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A variety V of UA has a zero object if and only if its theory has a
unique constant 0.

I

UA CT
a binary term + for each pair (X ,Y ) of objects

Jónsson-Tarski such that the pair: X
lX
� X × Y

rY
� Y

0+a=a=a+0 is jointly strongly epic

I i.e.: the only subobject of X × Y containing lX and rY is 1X×Y .
we then say that the pointed category E is unital.

I What is rather surprising is the point to which
the two different characterizations seem heterogeneous.

I they introduce to very distinct ways of thinking and imagining.



A variety V of UA has a zero object if and only if its theory has a
unique constant 0.

I

UA CT
a binary term + for each pair (X ,Y ) of objects

Jónsson-Tarski such that the pair: X
lX
� X × Y

rY
� Y

0+a=a=a+0 is jointly strongly epic

I i.e.: the only subobject of X × Y containing lX and rY is 1X×Y .
we then say that the pointed category E is unital.

I What is rather surprising is the point to which
the two different characterizations seem heterogeneous.

I they introduce to very distinct ways of thinking and imagining.



A variety V of UA has a zero object if and only if its theory has a
unique constant 0.

I

UA CT
a binary term + for each pair (X ,Y ) of objects

Jónsson-Tarski such that the pair: X
lX
� X × Y

rY
� Y

0+a=a=a+0 is jointly strongly epic

I i.e.: the only subobject of X × Y containing lX and rY is 1X×Y .
we then say that the pointed category E is unital.

I What is rather surprising is the point to which
the two different characterizations seem heterogeneous.

I they introduce to very distinct ways of thinking and imagining.



A variety V of UA has a zero object if and only if its theory has a
unique constant 0.

I

UA CT
a binary term + for each pair (X ,Y ) of objects

Jónsson-Tarski such that the pair: X
lX
� X × Y

rY
� Y

0+a=a=a+0 is jointly strongly epic

I i.e.: the only subobject of X × Y containing lX and rY is 1X×Y .
we then say that the pointed category E is unital.

I What is rather surprising is the point to which
the two different characterizations seem heterogeneous.

I they introduce to very distinct ways of thinking and imagining.



A variety V of UA has a zero object if and only if its theory has a
unique constant 0.

I

UA CT
a binary term + for each pair (X ,Y ) of objects

Jónsson-Tarski such that the pair: X
lX
� X × Y

rY
� Y

0+a=a=a+0 is jointly strongly epic

I i.e.: the only subobject of X × Y containing lX and rY is 1X×Y .
we then say that the pointed category E is unital.

I What is rather surprising is the point to which
the two different characterizations seem heterogeneous.

I they introduce to very distinct ways of thinking and imagining.



Intrinsic commutative and abelian objects

The unital side introduces a way of thinking an intrinsic commutativity:
given any pair u : U � X , v : V � X , there is atmost one
factorization making the following diagram commute:

UyylU
yyttt �� u

��??
U × V

ϕ // X

V
eerV

eeJJJ ??
v
??��

I when such a map does exist, we say that the subobjects u and v
commute and call the map ϕ the cooperator of the pair. We
denote this situation by [u, v ] = 0.

I A subobject u : U � X is central when [u,1X ] = 0.
An object X is commutative when [1X ,1X ] = 0.

I By definition a commutative object X is endowed
with a structure ϕ : X × X → X of unitary magma
which turns out to be an internal commutative monoid.

I When it is an abelian group, the object X is said to be abelian.
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Whence two intrinsic subcategories:
CoM(E) ↪→ E, Ab(E) ↪→ E
of commutative and abelian objects.

I Introducing this kind of intrinsic notions was the aim of the
investigations leading to the notion of unital categories.

I Its varietal origin (Jónsson-Tarski varieties) makes lipid the
reason of this intrinsicness: it happens when and because
the homomorphism ϕ coincides with the term +
just apply the Eckmann-Hilton argument.

I There was no reason for any further questioning, just to be
happy with getting this kind of intrinsicness!
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Of course there is the case where any object X in E is commutive:

I This is the case if and only if in the unital category E the
canonical map:

X + Y → X × X

is an isomorphism,

I namely if and only if the category E is linear.

I However, from these investigations, I did’t notice
that there was another way of reading them:
in a unital category E, on an object X ,
there is atmost one structure of commutative monoid
and a fortiori atmost one structure of abelian group.
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The notion of unital category is a step towards
the notion of Mal’tsev category and the double reading:

I

a ternary term p given any pullback,
Mal’tsev X

f
��

x
// X ′

f ′
��

ooσoo

Y
OO s
OO

y
// Y ′

s′

OO

τoo

p(a,b,b)=a the pair (s, σ) is
p(a,a,b)=b jointly strongly epic

I Since a pullback is a ”local product” on the object Y ′, we get a
generalization of unital category:

a variety/category is a Mal’tsev one if and only if any fibre PtEY ′

is unital.
I which led to the notion of ”local commutation” [R,S]=0,

[B-Gran 2002]. But, here again, no reason to be surprised.
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Another important notion in UA is the notion of congruence modular
variety in which the modular formula for congruences holds:

(T ∨ S) ∧ R = T ∨ (S ∧ R), for any triple (T,S,R) such that : T ⊂ R

I Gumm (1983) characterized them in geometric terms by the
validity of the Shifting Lemma:
given any triple of equivalence relations (T ,S,R) such that
R ∩ S ⊂ T , the following left hand side situation implies the right
hand side one:

x S //

T

--
R

��

y

R��

y

T

qqx ′
S

// y ′ y ′
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One of the main interest of the Shifting lemma is that,
being freed of any condition involving finite colimits,
thanks to the Yoneda embedding
it keeps a meaning in any finitely complete category E
This led to the notion of Gumm category (B-Gran 2004)

I Once again, this gives rise to a double reading,
and a characterization via the fibration of points:

Theorem (B-2005)
Given a category E, the following conditions are equivalent:
1) E is Gumm category;
2) any fiber PtY E is congruence hyperextensible.

I Definition
A pointed category E is said to be congruence hyperextensible
when given any punctual span and any equivalence relation T on W
such that R[f ] ∩ R[g] ⊂ T , we get R[f ] ∩ g−1(t−1(T )) ⊂ T .
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Congruence hyperextensivity is a special kind of congruence
modularity:

I starting with a punctual span, namely any commutative square of

split epimorphism above the zero object: W
f

��

g //
Y

��

oo
t

oo

X
OO s
OO

// 1

OO

oo

we get the following situation:

I

w
R[g]//

T

,,
R[f ]

��

tg(w)

R[f ]
�� T

vv
w ′

R[g]
// tg(w ′)

I Proposition
Let E be a congruence hyperextensible category.
On any object X , there is
at most one structure of internal group
which is necessarily abelian.
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And here began the surprise.

I because the explanation by the fact that some term in the
definition of the variety becomes a homomorphism
is no longer valid,

I it cannot remain possible to accept this uniqueness so easily and
to keep this uniqueness as an unquestionned process.

I This opens to:
a new kind of relationship between context and structure.

I So, we propose to call
crystallographic for a given algebraic structure
any varietal or categorical setting in which,
on any object X in this setting,
there is at most one internal algebraic structure of this kind.

I This terminology is chosen because, in such a setting, the
algebraic structure in question becomes so scarce.
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Now, in restrospect, the uniqueness of the autonomous Mal’tsev
operations
= affine structure in any congruence modular variety
was actually already noticed by Gumm,

so we can say that any Congruence Modular Variety is
crystallographic for the affine structures.
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Gathering all what we have already noticed:

I 1) any pointed Jónnson-Tarski variety or any unital category is
crystallographic for the structure of commutative monoid;

I 2) -any stongly unital variety or any strongly unital category
-any pointed subtractive variety in the sense of Ursini or any
subtractive category in the sense of Z. Janelidze
-and now any CongHyp category
is crystallographic for the structure of abelian group;

I 3) any Mal’tsev variety or Mal’tsev category,
any congruence modular variety or any Gumm category
is crystallographic for the affine structure;
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We can add:
4) the setting RGhE of internal reflexive graphs
in a Mal’tsev category E
is chrystallographic for the notion of internal groupoid in E.

I 5) the setting RGhE of internal reflexive graphs
in a Gumm category E
is chrystallographic for the notion of internal category in E.
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An easy first obervation that:
when there is a ”duality operator” on the algebraic structure,
the uniqueness property implies that in a crystallographic context
this algebraic structure is necessarily ”commutative”
as it is the case for the three first examples above.

I Remark
Of course, there is the special case where on any object X
there is one and only one algebraic structure.

I In such a situation we shall speak of
intensive crystallographic context.

I linear categories are intensively crystallographic for the notion of
commutative monoid;

I additive categories are intensively crystallographic for the notion
of abelian group;

I naturally Mal’tsev categories are intensively crystallographic for
the notion of affine structure.
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So a first question would be:

if an algebraic structure has a non-intensive (let us say extensive)
crystallographic context (as it it the case for abelian groups in a
CongHyp variety), is there an intensive context
(or an extremal crystallographic context relatively to some aspect)?

I And more generally:
under which conditions a given algebraic structure has an
intensive or an extensive crystallographic context?

I Now, on the one hand, this kind of relationship
between context and structure has
a classical positive side with respect to the context:
in that context, any object X has at most one structure;

I but on the other hand, it could be thought as a kind of
photographic negative w. r. to the structure:
concerning this structure, on an object in this context there is no
more than one.

I So, emerge a paradoxical and conjectural question: could it be
possible to get some (positive) interesting information
about a structure
from the contexts in which this structure becomes so scarce?
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Here is an example of a non-unital CongHyper variety:

p1(a,0,0) = a p2(a,0,a) = a, p3(0,0,a) = a
p1(a,a,b) = p2(a,a,b)

p2(a,b,b) = p3(a,b,b)

pi (a,a,a) = a, ∀i 1 ≤ i ≤ 3

I Let us denote by Hex3 the variety defined by these only terms
and equations.

I We get a fully faithful embedding h : Gp → Hex3:
from a group (G, .), construct a Hex3-algebra on the set G with:
p1(x , y , z) = x .y−1.z; p2(x , y , z) = z = p3(x , y , z)
We then get a fully faithful restriction h : Ab → Ab(Hex3).

I Now consider any field K with χ(K ) 6= 2.
We get another faithful functor wK : K -Vect → Ab(Hex3).
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From a K -vector space V , build a Hex3-algebra on the set V with:
p̄1(x , y , z) = x + −y+z

2 , p̄2(x , y , z) = x+z
2 , p̄3(x , y , z) = x−y

2 + z.

I So, in the variety Hex3, starting with any K -vector space V,
we get the unexpected and remarkable situation where:

I 1) we have two distinct algebras H(V,+) and W (V) on the same
underlying set V
2) which are made abelian algebras in Hex3 by the same
subtractive homomorphism d(a,b) = a− b.

I So Ab(Hex3) becomes a very large abelian category containing:
1) the category Ab and independently
2) any category K -Vect , provided that χ(K ) 6= 2.

I It is possible to extend this kind of construction to a non-pointed
context.
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Consider the congruence modular variety CM3 defined by the
following three ternary terms and equations:

p1(a,b,b) = a , p2(a,b,a) = a p3(b,b,a) = a
p1(a,a,b) = p2(a,a,b)

p2(a,b,b) = p3(a,b,b)

pi (a,a,a) = a, ∀i 1 ≤ i ≤ 3

I Let Mal be the variety defined by a unique ternary operation p
satisfying the Mal’tsev identities.
We get a fully faithful embedding m : Mal → CM3, constructing a
CM3-algebra on the set X and setting:
p1 = p, p2(x , y , z) = z = p3(x , y , z).

I By restriction, we get a fully faithful functor m : Aff → Aff (CM3),
where Aff is the subvariety of Mal consisting in its affine objects.
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Now consider any field K with χ(K ) 6= 2. We get a faithful functor
aK : K -Aff → Aff (CM3) as well:

I starting from a K -affine space X , construct a CM3-algebra on the
set X by setting:
p̄1(x , y , z) = β(ẋ + −ẏ+ż

2 ), p̄2(x , y , z) = β( ẋ+ż
2 ),

p̄3(x , y , z) = β( ẋ−ẏ
2 + z),

where β is the barycentric homomorphism: β : K1(X )→ X .
the affine structure X × X × X → X on the algebra AK (X ) in the
variety CM3 being given by this same p(x , y , z) = β(ẋ − ẏ + ż).

I So Aff (CM3) becomes a very large finitely complete and
cocomplete exact nat. Mal’tsev category containing:
1) the category Aff and independently
2) any category K -Aff , provided that χ(K ) 6= 2.
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