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A partially ordered monoid (pomonoid) is a partially ordered algebra
M= 〈M,≤, ·,e〉 such that 〈M, ·,e〉 is a monoid and multiplication is isotone.

A semilattice-ordered monoid (sℓ-monoid) is an algebra M= 〈M,∨, ·,e〉
such that 〈M, ·,e〉 is a monoid, 〈M,∨〉 is a join semilattice, and

a · (b∨ c) = (a · b)∨ (a · b), (a∨ b) · c= (a · c)∨ (b · c).

A residuated pomonoid moreover has two division operations such that

b≤ a\c ⇐⇒ a · b≤ c ⇐⇒ a≤ c/b.

A residuated lattice is both a lattice and a residuated pomonoid.
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Theorem (Mundici). Every MV-algebra arises from an Abelian ℓ-group G:

1. Consider the negative cone G−. This is an integral residuated lattice:

a\b := e∧ a−1b, a/b := e∧ ab−1.

(Integral means that the multiplicative unit e is the top element.)

2. Consider some u in G−. Then the interval [u,e] ⊆ G− is an MV-algebra:

a⊙ b := u∨ (a · b).

Theorem (Dvurečenskij). Every pseudo MV-algebra arises from some
ℓ-group in the same way. [These are “non-commutative MV-algebras”.]
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The negative cone construction is an example of a conuclear image.

A conucleus on a pomonoid M is an interior operator σ such that

σ(a) ·σ(b)≤ σ(a · b), σ(e) = e.

The σ-open elements of M form a subpomonoid Mσ = 〈Mσ,≤, ·,e〉.

If σ is a conucleus on a residuated lattice L, then Lσ is a residuated lattice
which is subalgebra of L w.r.t. ∨, ·,e.
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The unit interval construction is an example of a nuclear image.

A nucleus on a pomonoid M is a closure operator such that

γ(a) · γ(b)≤ γ(a · b).

The γ-closed elements of M form a pomonoid Mγ = 〈Mγ,≤, ·γ,γ(e)〉 with

a ·γ b := γ(a · b).

If γ is a nucleus on a residuated lattice L, then Lγ is a residuated lattice
which is a subalgebra of L w.r.t. ∧,\,/.
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Theorem (Galatos & Tsinakis). Every (commutative) GMV-algebra arises
as the nuclear image of a kernel image of an (Abelian) ℓ-group.

GMV-algebras form a variety of residuated lattices which generalizes
MV-algebras by dropping integrality, commutativity, and boundedness.

Here a kernel is a conucleus whose image is downward closed.
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Which algebras arise as nuclear images of conuclear images of ℓ-groups?

ℓ-group
conucleus σ
−−−−−−−→ ?

nucleus γ
−−−−−→ ?

By-product: which quasivarieties are closed under nuclear images?
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A pomonoid is (order) cancellative if

z · x ≤ z · y =⇒ x ≤ y, x · z≤ y · z =⇒ x ≤ y.

A pomonoid is integrally closed if

y · x ≤ y =⇒ x ≤ e, x · y ≤ y =⇒ x ≤ e.

Cancellative =⇒ integrally closed. Integral =⇒ integrally closed.

Finite integrally closed ⇐⇒ finite integral.

Fact. Conuclear images preserve cancellativity. Nuclear images preserve
the property of being integrally closed. Therefore:

pogroup
conucleus σ
−−−−−−−→ cancellative

nucleus γ
−−−−−→ integrally closed
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Each commutative cancellative pomonoid (sℓ-monoid) M embeds into an
Abelian pogroup (ℓ-group) of fractions G where

each x ∈ G has the form x = a−1b for some a, b ∈M.

If M is residuated, then there is a conucleus σ on G such that M∼= Gσ:

σ(a−1b) := a \M b.

Theorem (Montagna & Tsinakis). Commutative cancellative RLs (RPs)
are precisely the conuclear images of Abelian ℓ-groups (pogroups).

Beyond the commutative case, things are more complicated. It is difficult
to describe even which cancellative monoids embed into a group.
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Core problem: given an integrally closed pomonoid M= 〈M,≤, ·,e〉, show
that it is the nuclear image of a cancellative pomonoid.

Let 〈M∗,≤,◦,ϵ〉 be the free monoid (monoid of words) over an arbitrary
pomonoid M. Words will be written as

[a1, . . . , an] = [a1] ◦ [a2] ◦ . . . ◦ [an].

M∗ comes with a multiplication map γ: M∗→M:

γ([a1, . . . , an]) := a1 · . . . · an, γ(ϵ) := e.

This yields a map [γ]: M∗→M∗, namely [γ](w) := [γ(w)].
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Define the following preorder on M∗:

u⊑ ϵ ⇐⇒ u= ϵ,

u⊑ [a] ⇐⇒ γ(u)≤ a in M,

u⊑ [a1, . . . , an] ⇐⇒ u1 ⊑ [a1] and . . . and un ⊑ [an]

for some decomposition u1 ◦ . . . ◦ un = u.

Note that some of the ui’s in the decomposition might be empty.

Quotienting the preordered monoid 〈M∗,⊑,◦,ϵ〉 to a partially ordered
structure yields the pomonoid M∗. This is never cancellative:

ϵ ◦ u= [e] ◦ u unless u= ϵ.

Collapsing ϵ and [e] yields the pomonoid M+.

13 / 25



Define the following preorder on M∗:

u⊑ ϵ ⇐⇒ u= ϵ,

u⊑ [a] ⇐⇒ γ(u)≤ a in M,

u⊑ [a1, . . . , an] ⇐⇒ u1 ⊑ [a1] and . . . and un ⊑ [an]

for some decomposition u1 ◦ . . . ◦ un = u.

Note that some of the ui’s in the decomposition might be empty.

Quotienting the preordered monoid 〈M∗,⊑,◦,ϵ〉 to a partially ordered
structure yields the pomonoid M∗. This is never cancellative:

ϵ ◦ u= [e] ◦ u unless u= ϵ.

Collapsing ϵ and [e] yields the pomonoid M+.

13 / 25



Define the following preorder on M∗:

u⊑ ϵ ⇐⇒ u= ϵ,

u⊑ [a] ⇐⇒ γ(u)≤ a in M,

u⊑ [a1, . . . , an] ⇐⇒ u1 ⊑ [a1] and . . . and un ⊑ [an]

for some decomposition u1 ◦ . . . ◦ un = u.

Note that some of the ui’s in the decomposition might be empty.

Quotienting the preordered monoid 〈M∗,⊑,◦,ϵ〉 to a partially ordered
structure yields the pomonoid M∗. This is never cancellative:

ϵ ◦ u= [e] ◦ u unless u= ϵ.

Collapsing ϵ and [e] yields the pomonoid M+.

13 / 25



[M]

M∗

[a] [b]

[a · b]

[a, b] = [a] ◦ [b]

[γ]
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A (unital) nuclear pomonoid or sℓ-monoid is pomonoid or sℓ-monoid M
equipped with a (unital) nucleus γ. Here unital means that γ(e) = e.

The (unital) nuclear image functor from the category of (unital) nuclear
pomonoids to the category of pomonoids:

〈M,γ〉 7→Mγ

The free (unital) nuclear preimage functor is its left adjoint.
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Fact. M∗ (M+) is the free (unital) nuclear preimage of M. The unit of the
adjunction is the map a 7→ [a]. This is an isomorphism: (M∗)[γ] ∼=M.

Fact. Each equivalence class of M∗ has a unique shortest element. (If M is
integral: remove subwords of the form [e] unless the whole word is [e].)

Mutatis mutandis, the same construction works in the commutative case.
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Theorem.

Nuclear images of cancellative pomonoids
=

integrally closed pomonoids.
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Theorem.

Nuclear images of (commutative) [integral] cancellative pomonoids
=

(commutative) integrally closed [integral] pomonoids.
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Theorem.

Nuclear images of (commutative) [integral] cancellative pomonoids
=

(commutative) integrally closed [integral] pomonoids.

Proof. M+ is cancellative if M is an integrally closed pomonoid:

It suffices to show that [a] ◦ u⊑ [a] ◦ v in M+ implies u⊑ v.

If [a] ◦ u1 ⊑ [a] and u2 ⊑ v for some u1 ◦ u2 = u, then a · γ(u1)≤ a, so
γ(u1)≤ e because M is integrally closed. Thus u= u1 ◦ u2 ⊑ [e] ◦ v⊑ v.

On the other hand, if ϵ ⊑ [a] and [a] ◦ u⊑ v, then u= ϵ ◦ u⊑ [a] ◦ u⊑ v.
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Core problem, sℓ-version: given an integrally closed sℓ-monoid M, show
that it is the nuclear image of a cancellative sℓ-monoid.

Define IdωM∗ as the nuclear sℓ-monoid of non-empty finitely generated
downsets of M∗ with multiplication

X ∗ Y := ↓(X · Y)

and with the nucleus

[γ](↓{w1, . . . , wn}) := [γ(w1)∨ · · · ∨ γ(wn)].

Fact. IdωM∗ (IdωM+) is the free (unital) nuclear sℓ-preimage of M.

Fact. IdωM∗ is a residuated lattice if M is a finite residuated lattice.
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=
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Theorem.

Finite nuclear images of integral cancellative RLs
=

finite integral RLs.

Theorem.

Finite nuclear images of conuclear images of Abelian ℓ-groups
=

finite nuclear images of commutative integral cancellative RLs
=

finite integral CRLs with the square condition.
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In fact, something stronger holds.

Theorem.

Finite nuclear images of distributive integral cancellative RLs with
x(y∧ z) = xy∧ xz and (x ∧ y)z= xz∧ yz

=
finite integral RLs.

Conjecture.

Finite nuclear images of integral conuclear images of ℓ-groups
=

finite nuclear images of integral RLs
=

finite nuclear images of integral conuclear images of ℓ-groups w.r.t. a
conucleus σ such that σ(x ∧ y) = σ(x)∧σ(y)?
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Which quasivarieties are preserved under nuclear images?

A quasivariety of pomonoids (sℓ-monoids) is a class of pomonoids
axiomatized by quasi-inequations, i.e. implications of the form

t1 ≤ u1 & . . . & tn ≤ un =⇒ t≤ u,

where the t’s and u’s are monoidal (sℓ-monoidal) terms.

Fact. A class of pomonoids (sℓ-monoids) is a quasivariety if and only if it
is closed under I, S, P, PU.

Example. Cancellative pomonoids form a quasivariety:

x · y ≤ x · z =⇒ y ≤ z, x · z≤ y · z =⇒ x ≤ y.

Example. Integrally closed pomonoids form a quasivariety:

x · y ≤ x =⇒ y ≤ e, x · y ≤ y =⇒ x ≤ e.
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Let us call a quasi-inequality simple if it has the form

t1 ≤ x1 & . . . & tn ≤ xn =⇒ t≤ u,

where x1, . . . , xn are variables (not necessarily distinct).

Example. Being integrally closed is a simple condition.

Non-example. Being cancellative is not a simple condition.
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Theorem. A quasivariety of pomonoids (sℓ-monoids) is closed under
nuclear images if and only if it is axiomatized by simple quasi-inequalities.

Equivalently, a class of pomonoids (sℓ-monoids) is closed under I, S, P,
PU, and N if and only if it is axiomatized by simple quasi-inequalities.

Theorem. Let K be a quasivariety of pomonoids (sℓ-monoids). Then the
class N(K) is axiomatized by the simple quasi-inequalities valid in K.

Proof. This reflects the product distributivity of the free nuclear preimage:

u⊑ v1 ◦ v2 =⇒ u1 ⊑ v1 and u2 ⊑ v2 for some u1 ◦ u2 = u,

and the distributivity of the free semilattice-ordered nuclear preimage:

u⊑ v1 ∨ v2 =⇒ u1 ⊑ v1 and u2 ⊑ v2 for some u1 ∨ u2 = u.
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Back to our original question: relating pomonoids and pogroups.

Theorem.

Nuclear images of [integral] subpomonoids of pogroups
=

integrally closed [integral] pomonoids.

Proof strategy: proof-theoretic, through a normalization procedure.

Conjecture.

Nuclear images of [integral] sub-sℓ-monoids of ℓ-groups
=

integrally closed [integral] sℓ-monoids?

Thank you for your attention!
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