From residuated lattices to ℓ -groups via free nuclear preimages

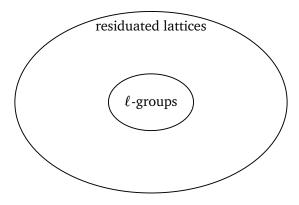
Adam Přenosil

Università degli Studi di Cagliari

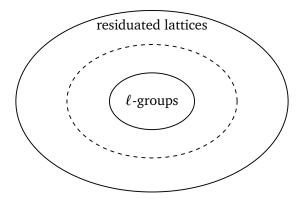
TACL 2021–2 Coimbra, Portugal 23 June 2022

Which residuated lattices arise from lattice-ordered groups (ℓ -groups)?

Which residuated lattices arise from lattice-ordered groups (ℓ -groups)?



Which residuated lattices arise from lattice-ordered groups (ℓ -groups)?



Which pomonoids arise from cancellative pomonoids?

Which $s\ell$ -monoids arise from cancellative $s\ell$ -monoids?

Which pomonoids arise from cancellative pomonoids?

We give a full answer.

Which $s\ell$ -monoids arise from cancellative $s\ell$ -monoids?

Which pomonoids arise from cancellative pomonoids?

We give a full answer.

Which $s\ell$ -monoids arise from cancellative $s\ell$ -monoids?

We give a partial answer.

A **partially ordered monoid (pomonoid)** is a partially ordered algebra $\mathbf{M} = \langle M, \leq, \cdot, \mathbf{e} \rangle$ such that $\langle M, \cdot, \mathbf{e} \rangle$ is a monoid and multiplication is isotone.

A semilattice-ordered monoid (s ℓ -monoid) is an algebra $\mathbf{M} = \langle M, \lor, \cdot, e \rangle$ such that $\langle M, \cdot, e \rangle$ is a monoid, $\langle M, \lor \rangle$ is a join semilattice, and

 $a \cdot (b \lor c) = (a \cdot b) \lor (a \cdot b),$ $(a \lor b) \cdot c = (a \cdot c) \lor (b \cdot c).$

A residuated pomonoid moreover has two division operations such that

$$b \leq a \setminus c \iff a \cdot b \leq c \iff a \leq c/b.$$

A residuated lattice is both a lattice and a residuated pomonoid.

Theorem (Mundici). Every MV-algebra arises from an Abelian ℓ -group G:

Theorem (Mundici). Every MV-algebra arises from an Abelian *l*-group **G**:

1. Consider the negative cone G⁻. This is an integral residuated lattice:

$$a \setminus b := e \wedge a^{-1}b,$$
 $a/b := e \wedge ab^{-1}.$

(Integral means that the multiplicative unit e is the top element.)

Theorem (Mundici). Every MV-algebra arises from an Abelian ℓ -group **G**:

1. Consider the negative cone G^- . This is an integral residuated lattice:

$$a \setminus b := e \wedge a^{-1}b,$$
 $a/b := e \wedge ab^{-1}.$

(Integral means that the multiplicative unit e is the top element.)

2. Consider some *u* in \mathbf{G}^- . Then the interval $[u, e] \subseteq \mathbf{G}^-$ is an MV-algebra:

 $a \odot b := u \lor (a \cdot b).$

Theorem (Mundici). Every MV-algebra arises from an Abelian ℓ -group **G**:

1. Consider the negative cone **G**⁻. This is an integral residuated lattice:

$$a \setminus b := e \wedge a^{-1}b,$$
 $a/b := e \wedge ab^{-1}.$

(Integral means that the multiplicative unit e is the top element.)

2. Consider some *u* in **G**⁻. Then the interval $[u, e] \subseteq \mathbf{G}^-$ is an MV-algebra:

$$a \odot b := u \lor (a \cdot b).$$

Theorem (Dvurečenskij). Every pseudo MV-algebra arises from some ℓ -group in the same way. [These are "non-commutative MV-algebras".]

The negative cone construction is an example of a **conuclear image**. A **conucleus** on a pomonoid **M** is an interior operator σ such that

$$\sigma(a) \cdot \sigma(b) \le \sigma(a \cdot b), \qquad \qquad \sigma(e) = e.$$

The σ -open elements of **M** form a subpomonoid $\mathbf{M}_{\sigma} = \langle M_{\sigma}, \leq, \cdot, \mathsf{e} \rangle$.

If σ is a conucleus on a residuated lattice **L**, then \mathbf{L}_{σ} is a residuated lattice which is subalgebra of **L** w.r.t. \lor , \cdot , e.

The unit interval construction is an example of a **nuclear image**. A **nucleus** on a pomonoid **M** is a closure operator such that

$$\gamma(a) \cdot \gamma(b) \leq \gamma(a \cdot b).$$

The γ -closed elements of **M** form a pomonoid $\mathbf{M}_{\gamma} = \langle M_{\gamma}, \leq, \cdot_{\gamma}, \gamma(\mathbf{e}) \rangle$ with

$$a \cdot_{\gamma} b := \gamma(a \cdot b).$$

If γ is a nucleus on a residuated lattice **L**, then \mathbf{L}_{γ} is a residuated lattice which is a subalgebra of **L** w.r.t. \wedge , \setminus , /.

Theorem (Galatos & Tsinakis). Every (commutative) GMV-algebra arises as the nuclear image of a kernel image of an (Abelian) ℓ -group.

GMV-algebras form a variety of residuated lattices which generalizes MV-algebras by dropping integrality, commutativity, and boundedness.

Here a **kernel** is a conucleus whose image is downward closed.

Which algebras arise as nuclear images of conuclear images of ℓ -groups?

$$\ell$$
-group $\xrightarrow{\text{conucleus }\sigma}$? $\xrightarrow{\text{nucleus }\gamma}$?

Which algebras arise as nuclear images of conuclear images of ℓ -groups?

$$\ell$$
-group $\xrightarrow{\text{conucleus }\sigma}$? $\xrightarrow{\text{nucleus }\gamma}$?

By-product: which quasivarieties are closed under nuclear images?

A pomonoid is (order) **cancellative** if

$$z \cdot x \le z \cdot y \implies x \le y, \qquad x \cdot z \le y \cdot z \implies x \le y.$$

A pomonoid is integrally closed if

$$y \cdot x \le y \implies x \le e, \qquad x \cdot y \le y \implies x \le e.$$

Cancellative \implies integrally closed. Integral \implies integrally closed.

Finite integrally closed \iff finite integral.

Fact. Conuclear images preserve cancellativity. Nuclear images preserve the property of being integrally closed. Therefore:

pogroup $\xrightarrow{\text{conucleus } \sigma}$ cancellative $\xrightarrow{\text{nucleus } \gamma}$ integrally closed

Each commutative cancellative pomonoid (s ℓ -monoid) **M** embeds into an Abelian **pogroup** (ℓ -group) of fractions **G** where

each $x \in \mathbf{G}$ has the form $x = a^{-1}b$ for some $a, b \in \mathbf{M}$.

If **M** is residuated, then there is a conucleus σ on **G** such that $\mathbf{M} \cong \mathbf{G}_{\sigma}$:

$$\sigma(a^{-1}b) := a \setminus_{\mathbf{M}} b.$$

Theorem (Montagna & Tsinakis). Commutative cancellative RLs (RPs) are precisely the conuclear images of Abelian ℓ -groups (pogroups).

Beyond the commutative case, things are more complicated. It is difficult to describe even which cancellative monoids embed into a group. **Core problem:** given an integrally closed pomonoid $\mathbf{M} = \langle M, \leq, \cdot, e \rangle$, show that it is the nuclear image of a cancellative pomonoid.

Core problem: given an integrally closed pomonoid $\mathbf{M} = \langle M, \leq, \cdot, e \rangle$, show that it is the nuclear image of a cancellative pomonoid.

Let $\langle M^*, \leq, \circ, \varepsilon \rangle$ be the free monoid (monoid of words) over an arbitrary pomonoid **M**. Words will be written as

$$[a_1,\ldots,a_n]=[a_1]\circ[a_2]\circ\ldots\circ[a_n].$$

 M^* comes with a **multiplication map** $\gamma: M^* \to M$:

$$\gamma([a_1,\ldots,a_n]):=a_1\cdot\ldots\cdot a_n,\qquad \qquad \gamma(\varepsilon):=\mathsf{e}.$$

This yields a map $[\gamma]: M^* \to M^*$, namely $[\gamma](w) := [\gamma(w)]$.

Define the following preorder on M^* :

$$u \sqsubseteq \varepsilon \iff u = \varepsilon,$$

$$u \sqsubseteq [a] \iff \gamma(u) \le a \text{ in } \mathbf{M},$$

$$u \sqsubseteq [a_1, \dots, a_n] \iff u_1 \sqsubseteq [a_1] \text{ and } \dots \text{ and } u_n \sqsubseteq [a_n]$$

for some decomposition $u_1 \circ \dots \circ u_n = u.$

Note that some of the u_i 's in the decomposition might be empty.

Define the following preorder on M^* :

$$u \sqsubseteq \varepsilon \iff u = \varepsilon,$$

$$u \sqsubseteq [a] \iff \gamma(u) \le a \text{ in } \mathbf{M},$$

$$u \sqsubseteq [a_1, \dots, a_n] \iff u_1 \sqsubseteq [a_1] \text{ and } \dots \text{ and } u_n \sqsubseteq [a_n]$$

for some decomposition $u_1 \circ \dots \circ u_n = u.$

Note that some of the u_i 's in the decomposition might be empty.

Define the following preorder on M^* :

$$u \sqsubseteq \varepsilon \iff u = \varepsilon,$$

$$u \sqsubseteq [a] \iff \gamma(u) \le a \text{ in } \mathbf{M},$$

$$u \sqsubseteq [a_1, \dots, a_n] \iff u_1 \sqsubseteq [a_1] \text{ and } \dots \text{ and } u_n \sqsubseteq [a_n]$$

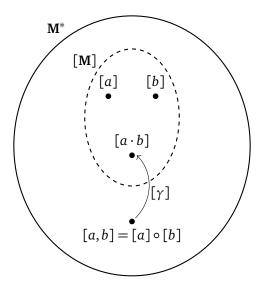
for some decomposition $u_1 \circ \dots \circ u_n = u.$

Note that some of the u_i 's in the decomposition might be empty.

Quotienting the preordered monoid $\langle M^*, \sqsubseteq, \circ, \varepsilon \rangle$ to a partially ordered structure yields the pomonoid **M**^{*}. This is **never** cancellative:

$$\varepsilon \circ u = [e] \circ u$$
 unless $u = \varepsilon$.

Collapsing ε and [e] yields the pomonoid **M**⁺.



A **(unital) nuclear pomonoid** or *s* ℓ **-monoid** is pomonoid or *s* ℓ -monoid **M** equipped with a (unital) nucleus γ . Here **unital** means that $\gamma(e) = e$.

The **(unital) nuclear image functor** from the category of (unital) nuclear pomonoids to the category of pomonoids:

 $\langle \mathbf{M}, \gamma \rangle \mapsto \mathbf{M}_{\gamma}$

The free (unital) nuclear preimage functor is its left adjoint.

Fact. \mathbf{M}^* (\mathbf{M}^+) is the free (unital) nuclear preimage of \mathbf{M} . The unit of the adjunction is the map $a \mapsto [a]$. This is an isomorphism: $(\mathbf{M}^*)_{[\gamma]} \cong \mathbf{M}$.

Fact. Each equivalence class of M^* has a unique shortest element. (If M is integral: remove subwords of the form [e] unless the whole word is [e].)

Mutatis mutandis, the same construction works in the commutative case.

Nuclear images of cancellative pomonoids = integrally closed pomonoids.

Nuclear images of (commutative) cancellative pomonoids = (commutative) integrally closed pomonoids.

Nuclear images of (commutative) [integral] cancellative pomonoids = (commutative) integrally closed [integral] pomonoids.

Nuclear images of (commutative) [integral] cancellative pomonoids = (commutative) integrally closed [integral] pomonoids.

Proof. **M**⁺ is cancellative if **M** is an integrally closed pomonoid:

It suffices to show that $[a] \circ u \sqsubseteq [a] \circ v$ in \mathbf{M}^+ implies $u \sqsubseteq v$.

If $[a] \circ u_1 \sqsubseteq [a]$ and $u_2 \sqsubseteq v$ for some $u_1 \circ u_2 = u$, then $a \cdot \gamma(u_1) \le a$, so $\gamma(u_1) \le e$ because **M** is integrally closed. Thus $u = u_1 \circ u_2 \sqsubseteq [e] \circ v \sqsubseteq v$.

On the other hand, if $\varepsilon \sqsubseteq [a]$ and $[a] \circ u \sqsubseteq v$, then $u = \varepsilon \circ u \sqsubseteq [a] \circ u \sqsubseteq v$.

Nuclear images of (commutative) [integral] cancellative pomonoids = (commutative) integrally closed [integral] pomonoids.

Proof. **M**⁺ is cancellative if **M** is an integrally closed pomonoid:

It suffices to show that $[a] \circ u \sqsubseteq [a] \circ v$ in \mathbf{M}^+ implies $u \sqsubseteq v$.

If $[a] \circ u_1 \sqsubseteq [a]$ and $u_2 \sqsubseteq v$ for some $u_1 \circ u_2 = u$, then $a \cdot \gamma(u_1) \le a$, so $\gamma(u_1) \le e$ because **M** is integrally closed. Thus $u = u_1 \circ u_2 \sqsubseteq [e] \circ v \sqsubseteq v$.

On the other hand, if $\varepsilon \sqsubseteq [a]$ and $[a] \circ u \sqsubseteq v$, then $u = \varepsilon \circ u \sqsubseteq [a] \circ u \sqsubseteq v$.

Core problem, $s\ell$ **-version:** given an integrally closed $s\ell$ -monoid **M**, show that it is the nuclear image of a cancellative $s\ell$ -monoid.

Core problem, $s\ell$ -version: given an integrally closed $s\ell$ -monoid **M**, show that it is the nuclear image of a cancellative $s\ell$ -monoid.

Define $\mathrm{Id}_\omega \mathbf{M}^*$ as the nuclear s ℓ -monoid of non-empty finitely generated downsets of \mathbf{M}^* with multiplication

 $X * Y := \downarrow (X \cdot Y)$

and with the nucleus

$$[\gamma](\downarrow\{w_1,\ldots,w_n\}):=[\gamma(w_1)\lor\cdots\lor\gamma(w_n)].$$

Fact. Id_{ω} **M**^{*} (Id_{ω} **M**⁺) is the free (unital) nuclear s ℓ -preimage of **M**.

Fact. Id_{ω} **M**^{*} is a residuated lattice if **M** is a finite residuated lattice.

Nuclear images of integral cancellative s ℓ -monoids = integral s ℓ -monoids.

Theorem.

Nuclear images of commutative (integral) cancellative sl-monoids = commutative integrally closed (integral) sl-monoids which satisfy the square condition.

Nuclear images of integral cancellative s ℓ -monoids = integral s ℓ -monoids.

Theorem.

Nuclear images of commutative (integral) cancellative sℓ-monoids = commutative integrally closed (integral) sℓ-monoids which satisfy the square condition.

Conjecture.

Nuclear images of cancellative sl-monoids

integrally closed sℓ-monoids?

Finite nuclear images of integral cancellative RLs = finite integral RLs.

Theorem.

Finite nuclear images of conuclear images of Abelian ℓ -groups = finite nuclear images of commutative integral cancellative RLs = finite integral CRLs with the square condition. In fact, something stronger holds.

Theorem.

Finite nuclear images of distributive integral cancellative RLs with $x(y \land z) = xy \land xz$ and $(x \land y)z = xz \land yz$ =

finite integral RLs.

Conjecture.

Finite nuclear images of integral conuclear images of ℓ -groups = finite nuclear images of integral RLs = finite nuclear images of integral conuclear images of ℓ -groups w.r.t. a

conucleus σ such that $\sigma(x \land y) = \sigma(x) \land \sigma(y)$?

Which quasivarieties are preserved under nuclear images?

A quasivariety of pomonoids ($s\ell$ -monoids) is a class of pomonoids axiomatized by quasi-inequations, i.e. implications of the form

$$t_1 \le u_1 \& \dots \& t_n \le u_n \Longrightarrow t \le u,$$

where the *t*'s and *u*'s are monoidal (s ℓ -monoidal) terms.

Fact. A class of pomonoids (s ℓ -monoids) is a quasivariety if and only if it is closed under \mathbb{I} , \mathbb{S} , \mathbb{P} , \mathbb{P}_U .

Example. Cancellative pomonoids form a quasivariety:

$$x \cdot y \le x \cdot z \Longrightarrow y \le z, \qquad x \cdot z \le y \cdot z \Longrightarrow x \le y.$$

Example. Integrally closed pomonoids form a quasivariety:

$$x \cdot y \le x \Longrightarrow y \le e,$$
 $x \cdot y \le y \Longrightarrow x \le e.$

Let us call a quasi-inequality simple if it has the form

$$t_1 \leq x_1 \& \dots \& t_n \leq x_n \Longrightarrow t \leq u,$$

where x_1, \ldots, x_n are variables (not necessarily distinct).

Example. Being integrally closed is a simple condition.

Non-example. Being cancellative is not a simple condition.

Theorem. A quasivariety of pomonoids ($s\ell$ -monoids) is closed under nuclear images if and only if it is axiomatized by simple quasi-inequalities.

Equivalently, a class of pomonoids (s ℓ -monoids) is closed under \mathbb{I} , \mathbb{S} , \mathbb{P} , \mathbb{P}_U , and \mathbb{N} if and only if it is axiomatized by simple quasi-inequalities.

Theorem. Let K be a quasivariety of pomonoids ($s\ell$ -monoids). Then the class $\mathbb{N}(K)$ is axiomatized by the simple quasi-inequalities valid in K.

Theorem. A quasivariety of pomonoids ($s\ell$ -monoids) is closed under nuclear images if and only if it is axiomatized by simple quasi-inequalities.

Equivalently, a class of pomonoids (s ℓ -monoids) is closed under \mathbb{I} , \mathbb{S} , \mathbb{P} , \mathbb{P}_U , and \mathbb{N} if and only if it is axiomatized by simple quasi-inequalities.

Theorem. Let K be a quasivariety of pomonoids ($s\ell$ -monoids). Then the class $\mathbb{N}(K)$ is axiomatized by the simple quasi-inequalities valid in K.

Proof. This reflects the product distributivity of the free nuclear preimage:

$$u \sqsubseteq v_1 \circ v_2 \implies u_1 \sqsubseteq v_1$$
 and $u_2 \sqsubseteq v_2$ for some $u_1 \circ u_2 = u$,

and the distributivity of the free semilattice-ordered nuclear preimage:

$$u \sqsubseteq v_1 \lor v_2 \implies u_1 \sqsubseteq v_1$$
 and $u_2 \sqsubseteq v_2$ for some $u_1 \lor u_2 = u$.

Back to our original question: relating pomonoids and pogroups.

Theorem.

Nuclear images of [integral] subpomonoids of pogroups = integrally closed [integral] pomonoids.

Proof strategy: proof-theoretic, through a normalization procedure.

Conjecture.

Nuclear images of [integral] sub-s ℓ -monoids of ℓ -groups = integrally closed [integral] s ℓ -monoids?

Thank you for your attention!