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Jonsson-Tarski such that the pair: X =5 X x Y &< Y
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» i.e.: the only subobject of X x Y containing Ix and ry is 1xy.
we then say that the pointed category E is unital.

» What is rather surprising is the point to which
the two different characterizations seem heterogeneous.

» they introduce to very distinct ways of thinking and imagining.
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Intrinsic commutative and abelian objects

The unital side introduces a way of thinking an intrinsic commutativity:
given any pair u: U — X, v: V — X, there is atmost one
factorization making the following diagram commute:

U
b

UxV -7 =X
rv\va

» when such a map does exist, we say that the subobjects u and v
commute and call the map ¢ the cooperator of the pair. We
denote this situation by [u, v] = 0.

» A subobject u: U — X is central when [u,1x] = 0.
An object X is commutative when [1x,1x] = 0.

» By definition a commutative object X is endowed
with a structure ¢ : X x X — X of unitary magma
which turns out to be an internal commutative monoid.

» When it is an abelian group, the object X is said to be abelian.
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Whence two intrinsic subcategories:
CoM(E) —E, Ab(E)—E
of commutative and abelian objects.

» Introducing this kind of intrinsic notions was the aim of the
investigations leading to the notion of unital categories.

» Its varietal origin (Jonsson-Tarski varieties) makes lipid the
reason of this intrinsicness: it happens when and because
the homomorphism ¢ coincides with the term +
just apply the Eckmann-Hilton argument.

» There was no reason for any further questioning, just to be
happy with getting this kind of intrinsicness!



Of course there is the case where any object X in E is commutive:



Of course there is the case where any object X in E is commutive:

» This is the case if and only if in the unital category E the
canonical map:

X+Y - XxX

is an isomorphism,



Of course there is the case where any object X in E is commutive:

» This is the case if and only if in the unital category E the
canonical map:

X+Y - XxX
is an isomorphism,

» namely if and only if the category E is linear.



Of course there is the case where any object X in E is commutive:

» This is the case if and only if in the unital category E the
canonical map:

X+Y - XxX

is an isomorphism,
» namely if and only if the category E is linear.

» However, from these investigations, | did’'t notice
that there was another way of reading them:
in a unital category E, on an object X,
there is atmost one structure of commutative monoid
and a fortiori atmost one structure of abelian group.
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The notion of unital category is a step towards
the notion of Mal'tsev category and the double reading:

aternary term p | given any pullback,

Mal'tsev X <<X'

X
f S f/ /
R e ol
Y<—YVY
y
a the pair (s,0) is
p(a,a,b)=b jointly strongly epic

» Since a pullback is a "local product” on the object Y’, we get a
generalization of unital category:

a variety/category is a Mal’tsev one if and only if any fibre Ptz Y’
is unital.

» which led to the notion of "local commutation” [R,S]=0,
[B-Gran 2002]. But, here again, no reason to be surprised.
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Another important notion in UA is the notion of congruence modular
variety in which the modular formula for congruences holds:

(TVS)AR=TV(SAR), forany triple (T,S,R) such that: T C R

» Gumm (1983) characterized them in geometric terms by the
validity of the Shifting Lemma:
given any triple of equivalence relations (T, S, R) such that
RN S c T, the following left hand side situation implies the right

hand side one:
xi»y y
T/Ri/ in ) T
Ny
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One of the main interest of the Shifting lemma is that,
being freed of any condition involving finite colimits,
thanks to the Yoneda embedding

it keeps a meaning in any finitely complete category E
This led to the notion of Gumm category (B-Gran 2004)

» Once again, this gives rise to a double reading,
and a characterization via the fibration of points:

Theorem (B-2005)

Given a category E, the following conditions are equivalent:
1) E is Gumm category;

2) any fiber PtyE is congruence hyperextensible.

Definition

A pointed category E is said to be congruence hyperextensible
when given any punctual span and any equivalence relation T on W
such that R[f]N R[g] c T, we get R[f]ng ' (t~'(T)) c T.
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Congruence hyperextensivity is a special kind of congruence
modularity:

» starting with a punctual span, namely any commutative square of
g
split epimorphism above the zero object: W =Y

o

we get the following situation:

~w G g(w)
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» Proposition
LetE be a congruence hyperextensible category.
On any object X, there is
at most one structure of internal group
which is necessarily abelian.
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because the explanation by the fact that some term in the
definition of the variety becomes a homomorphism
is no longer valid,

it cannot remain possible to accept this uniqueness so easily and
to keep this uniqueness as an unquestionned process.

This opens to:
a new kind of relationship between context and structure.

So, we propose to call

crystallographic for a given algebraic structure

any varietal or categorical setting in which,

on any object X in this setting,

there is at most one internal algebraic structure of this kind.

This terminology is chosen because, in such a setting, the
algebraic structure in question becomes so scarce.



Now, in restrospect, the uniqueness of the autonomous Mal’tsev
operations

= affine structure in any congruence modular variety

was actually already noticed by Gumm,

so we can say that any Congruence Modular Variety is
crystallographic for the affine structures.
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Gathering all what we have already noticed:

» 1) any pointed Jonnson-Tarski variety or any unital category is
crystallographic for the structure of commutative monoid;
» 2) -any stongly unital variety or any strongly unital category

-any pointed subtractive variety in the sense of Ursini or any
subtractive category in the sense of Z. Janelidze

-and now any CongHyp category
is crystallographic for the structure of abelian group;

» 3) any Mal’tsev variety or Mal’tsev category,
any congruence modular variety or any Gumm category
is crystallographic for the affine structure;
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We can add:

4) the setting RGHE of internal reflexive graphs
in a Mal'tsev category E
is chrystallographic for the notion of internal groupoid in E.

» 5) the setting RGhE of internal reflexive graphs
in a Gumm category E
is chrystallographic for the notion of internal category in E.
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An easy first obervation that:

when there is a "duality operator” on the algebraic structure,

the uniqueness property implies that in a crystallographic context
this algebraic structure is necessarily "commutative”

as it is the case for the three first examples above.
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Remark
Of course, there is the special case where on any object X
there is one and only one algebraic structure.

In such a situation we shall speak of
intensive crystallographic context.

linear categories are intensively crystallographic for the notion of
commutative monoid;

additive categories are intensively crystallographic for the notion
of abelian group;

naturally Mal'tsev categories are intensively crystallographic for
the notion of affine structure.



So a first question would be:

if an algebraic structure has a non-intensive (let us say extensive)
crystallographic context (as it it the case for abelian groups in a
CongHyp variety), is there an intensive context

(or an extremal crystallographic context relatively to some aspect)?



So a first question would be:

if an algebraic structure has a non-intensive (let us say extensive)
crystallographic context (as it it the case for abelian groups in a
CongHyp variety), is there an intensive context

(or an extremal crystallographic context relatively to some aspect)?

» And more generally:
under which conditions a given algebraic structure has an
intensive or an extensive crystallographic context?



So a first question would be:

if an algebraic structure has a non-intensive (let us say extensive)
crystallographic context (as it it the case for abelian groups in a
CongHyp variety), is there an intensive context

(or an extremal crystallographic context relatively to some aspect)?

» And more generally:
under which conditions a given algebraic structure has an
intensive or an extensive crystallographic context?

» Now, on the one hand, this kind of relationship
between context and structure has
a classical positive side with respect to the context:
in that context, any object X has at most one structure;



So a first question would be:

if an algebraic structure has a non-intensive (let us say extensive)
crystallographic context (as it it the case for abelian groups in a
CongHyp variety), is there an intensive context

(or an extremal crystallographic context relatively to some aspect)?

» And more generally:
under which conditions a given algebraic structure has an
intensive or an extensive crystallographic context?

» Now, on the one hand, this kind of relationship
between context and structure has
a classical positive side with respect to the context:
in that context, any object X has at most one structure;

» but on the other hand, it could be thought as a kind of
photographic negative w. r. to the structure:
concerning this structure, on an object in this context there is no
more than one.



So a first question would be:

if an algebraic structure has a non-intensive (let us say extensive)
crystallographic context (as it it the case for abelian groups in a
CongHyp variety), is there an intensive context

(or an extremal crystallographic context relatively to some aspect)?

» And more generally:
under which conditions a given algebraic structure has an
intensive or an extensive crystallographic context?

» Now, on the one hand, this kind of relationship
between context and structure has
a classical positive side with respect to the context:
in that context, any object X has at most one structure;

» but on the other hand, it could be thought as a kind of
photographic negative w. r. to the structure:
concerning this structure, on an object in this context there is no
more than one.

» So, emerge a paradoxical and conjectural question: could it be
possible to get some (positive) interesting information
about a structure
from the contexts in which this structure becomes so scarce?
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» Let us denote by Hexs the variety defined by these only terms
and equations.

» We get a fully faithful embedding h: Gp — Hexs:
from a group (G, .), construct a Hexs-algebra on the set G with:
pi(x,y,2) =xy 'z, pax,y,2) =z =ps(x,y,2)
We then get a fully faithful restriction h: Ab — Ab(Hexs).

» Now consider any field K with x(K) # 2.
We get another faithful functor wy : K-Vect — Ab(Hexs).
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From a K-vector space V, build a Hexs-algebra on the set V with:
Pi(X,y,2) = x + =%, Pa(x,y,2) = %%, pa(x,y,2) = 5 + z.

» So, in the variety Hexs, starting with any K-vector space V,
we get the unexpected and remarkable situation where:

» 1) we have two distinct algebras H(V, +) and W(V) on the same
underlying set V
2) which are made abelian algebras in Hexz by the same
subtractive homomorphism d(a, b) = a — b.
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From a K-vector space V, build a Hexs-algebra on the set V with:

b1(X>yaZ) = X+ %-i_z! bZ(Xayaz) = %1 pS(Xa.y7Z) = % +Z'
» So, in the variety Hexs, starting with any K-vector space V,
we get the unexpected and remarkable situation where:

» 1) we have two distinct algebras H(V, +) and W(V) on the same
underlying set V
2) which are made abelian algebras in Hexz by the same
subtractive homomorphism d(a, b) = a — b.

» So Ab(Hexs) becomes a very large abelian category containing:

1) the category Ab and independently
2) any category K- Vect, provided that x(K) # 2.

» It is possible to extend this kind of construction to a non-pointed
context.



Consider the congruence modular variety CM; defined by the
following three ternary terms and equations:

pi(a,b,b)=a , po(a,b,a)=a ps(b,b,a) = a
pi(a, a, b) = p2(a, a, b)
p=(a, b, b) = ps(a, b, b)
pi(a,a,a)=a, Vi 1<i<3



Consider the congruence modular variety CM; defined by the
following three ternary terms and equations:

pi(a,b,b)=a , po(a,b,a)=a ps(b,b,a) = a
pi(a, a, b) = p2(a, a, b)
p=(a, b, b) = ps(a, b, b)
pi(a,a,a)=a, Vi 1<i<3

» Let Mal be the variety defined by a unique ternary operation p
satisfying the Mal’tsev identities.
We get a fully faithful embedding m : Mal — CMjs, constructing a
CMs-algebra on the set X and setting:

pi=p, pa(X.y,2) =2z=ps(X,y,2).



Consider the congruence modular variety CM; defined by the
following three ternary terms and equations:

pi(a,b,b)=a , po(a,b,a)=a ps(b,b,a) = a
pi(a, a, b) = p2(a, a, b)
p=(a, b, b) = ps(a, b, b)
pi(a,a,a)=a, Vi 1<i<3

» Let Mal be the variety defined by a unique ternary operation p
satisfying the Mal’tsev identities.
We get a fully faithful embedding m : Mal — CMjs, constructing a
CMs-algebra on the set X and setting:

pi=p, pa(X.y,2) =2z=ps(X,y,2).

» By restriction, we get a fully faithful functor m : Aff — Aff(CMs),
where Aff is the subvariety of Mal consisting in its affine objects.
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ax : K-Aff — Aff(CMs) as well:

» starting from a K-affine space X, construct a CMs-algebra on the
set X by setting: o N
:51 (X7y7 Z) = ﬁ(X+ %ﬁ)v bZ(vavz) = 5()(7;2),
:E)S(vav Z) = ﬁ(Xz;y + Z)!
where 3 is the barycentric homomorphism: g : Ki(X) — X.
the affine structure X x X x X — X on the algebra Ak (X) in the
variety CMj5 being given by this same p(x, y,z) = 8(x — y + 2).

» So Aff(CMs) becomes a very large finitely complete and
cocomplete exact nat. Mal'tsev category containing:

1) the category Aff and independently
2) any category K-Aff, provided that x(K) # 2.
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