $W: I^{op} \to \mathbf{Set}$.

For Φ and a category C, consider the full subcategory $\Phi_I(C) \hookrightarrow \widehat{C}$ consisting of all Φ -weighted colimits of representables.

Definition (Garner, Lack)

A small C is Φ -lex-cocomplete if it is lex and has all Φ -weighted colimits.

This amounts to requiring the existence of a left adjoint



A Φ -lex-cocomplete category is Φ -exact if this left adjoint is lex.

This amounts to saying that $(\mathcal{C}, L_{\mathcal{C}})$ bears a structure of pseudo-algebra for the pseudomonad Φ_I on **Lex**.

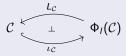
In the following, Φ denotes a class of finite weights $W: I^{op} \to \mathbf{Set}$.

For Φ and a category C, consider the full subcategory $\Phi_I(C) \hookrightarrow \widehat{C}$ consisting of all Φ -weighted colimits of representables.

Definition (Garner, Lack)

A small C is Φ -lex-cocomplete if it is lex and has all Φ -weighted colimits.

This amounts to requiring the existence of a left adjoint



A Φ -lex-cocomplete category is Φ -exact if this left adjoint is lex.

This amounts to saying that $(\mathcal{C}, L_{\mathcal{C}})$ bears a structure of pseudo-algebra for the pseudomonad Φ_I on **Lex**.

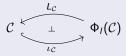
In the following, Φ denotes a class of finite weights $W: I^{op} \to \mathbf{Set}$.

For Φ and a category C, consider the full subcategory $\Phi_I(C) \hookrightarrow \widehat{C}$ consisting of all Φ -weighted colimits of representables.

Definition (Garner, Lack)

A small C is Φ -lex-cocomplete if it is lex and has all Φ -weighted colimits.

This amounts to requiring the existence of a left adjoint



A Φ -lex-cocomplete category is Φ -exact if this left adjoint is lex.

This amounts to saying that $(\mathcal{C}, L_{\mathcal{C}})$ bears a structure of pseudo-algebra for the pseudomonad Φ_I on **Lex**.

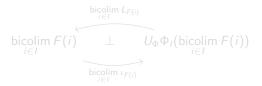
Theorem (DL.O. 5.4.5)

For Φ a class of finite weights, the 2-category of Φ -exact categories and Φ -exact functors is finitely bipresentable.

- The 2-category Φ-**E**x is the 2-category of pseudo-algebras Φ_l-**psAlg**.
- It suffices to prove Φ_I to be finitary, which amounts to proving the forgetful functor $U_{\Phi} : \Phi_I$ -**psAlg** \rightarrow **Lex** to be finitary.
- Using that all weights in Φ are finite, we show that U_{Φ} preserves bifiltered bicolimits of free Φ_I pseudo-algebras

$$U_{\Phi}\Phi_{I}(\operatorname{bicolim}_{i\in I}F(i))\simeq\operatorname{bicolim}_{i\in I}U_{\Phi}\Phi_{I}F(i)$$

For a bifiltered $F : I \to \Phi_I$ -**psAlg** the adjunctions $L_{F(i)} \dashv \iota_{F(i)}$ induce an adjunction in **Lex** between the bifiltered bicolimits



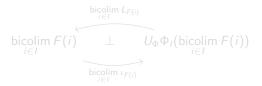
Theorem (DL.O. 5.4.5)

For Φ a class of finite weights, the 2-category of Φ -exact categories and Φ -exact functors is finitely bipresentable.

- The 2-category Φ -**Ex** is the 2-category of pseudo-algebras Φ_I -**psAlg**.
- It suffices to prove Φ_l to be finitary, which amounts to proving the forgetful functor $U_{\Phi} : \Phi_l$ -**psAlg** \rightarrow **Lex** to be finitary.
- Using that all weights in Φ are finite, we show that U_{Φ} preserves bifiltered bicolimits of free Φ_I pseudo-algebras

$$U_{\Phi}\Phi_{I}(\operatorname{bicolim}_{i\in I}F(i))\simeq\operatorname{bicolim}_{i\in I}U_{\Phi}\Phi_{I}F(i)$$

■ For a bifiltered $F : I \to \Phi_I$ -**psAlg** the adjunctions $L_{F(i)} \dashv \iota_{F(i)}$ induce an adjunction in **Lex** between the bifiltered bicolimits



Theorem (DL.O. 5.4.5)

For Φ a class of finite weights, the 2-category of Φ -exact categories and Φ -exact functors is finitely bipresentable.

- The 2-category Φ-**E**x is the 2-category of pseudo-algebras Φ_l-**psAlg**.
- It suffices to prove Φ_l to be finitary, which amounts to proving the forgetful functor $U_{\Phi} : \Phi_l$ -**psAlg** \rightarrow **Lex** to be finitary.
- Using that all weights in Φ are finite, we show that U_{Φ} preserves bifiltered bicolimits of free Φ_I pseudo-algebras

$$U_{\Phi}\Phi_I(\operatorname{bicolim}_{i\in I} F(i)) \simeq \operatorname{bicolim}_{i\in I} U_{\Phi}\Phi_I F(i)$$

■ For a bifiltered $F : I \to \Phi_I$ -**psAlg** the adjunctions $L_{F(i)} \dashv \iota_{F(i)}$ induce an adjunction in **Lex** between the bifiltered bicolimits

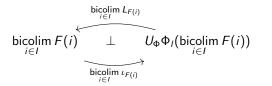
Theorem (DL.O. 5.4.5)

For Φ a class of finite weights, the 2-category of Φ -exact categories and Φ -exact functors is finitely bipresentable.

- The 2-category Φ -**E**x is the 2-category of pseudo-algebras Φ_l -**psAlg**.
- It suffices to prove Φ_l to be finitary, which amounts to proving the forgetful functor $U_{\Phi} : \Phi_l$ -**psAlg** \rightarrow **Lex** to be finitary.
- Using that all weights in Φ are finite, we show that U_{Φ} preserves bifiltered bicolimits of free Φ_I pseudo-algebras

$$U_{\Phi}\Phi_{I}(\operatorname{bicolim}_{i\in I}F(i))\simeq\operatorname{bicolim}_{i\in I}U_{\Phi}\Phi_{I}F(i)$$

For a bifiltered $F : I \to \Phi_I$ -**psAlg** the adjunctions $L_{F(i)} \dashv \iota_{F(i)}$ induce an adjunction in **Lex** between the bifiltered bicolimits



Corollary

- **Reg**: small regular categories and regular functors;
- Ex: small (Barr)-exact categories and exact functors;
- **Coh**: small coherent categories and coherent functors;
- Ext_ω: small finitely-extensive categories and functors preserving finite coproducts;
- Adh: small adhesive categories and adhesive functors;
- **Pretop**_{ω}: small finitary pretopoi and coherent functors.

Corollary

- Reg: small regular categories and regular functors;
- Ex: small (Barr)-exact categories and exact functors;
- **Coh**: small coherent categories and coherent functors;
- Ext_ω: small finitely-extensive categories and functors preserving finite coproducts;
- Adh: small adhesive categories and adhesive functors;
- **Pretop**_{ω}: small finitary pretopoi and coherent functors.

Corollary

- Reg: small regular categories and regular functors;
- **Ex**: small (Barr)-exact categories and exact functors;
- **Coh**: small coherent categories and coherent functors;
- Ext_ω: small finitely-extensive categories and functors preserving finite coproducts;
- Adh: small adhesive categories and adhesive functors;
- **Pretop**_{ω}: small finitary pretopoi and coherent functors.

Corollary

- **Reg**: small regular categories and regular functors;
- **Ex**: small (Barr)-exact categories and exact functors;
- **Coh**: small coherent categories and coherent functors;
- Ext_ω: small finitely-extensive categories and functors preserving finite coproducts;
- Adh: small adhesive categories and adhesive functors;
- **Pretop**_{ω}: small finitary pretopoi and coherent functors.

Corollary

- **Reg**: small regular categories and regular functors;
- **Ex**: small (Barr)-exact categories and exact functors;
- **Coh**: small coherent categories and coherent functors;
- Ext_ω: small finitely-extensive categories and functors preserving finite coproducts;
- Adh: small adhesive categories and adhesive functors;
- **Pretop**_{ω}: small finitary pretopoi and coherent functors.

Corollary

- Reg: small regular categories and regular functors;
- **Ex**: small (Barr)-exact categories and exact functors;
- **Coh**: small coherent categories and coherent functors;
- Ext_ω: small finitely-extensive categories and functors preserving finite coproducts;
- Adh: small adhesive categories and adhesive functors;
- **Pretop**_ω: small finitary pretopoi and coherent functors.

Corollary

- Reg: small regular categories and regular functors;
- **Ex**: small (Barr)-exact categories and exact functors;
- **Coh**: small coherent categories and coherent functors;
- Ext_ω: small finitely-extensive categories and functors preserving finite coproducts;
- Adh: small adhesive categories and adhesive functors;
- **Pretop**_{ω}: small finitary pretopoi and coherent functors.

Thank you !

Bibliography

- [Bou20] Bourke. Accessible aspects of 2-category theory, 2020.
- [DDS18] Descotte, Dubuc, and Szyld. Sigma limits in 2-categories and flat pseudofunctors, 2018.
 - [Kel82] Kelly. Structures defined by finite limits in the enriched context, 1982.
 - [LO22] Di Liberti and Osmond. Bi-accessible and bipresentable 2categories, 2022.