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Relations

A relation r from a set X to a set Y , gives us a way of discerning which
elements x ∈ X and y ∈ Y are r -related, which is usually denoted by
x r y .

We may present a relation r as a subset or as a two-valued map:

r ⊆ X × Y , r : X × Y → 2 = {⊥,⊤}

x r y may then be written as

(x , y) ∈ r , r(x , y) = ⊤.
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Relations

We will write r : X −→ Y for a r a relation from X to Y .We may compose
r with s : Y −→ Z using the usual relational composition:

x (s · r) z ⇔ ∃y ∈ Y (x r y & y s z).

Equivalently, this may be written as

(s · r)(x , z) =
∨
y∈Y

r(x , y) ∧ s(y , z).
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Orders

An (pre)order on a set X is a relation a : X −→ X such that,

a · a ≤ a and 1X ≤ a.

That is, a is a transitive and reflexive relation on X . This may be written
as

x ≤ y & y ≤ z ⇒ x ≤ z and x ≤ x ,

or equivalently, when presenting r as a map r : X × X → 2

a(x , y) ∧ a(y , z) ≤ a(x , z) and ⊤ ≤ a(x , x).

There is a clear similarity with these requirements and those of a (quasi)metric
a : X × X → [0,∞] on X :

a(x , y) + a(y , z) ≥ a(x , z) and 0 ≥ a(x , x).
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Quantales
In the previous example we replaced 2 with [0,∞]+.
The generalized framework encompassing both examples that we are inte-
rested is provided by a quantale.

A quantale V = (V ,≤,⊗, k) is a complete lattice equipped with a binary
operation ⊗ (instead of ∧ or +) respecting arbitrary joins in each variable
and a ⊗-neutral element k (instead of ⊤ or 0).

As a category V is a “thin”symmetric monoidal-closed category, with in-
ternal homs hom(v ,w) determined by

u ≤ hom(v ,w) ⇔ u ⊗ v ≤ w .

A few examples:

2 = ({⊥,⊤},≤,∧,⊤);

The powerset (PX ,⊆,∩,X ), for any set X .

The Lawvere quantale [0,∞]+ = ([0,∞],≥,+, 0);
[0, 1]× = ([0, 1],≤,×, 1).
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V -relations

As we just seen, a relation r : X −→ Y is a map X × Y → 2.

A V -relation r : X −→ Y is a map X × Y → V .

Given two V -relations r : X −→ Y , s : Y −→ Z their composition
s · r : X −→ Z is given by

(s · r)(x , z) =
∨
y∈Y

r(x , y)⊗ s(y , z).

Sets and V -relations define the category V -Rel.

The order from V induces an order on V -relations r , r ′ : X −→ Y ,

r ≤ r ′ ⇔ ∀x ∈ X , y ∈ Y : r(x , y) ≤ r ′(x , y),

for any sets X and Y .
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V -Rel

V -Rel also comes with an involution (−)◦ defined by

r◦(y , x) = r(x , y),

for any x ∈ X , y ∈ Y .

Each map f : X → Y induces the V -relation f◦ : X −→ Y

f◦(x , y) =

{
k if f (x) = y

⊥ otherwise.

Moreover, for every map f : X → Y we have that

f◦ · f ◦ ≤ 1Y and 1X ≤ f ◦ · f◦,

that is, f◦ ⊣ f ◦ in V -Rel.
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V -categories

A (pre)order (X , a) is a set X equipped with a relation a : X × X → 2
such that,

a · a ≤ a and 1X ≤ a.

A V -category (X , a) is a set X equipped with a V -relation a : X×X → V ,
such that

a · a ≤ a and 1X ≤ a.

Equivalently

a(x , y)⊗ a(y , z) ≤ a(x , z) and k ≤ a(x , x)

holds, for any x , y , z ∈ X .
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V -Cat

A morphism in Ord f : (X , a) → (Y , b) is a map f : X → Y satisfying

x a y ≤ f (x) b f (y),

for all x , y ∈ X .

A V -functor f : (X , a) → (Y , b) is a map f : X → Y satisfying

a(x , y) ≤ b(f (x), f (y)),

for all x , y ∈ X .

A V -functor is called fully faithful if the inequality is also an equality.

V -categories and V -functors define the category V -Cat.
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V -Cat

The quantale V is itself a V -category when equipped with its internal hom.

Given a V -category (X , a) its opposite V -category is (X , a)op = (X , a◦).

The order from V induces an order in each V -category (X , a) as follows

x ≤ y ⇔ k ≤ a(x , y).

This order makes every V -functor monotone.

Now, given V -categories (X , a), (Y , b), we order the hom-set V -Cat(X ,Y )
pointwise using the order inherited from Y :

f ≤ g ⇔ f (x) ≤ g(x) ∀x ∈ X ,

for any V -functors f , g : X → Y .

V -Cat is a symmetric monoidal-closed category, with the unit given by
E = ({∗}, k), where k(∗, ∗) = k .
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V -Dist

Given two V -categories (X , a), (Y , b), a V -distributor ψ : X ◦−→ Y is a
V -relation ψ : X −→ Y satisfying

b · ψ · a ≤ ψ.

Equivalently

a(x ′, x)⊗ ψ(x , y)⊗ b(y , y ′) ≤ ψ(x ′, y ′),

holds for any x , x ′ ∈ X , y , y ′ ∈ Y .

Under relational composition, V -categories and V -distributors form the
category V -Dist.
In V -Dist, the identity morphism for each V -category is its structure.

Moreover, V -Dist inherits the 2-categorical structure of V -Rel.
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V -Dist(X ,Y ) ∼= V -Cat(X op ⊗ Y ,V )

Given two V -categories (X , a), (Y , b) and a V -relation φ : X −→ Y the
following are equivalent:

φ : (X , a) ◦−→ (Y , b) is a V -distributor;

φ : (X , a)op ⊗ (Y , b) → (V , hom) is a V -functor.

This allows us to define a V -category structure on V -Dist(X ,Y ) by using
the structure of V -Cat(X op ⊗ Y ,V ).

Note that, in particular

V -Dist(X ,E ) ∼= V -Cat(X op ⊗ E ,V ) ∼= V -Cat(X op,V ).
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V-Dist

Every V -functor f : (X , a) → (Y , b) induces a pair of V -distributors

f∗ = b · f◦ : X ◦−→ Y and f ∗ = f ◦ · b : Y ◦−→ X .

Moreover, we have the 2-functors

(−)∗ : V -Cat → V -Distco and (−)∗ : V -Cat → V -Distop,

which map objects identically.
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Presheaf monad

The adjunction

V -Cat ⊥ V -Distop

(−)∗

V -Dist(−,E)

induces the
presheaf monad P = (P,m, y) on V -Cat, where

PX = V -Cat(X op,V ) ∼= V -Dist(X ,E ).

P(f )(φ) = V -Dist(f ∗,E )(φ) = φ · f ∗ = Y
f ∗◦−→ X

φ
◦−→ E ;

yX (x) = a(−, x);

mX (Ψ) = Ψ · (yX )∗ = X
(yX )∗◦−→ PX

Ψ◦−→ E .

for any x ∈ X , f : (X , a) → (Y , b), φ ∈ PX and Ψ ∈ PPX .
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Presheaf monad

Since

V -Dist(X ,Y ) ∼= V -Cat(X op ⊗ Y ,V )
∼= V -Cat(Y ,V -Cat(X op,V ))

= V -Cat(Y ,PX )

it follows that any V -distributor X ◦−→ Y can be seen as a morphism
Y → X in the Kleisli category Kl(P).

In fact, we have that V -Dist ∼= Kl(P).

This parallels nicely the fact that V -Rel ∼= Kl(Pd), where Pd is the discrete
presheaf monad on Set.

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 15



Presheaf monad

Since

V -Dist(X ,Y ) ∼= V -Cat(X op ⊗ Y ,V )
∼= V -Cat(Y ,V -Cat(X op,V ))

= V -Cat(Y ,PX )

it follows that any V -distributor X ◦−→ Y can be seen as a morphism
Y → X in the Kleisli category Kl(P).

In fact, we have that V -Dist ∼= Kl(P).

This parallels nicely the fact that V -Rel ∼= Kl(Pd), where Pd is the discrete
presheaf monad on Set.

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 15



Presheaf monad

Since

V -Dist(X ,Y ) ∼= V -Cat(X op ⊗ Y ,V )
∼= V -Cat(Y ,V -Cat(X op,V ))

= V -Cat(Y ,PX )

it follows that any V -distributor X ◦−→ Y can be seen as a morphism
Y → X in the Kleisli category Kl(P).

In fact, we have that V -Dist ∼= Kl(P).

This parallels nicely the fact that V -Rel ∼= Kl(Pd), where Pd is the discrete
presheaf monad on Set.

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 15



Presheaf monad

Since

V -Dist(X ,Y ) ∼= V -Cat(X op ⊗ Y ,V )
∼= V -Cat(Y ,V -Cat(X op,V ))

= V -Cat(Y ,PX )

it follows that any V -distributor X ◦−→ Y can be seen as a morphism
Y → X in the Kleisli category Kl(P).

In fact, we have that V -Dist ∼= Kl(P).

This parallels nicely the fact that V -Rel ∼= Kl(Pd), where Pd is the discrete
presheaf monad on Set.

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 15



A new Beck-Chevalley type condition

A commutative square in Set

W Z

X Y

g

l

h

f

is said to be a (BC )-square if the following diagram commutes in Rel

W Z

X Y

−

l◦−
−g◦

f◦
−

h◦
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A new Beck-Chevalley type condition

A commutative square in V -Cat

(W , d) (Z , c)

(X , a) (Y , b)

g

l

h

f

is said to be a (BC )∗-square if the following diagram commutes in V -Dist

(W , d) (Z , c)

(X , a) (Y , b)

◦

l∗◦

◦g∗

f∗
◦

h∗

(In fact, it’s enough to verify that if h∗ · f∗ ≤ l∗ · g∗)
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A new Beck-Chevalley type condition

It’s well known that a map f : X → Y is a monomorphism if and only if

X X

X Y

1

1

f

f

is a (BC )-square.

In parallel with this, a V -functor (X , a) → (Y , b) being fully faithful is
equivalent to

(X , a) (X , a)

(X , a) (Y , b)

1

1

f

f

being a (BC )∗-square.
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(BC )∗ functors and (BC )∗ natural transformations

Consider the following:

A Set-endofunctor is said to satisfy (BC ) if it preserves
(BC )-squares.

A natural transformation α : T → T ′ between Set-endofunctors
satisfies (BC ) if, for each morphism in Set, its naturality square is a
(BC )-square.

Analogously, we define:

A V -Cat-endofunctor is said to satisfy (BC )∗ if it preserves
(BC )∗-squares.

A natural transformation α : T → T ′ between V -Cat-endofunctors
satisfies (BC )∗ if, for each morphism f in V -Cat, its naturality
square is a (BC )∗-square.
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P satisfies fully (BC )∗

A monad T = (T , µ, η) on Set is said to:

satisfy (BC ) if T and µ satisfy (BC ).

satisfy fully (BC ) if T , µ and η satisfy (BC ).

A monad T = (T , µ, η) on V -Cat is said to:

satisfy (BC )∗ if T and µ satisfy (BC )∗.

satisfy fully (BC )∗ if T , µ and η satisfy (BC )∗.

Theorem (Clementino, F)

The presheaf monad P = (P,m, y) satisfies fully (BC )∗.

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 20



P satisfies fully (BC )∗

A monad T = (T , µ, η) on Set is said to:

satisfy (BC ) if T and µ satisfy (BC ).

satisfy fully (BC ) if T , µ and η satisfy (BC ).

A monad T = (T , µ, η) on V -Cat is said to:

satisfy (BC )∗ if T and µ satisfy (BC )∗.

satisfy fully (BC )∗ if T , µ and η satisfy (BC )∗.

Theorem (Clementino, F)

The presheaf monad P = (P,m, y) satisfies fully (BC )∗.

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 20



P satisfies fully (BC )∗

A monad T = (T , µ, η) on Set is said to:

satisfy (BC ) if T and µ satisfy (BC ).

satisfy fully (BC ) if T , µ and η satisfy (BC ).

A monad T = (T , µ, η) on V -Cat is said to:

satisfy (BC )∗ if T and µ satisfy (BC )∗.

satisfy fully (BC )∗ if T , µ and η satisfy (BC )∗.

Theorem (Clementino, F)

The presheaf monad P = (P,m, y) satisfies fully (BC )∗.

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 20



(BC )∗ and lax idempotency

A monad T = (T , µ, η) is lax idempotent if it satisfies Tη ≤ ηT .

Proposition (Clementino, F)

Given a monad T = (T , µ, η) on V -Cat, the following are equivalent:

(i): T is lax idempotent.

(ii): For each V -category (X , a), the diagram

TX TTX

TTX TX

ηTX

TηX

µX

µX

is a (BC )∗-square.
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Submonads

Recall that a monad morphism between two monads (T , µ, η), (T ′, µ′, η′)
on a category C is a natural transformation σ : T → T′ such that the
following diagrams commute

1 T

T ′
η′

η

σ and

TT T ′T T ′T ′

T T ′

µ

σT T ′σ

µ′

σ

A submonad of (P,m, y) is a monad (T , µ, η) on V -Cat with a monad
morphism σ : T → P such that each σX is an embedding for every V -
category X .
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Submonads of the Presheaf monad - (BC )∗

Given a V -functor f , we have the adjunction

f∗ ⊣ f ∗.

It follows that we have an adjunction

Pf = () · f ∗ ⊣ () · f∗ = Qf

Theorem (Clementino, F)

For a monad T on V -Cat, the following assertions are equivalent:

(i): T is a submonad of P.
(ii): T is lax idempotent, η satisfies (BC )∗ and both ηX and QηX · yTX

are fully faithful for each V -category (X , a).

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 23



Submonads of the Presheaf monad - (BC )∗

Given a V -functor f , we have the adjunction

f∗ ⊣ f ∗.

It follows that we have an adjunction

Pf = () · f ∗ ⊣ () · f∗ = Qf

Theorem (Clementino, F)

For a monad T on V -Cat, the following assertions are equivalent:

(i): T is a submonad of P.
(ii): T is lax idempotent, η satisfies (BC )∗ and both ηX and QηX · yTX

are fully faithful for each V -category (X , a).

Carlos Fitas (Universidade de Coimbra) On presheaf submonads of quantale enriched categories 23



Submonads of the Presheaf monad - Admissible classes

We say that a Φ class of V -distributors is admissible if, for every V -functor
f : X → Y and V -distributors φ : Z ◦−→ Y and ψ : X ◦−→ Z in Φ,

(i): f ∗ ∈ Φ;

(ii): ψ · f ∗ ∈ Φ and f ∗ · φ ∈ Φ;

(iii): φ ∈ Φ ⇔ (∀y ∈ Y ) y∗ · φ ∈ Φ;

(iv): for every V -distributor γ : PX ◦−→ E , if the restriction of γ to ΦX
belongs to Φ, then γ · (yX )∗ ∈ Φ.

Given a class of Φ of V -distributors, for every V -category X let

ΦX = {φ : X ◦−→ E | φ ∈ Φ}

have the V -category structure inherited from PX .

Theorem (Clementino, Hofmann)

For a monad T on V -Cat, the following assertions are equivalent:

(i): T is isomorphic to Φ, for some admissible class of V -distributors Φ.

(ii): T is a submonad of P.
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Eilenberg-Moore Algebras

Let T be lax idempotent monad on V -Cat.

For a V -category X , the following assertions are equivalent:

(i): α : TX → X is a T-algebra structure on X ;

(ii): there is a V -functor α : TX → X such that α · ηX = 1X ;

(iii): α : TX → X is a split epimorphism in V -Cat.

Given T-algebras (X , α) and (Y , β)

β · Tf ≤ f · α,

for every V -functor f : X → Y .
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Extensions

In V -Dist, given a V -distributor φ : (X , a)−→◦ (Y , b), the functor ( ) · φ
preserves suprema, and therefore it has a right adjoint [φ,−] :

Dist(X ,Z ) ⊤ Dist(Y ,Z )

[φ,−]

( )·φ

.

For each distributor ψ : X−→◦ Z ,

X Z

Y

≤◦φ

◦ψ

◦
[φ,ψ]

where [φ,ψ] : Y−→◦ Z is defined by [φ,ψ](y , z) =
∧

x∈X hom(φ(x , y), ψ(x , z)).
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Algebras and Weighted Colimits

Given a V -functor f : X → Z and a distributor φ : X−→◦ Y , a φ-colimit
of f is a V -functor g : Y → Z such that g∗ = [φ, f∗], if it exists.

X Z

Y

≤◦φ

◦f∗

◦
g∗=[φ,f∗]

One says then that g represents [φ, f∗].

The T-algebras for any T submonad of P can be characterized as follows:

Theorem

(i): A map α : TX → X is a T-algebra structure if, and only if, for each
distributor φ : X−→◦ E in TX, α(φ)∗ = [φ, (1X )∗].

(ii): Given T-algebras X and Y , a V -functor f : X → Y is a T-algebra
morphism if and only if, f preserves φ-colimits for any φ ∈ TX.
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Formal ball monad

The space of formal balls is an important tool in the study of (quasi)metric
spaces.

Given a (quasi)metric space (X , d) its space of formal balls is simply the
collection of all pairs (x , r), where x ∈ X and r ∈ [0,∞[.

This space can itself be equipped with a (quasi)metric. This construction
can naturally be made into a lax idempotent monad.
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Formal ball monad

The formal ball monad B = (B, η, µ) is given by:

B : Met → Met

(X , a) 7→ BX = X × [0,∞[

(f : X → Y ) 7→ (Bf : BX → BY )

(x , r) 7→ (f (x), r)

where the distance in BX is given by

BX ((x , r), (y , s)) = hom(r , a(x , y) + s) = max{0, a(x , y) + s − r}

η : X → BX

x 7→ (x , 0)

µ : BBX → BX

((x , r), s) 7→ (x , r + s)
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Extended formal ball monad

The extended formal ball monad B• = (B•, η, µ) is given by:

B• : V -Cat → V -Cat

(X , a) 7→ B•X = X × V

(f : X → Y ) 7→ (B•f : B•X → B•Y )

(x , r) 7→ (f (x), r)

where the structure in B•X is given by

B•X ((x , r), (y , s)) = hom(r , a(x , y)⊗ s)

η : X → B•X

x 7→ (x , k)

µ : B•B•X → B•X

((x , r), s) 7→ (x , r ⊗ s)
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B•X ((x , r), (y , s)) = hom(r , a(x , y)⊗ s)

η : X → B•X

x 7→ (x , k)

µ : B•B•X → B•X

((x , r), s) 7→ (x , r ⊗ s)
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B• is nearly a submonad of P

Theorem (Clementino, F)

The natural transformation σ : B• → P with components defined by

σX : B•X → PX

(x , r) 7→ a(−, x)⊗ r : X ◦−→ E

for each V -category (X , a), is a pointwise fully faithful monad morphism.

Note that σ : B• → P is not injective on objects; indeed, if r = ⊥, then
σX (x ,⊥) : X−→◦ E is the distributor that is constantly ⊥, for any x ∈ X .
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B•-Algebras

Proposition (Clementino, F)

For a V -category (X , a), the following conditions are equivalent:

(i): (X , a) has a B•-algebra structure α : B•X → X ;

(ii): (∀x ∈ X ) (∀r ∈ V ) (∃x ⊕ r ∈ X ) (∀y ∈ X )

a(x ⊕ r , y) = hom(r , a(x , y));

(iii): for all (x , r) ∈ B•X , every diagram of the sort

X X

Y

≤◦σX (x,r)

◦
(1X )∗

◦
[σX (x,r),(1X )∗]

has a (weighted) colimit.
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B•-Algebras

The V -categories X satisfying (iii) are called tensored. This notion was
originally introduced by Borceux and Kelly for general V -categories.

Thanks to condition (ii), we also get the following characterization of
tensored categories:

Corollary

A V -category (X , a) is tensored if, and only if, for every x ∈ X ,

X ⊤ V

a(x,−)

x⊕−

is an adjunction in V -Cat.
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B◦ is a submonad of P in V -Catsep (for certain quantales)

B◦ is the submonad of B• obtained when we only consider formal balls
with radius different from ⊥.

We (co)restricted B◦ to V -Catsep to obtain some results regarding B◦-
embeddings.

Unfortunately X being separated does not entail B◦X being so. Because of
this we needed also to restrict our attention to the cancellative quantales:

Definition

A quantale V is said to be cancellative if
∀r , s ∈ V , r ̸= ⊥ : r = s ⊗ r ⇒ s = k .
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B◦ is a submonad of P in V -Catsep (for certain quantales)

Proposition

Let V be an integral (k = ⊤) quantale. The following assertions are
equivalent:

(i) B◦V is separated;

(ii) V is cancellative;

(iii) If X is separated then B◦X is separated.

Lastly

Proposition

Let V be a cancellative integral quantale. Then B◦ is a submonad of P in
V -Catsep.
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The characterisation of B-algebras given in [GL19] can readily be genera-
lised to V -Cat as follows:

Proposition (Clementino, F)

For a V -functor α : BX → X the following conditions are equivalent.

α is a B-algebra structure.

For every x ∈ X , r , s ∈ V \ {⊥}, α(x , k) = x and
α(x , r ⊗ s) = α(α(x , r), s).

For every x ∈ X , r ∈ V \ {⊥}, α(x , k) = x and a(x , α(x , r)) ≥ r .

For every x ∈ X , α(x , k) = x .

Corollary (Clementino, F)

If BX
−⊕−−−−→ X is a B-algebra structure, then, for x ∈ X, r , s ∈ V \ {⊥}:

(i): x ⊕ k = x;

(ii): x ⊕ (r ⊗ s) = (x ⊕ r)⊕ s;

(iii): a(x , x ⊕ r) ≥ r .
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Powerset Monad

The powerset monad P = (P, {·},∪) is given by:

P : Set → Set

X 7→ PX = {X → 2}
(f : X → Y ) 7→ (Pf : PX → PY )

A 7→ f (A)

{·} : X → PX

x 7→ {x}

∪ : PPX → PX

A 7→
⋃

A
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Downset Monad

The downset monad D = (D, ↓ {·},∪) is given by:

D : Ord → Ord

X 7→ DX = {X op → 2}
(f : X → Y ) 7→ (Df : DX → DY )

A 7→ ↓ f (A)

↓ {·} : X → DX

x 7→ ↓ {x}

∪ : DDX → DX

A 7→
⋃

A
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Presheaf Monad

The presheaf monad P = (P, y,m) is given by:

P : V -Cat → V -Cat

(X , a) 7→ PX = {X op → V }
(f : (X , a) → (Y , b)) 7→ (Pf : PX → PY )

φ 7→ φ · f ∗

yX : (X , a) → PX

x 7→ x∗ : X op → V

y 7→ a(y , x)

mX : PPX → PX

Ψ 7→ Ψ · (yX )∗
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