On the concept of Algebraic Crystallography

Dominique Bourn

Lab. Math. Pures Appliquées J. Liouville, CNRS (FR.2956) Université du Littoral Côte d'Opale, Calais - France

TACL 2022, Coimbra, 20-24 june

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

A double reading: Universal Algebra/Category Theory

The congruence modular varieties

Examples of crystallographic context

General principles and questionings

Spectacular outcome: some very large abelian and nat. Mal'tsev categories

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Short bibliography

Outline

A double reading: Universal Algebra/Category Theory

The congruence modular varieties

Examples of crystallographic context

General principles and questionings

Spectacular outcome: some very large abelian and nat. Mal'tsev categories

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Short bibliography

- ▶ i.e.: the only subobject of $X \times Y$ containing I_X and r_Y is $1_{X \times Y}$. we then say that the pointed category \mathbb{E} is unital.
- What is rather surprising is the point to which the two different characterizations seem heterogeneous.
- they introduce to very distinct ways of thinking and imagining.

・ コット (雪) (小田) (コット 日)

	UA	CT
	a binary term +	for each pair (X, Y) of objects
Jónsson-Tarski	such that	the pair: $X \xrightarrow{l_X} X \times Y \xleftarrow{r_Y} Y$
	0+a=a=a+0	is jointly strongly epic

- ▶ i.e.: the only subobject of $X \times Y$ containing I_X and r_Y is $1_{X \times Y}$. we then say that the pointed category \mathbb{E} is unital.
- What is rather surprising is the point to which the two different characterizations seem heterogeneous.
- they introduce to very distinct ways of thinking and imagining.

(日) (日) (日) (日) (日) (日) (日)

	UA	CT	
	a binary term +	for each pair (X, Y) of objects	
Jónsson-Tarski	such that	the pair: $X \xrightarrow{l_X} X \times Y \xleftarrow{r_Y} Y$	
	0+a=a=a+0	is jointly strongly epic	

- ► i.e.: the only subobject of $X \times Y$ containing I_X and r_Y is $1_{X \times Y}$. we then say that the pointed category \mathbb{E} is unital.
- What is rather surprising is the point to which the two different characterizations seem heterogeneous.
- they introduce to very distinct ways of thinking and imagining.

(日) (日) (日) (日) (日) (日) (日)

	UA	CT	
	a binary term +	for each pair (X, Y) of objects	
Jónsson-Tarski	such that	the pair: $X \xrightarrow{l_X} X \times Y \xleftarrow{r_Y} Y$	
	0+a=a=a+0	is jointly strongly epic	

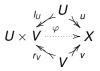
- ▶ i.e.: the only subobject of $X \times Y$ containing I_X and r_Y is $1_{X \times Y}$. we then say that the pointed category \mathbb{E} is unital.
- What is rather surprising is the point to which the two different characterizations seem heterogeneous.

they introduce to very distinct ways of thinking and imagining.

(ロ) (同) (三) (三) (三) (○) (○)

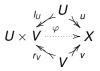
	UA	CT	
	a binary term +	for each pair (X, Y) of objects	
Jónsson-Tarski	such that	the pair: $X \xrightarrow{l_X} X \times Y \xleftarrow{r_Y} Y$	
	0+a=a=a+0	is jointly strongly epic	

- ▶ i.e.: the only subobject of $X \times Y$ containing I_X and r_Y is $1_{X \times Y}$. we then say that the pointed category \mathbb{E} is unital.
- What is rather surprising is the point to which the two different characterizations seem heterogeneous.
- they introduce to very distinct ways of thinking and imagining.

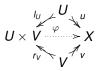


- when such a map does exist, we say that the subobjects u and v commute and call the map φ the *cooperator* of the pair. We denote this situation by [u, v] = 0.
- A subobject $u : U \rightarrow X$ is central when $[u, 1_X] = 0$. An object X is commutative when $[1_X, 1_X] = 0$.
- By definition a commutative object X is endowed with a structure φ : X × X → X of unitary magma which turns out to be an internal commutative monoid
- ► When it is an abelian group, the object X is said to be abelian.

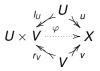
- when such a map does exist, we say that the subobjects *u* and *v* commute and call the map φ the *cooperator* of the pair. We denote this situation by [*u*, *v*] = 0.
- A subobject $u: U \rightarrow X$ is central when $[u, 1_X] = 0$. An object X is commutative when $[1_X, 1_X] = 0$.
- By definition a commutative object X is endowed with a structure φ : X × X → X of unitary magma which turns out to be an internal commutative monoid.
- When it is an abelian group, the object X is said to be abelian.



- when such a map does exist, we say that the subobjects *u* and *v* commute and call the map φ the *cooperator* of the pair. We denote this situation by [*u*, *v*] = 0.
- A subobject u : U → X is central when [u, 1_X] = 0. An object X is commutative when [1_X, 1_X] = 0.
- By definition a commutative object X is endowed with a structure φ : X × X → X of unitary magma which turns out to be an internal commutative monoid.
- ► When it is an abelian group, the object X is said to be abelian.



- when such a map does exist, we say that the subobjects *u* and *v* commute and call the map φ the *cooperator* of the pair. We denote this situation by [*u*, *v*] = 0.
- A subobject u : U → X is central when [u, 1_X] = 0. An object X is commutative when [1_X, 1_X] = 0.
- By definition a commutative object X is endowed with a structure φ : X × X → X of unitary magma which turns out to be an internal commutative monoid.
- ► When it is an abelian group, the object X is said to be abelian.



- when such a map does exist, we say that the subobjects *u* and *v* commute and call the map φ the *cooperator* of the pair. We denote this situation by [*u*, *v*] = 0.
- A subobject u : U → X is central when [u, 1_X] = 0. An object X is commutative when [1_X, 1_X] = 0.
- By definition a commutative object X is endowed with a structure φ : X × X → X of unitary magma which turns out to be an internal commutative monoid.
- ► When it is an abelian group, the object X is said to be abelian.

- Introducing this kind of intrinsic notions was the aim of the investigations leading to the notion of unital categories.
- Its varietal origin (Jónsson-Tarski varieties) makes lipid the reason of this intrinsicness: it happens when and because the homomorphism φ coincides with the term + just apply the Eckmann-Hilton argument.
- There was no reason for any further questioning, just to be happy with getting this kind of intrinsicness!

(日) (日) (日) (日) (日) (日) (日)

- Introducing this kind of intrinsic notions was the aim of the investigations leading to the notion of unital categories.
- Its varietal origin (Jónsson-Tarski varieties) makes lipid the reason of this intrinsicness: it happens when and because the homomorphism φ coincides with the term + just apply the Eckmann-Hilton argument.
- There was no reason for any further questioning, just to be happy with getting this kind of intrinsicness!

(日) (日) (日) (日) (日) (日) (日)

- Introducing this kind of intrinsic notions was the aim of the investigations leading to the notion of unital categories.
- Its varietal origin (Jónsson-Tarski varieties) makes lipid the reason of this intrinsicness: it happens when and because the homomorphism φ coincides with the term + just apply the Eckmann-Hilton argument.
- There was no reason for any further questioning, just to be happy with getting this kind of intrinsicness!

(ロ) (同) (三) (三) (三) (○) (○)

- Introducing this kind of intrinsic notions was the aim of the investigations leading to the notion of unital categories.
- Its varietal origin (Jónsson-Tarski varieties) makes lipid the reason of this intrinsicness: it happens when and because the homomorphism φ coincides with the term + just apply the Eckmann-Hilton argument.
- There was no reason for any further questioning, just to be happy with getting this kind of intrinsicness!

► This is the case if and only if in the unital category E the canonical map:

$$X + Y o X imes X$$

- ▶ namely if and only if the category 𝔅 is linear.
- However, from these investigations, I did't notice that there was another way of reading them: in a unital category E, on an object X, there is atmost one structure of commutative monoid and a fortiori atmost one structure of abelian group.

► This is the case if and only if in the unital category 𝔅 the canonical map:

$$X + Y \rightarrow X \times X$$

- namely if and only if the category I is linear.
- However, from these investigations, I did't notice that there was another way of reading them: in a unital category E, on an object X, there is atmost one structure of commutative monoid and a fortiori atmost one structure of abelian group.

► This is the case if and only if in the unital category 𝔅 the canonical map:

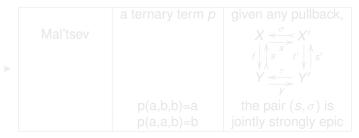
$$X + Y \rightarrow X \times X$$

- ▶ namely if and only if the category E is linear.
- However, from these investigations, I did't notice that there was another way of reading them: in a unital category E, on an object X, there is atmost one structure of commutative monoid and a fortiori atmost one structure of abelian group.

► This is the case if and only if in the unital category 𝔅 the canonical map:

$$X + Y \rightarrow X \times X$$

- ▶ namely if and only if the category 𝔅 is linear.
- However, from these investigations, I did't notice that there was another way of reading them: in a unital category E, on an object X, there is atmost one structure of commutative monoid and a fortiori atmost one structure of abelian group.

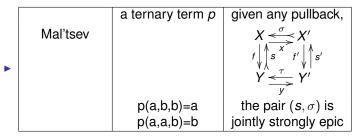


Since a pullback is a "local product" on the object Y', we get a generalization of unital category:

a variety/category is a Mal'tsev one if and only if any fibre $Pt_{\mathbb{E}}Y'$ is unital.

(日) (日) (日) (日) (日) (日) (日)

 which led to the notion of "local commutation" [R,S]=0, [B-Gran 2002]. But, here again, no reason to be surprised.



Since a pullback is a "local product" on the object Y', we get a generalization of unital category:

a variety/category is a Mal'tsev one if and only if any fibre $Pt_{\mathbb{E}}Y'$ is unital.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 which led to the notion of "local commutation" [R,S]=0, [B-Gran 2002]. But, here again, no reason to be surprised.

	a ternary term p	given any pullback,
Mal'tsev		$X \stackrel{\sigma}{\leq} X'$
		$f \int s f' \int s'$
		$Y \stackrel{\forall \Lambda}{\leftarrow} Y'$
		y y
	p(a,b,b)=a	the pair (s, σ) is
	p(a,a,b)=b	jointly strongly epic

Since a pullback is a "local product" on the object Y', we get a generalization of unital category:

a variety/category is a Mal'tsev one if and only if any fibre $Pt_{\mathbb{E}}Y'$ is unital.

(ロ) (同) (三) (三) (三) (○) (○)

 which led to the notion of "local commutation" [R,S]=0, [B-Gran 2002]. But, here again, no reason to be surprised.

	a ternary term p	given any pullback,
Mal'tsev		$X \stackrel{\sigma}{\leq} X'$
		$f \int s' f' \int s'$
		$Y \stackrel{\tau}{\leq} Y'$
		y y
	p(a,b,b)=a	the pair (s, σ) is
	p(a,a,b)=b	jointly strongly epic

Since a pullback is a "local product" on the object Y', we get a generalization of unital category:

a variety/category is a Mal'tsev one if and only if any fibre $Pt_{\mathbb{E}}Y'$ is unital.

which led to the notion of "local commutation" [R,S]=0,
 [B-Gran 2002]. But, here again, no reason to be surprised.

Outline

A double reading: Universal Algebra/Category Theory

The congruence modular varieties

Examples of crystallographic context

General principles and questionings

Spectacular outcome: some very large abelian and nat. Mal'tsev categories

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Short bibliography

Another important notion in UA is the notion of congruence modular variety in which the modular formula for congruences holds:

 $(T \lor S) \land R = T \lor (S \land R)$, for any triple (T, S, R) such that $: T \subset R$

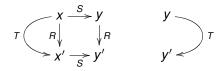
Gumm (1983) characterized them in geometric terms by the validity of the *Shifting Lemma*: given any triple of equivalence relations (*T*, *S*, *R*) such that *R* ∩ *S* ⊂ *T*, the following left hand side situation implies the right hand side one:

(日) (日) (日) (日) (日) (日) (日)

Another important notion in UA is the notion of congruence modular variety in which the modular formula for congruences holds:

 $(T \lor S) \land R = T \lor (S \land R)$, for any triple (T, S, R) such that $: T \subset R$

Gumm (1983) characterized them in geometric terms by the validity of the *Shifting Lemma*: given any triple of equivalence relations (*T*, *S*, *R*) such that *R* ∩ *S* ⊂ *T*, the following left hand side situation implies the right hand side one:



One of the main interest of the Shifting lemma is that, being freed of any condition involving finite colimits, thanks to the Yoneda embedding it keeps a meaning in any finitely complete category \mathbb{E} This led to the notion of Gumm category (B-Gran 2004)

Once again, this gives rise to a double reading, and a characterization via the fibration of points:

Theorem (B-2005)

Given a category \mathbb{E} , the following conditions are equivalent:

1) \mathbb{E} is Gumm category;

2) any fiber $\mathsf{Pt}_Y\mathbb{E}$ is congruence hyperextensible.

Definition

A pointed category \mathbb{E} is said to be congruence hyperextensible when given any punctual span and any equivalence relation T on Wsuch that $R[f] \cap R[g] \subset T$, we get $R[f] \cap g^{-1}(t^{-1}(T)) \subset T$. One of the main interest of the Shifting lemma is that, being freed of any condition involving finite colimits, thanks to the Yoneda embedding it keeps a meaning in any finitely complete category \mathbb{E} This led to the notion of Gumm category (B-Gran 2004)

Once again, this gives rise to a double reading, and a characterization via the fibration of points:

Theorem (B-2005)

Given a category \mathbb{E} , the following conditions are equivalent: 1) \mathbb{E} is Gumm category; 2) any fiber $Pt_Y\mathbb{E}$ is congruence hyperextensible.

Definition

A pointed category \mathbb{E} is said to be congruence hyperextensible when given any punctual span and any equivalence relation T on Wsuch that $R[f] \cap R[g] \subset T$, we get $R[f] \cap g^{-1}(t^{-1}(T)) \subset T$. One of the main interest of the Shifting lemma is that, being freed of any condition involving finite colimits, thanks to the Yoneda embedding it keeps a meaning in any finitely complete category \mathbb{E} This led to the notion of Gumm category (B-Gran 2004)

Once again, this gives rise to a double reading, and a characterization via the fibration of points:

Theorem (B-2005)

Given a category $\mathbb{E},$ the following conditions are equivalent:

1) \mathbb{E} is Gumm category;

2) any fiber $Pt_Y\mathbb{E}$ is congruence hyperextensible.

Definition

A pointed category \mathbb{E} is said to be congruence hyperextensible when given any punctual span and any equivalence relation T on Wsuch that $R[f] \cap R[g] \subset T$, we get $R[f] \cap g^{-1}(t^{-1}(T)) \subset T$.

Congruence hyperextensivity is a special kind of congruence modularity:

► starting with a punctual span, namely any commutative square of split epimorphism above the zero object: $W \stackrel{g}{\underset{t}{\overset{q}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}} Y$

we get the following situation:

Proposition

Let \mathbb{E} be a congruence hyperextensible category. On any object X, there is at most one structure of internal group which is necessarily abelian. Congruence hyperextensivity is a special kind of congruence modularity:

starting with a punctual span, namely any commutative square of

split epimorphism above the zero object: $W \stackrel{g}{\stackrel{}{\leftarrow}} Y$ $f \downarrow \uparrow s \downarrow \uparrow$ $X \stackrel{f}{\longleftarrow} 1$

we get the following situation:

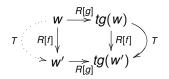
▲□▶▲□▶▲□▶▲□▶ □ のへで

Congruence hyperextensivity is a special kind of congruence modularity:

starting with a punctual span, namely any commutative square of

split epimorphism above the zero object: $W \stackrel{g}{\underset{f \downarrow \uparrow s}{\leftarrow}} Y$ $f \downarrow \uparrow s \downarrow \uparrow$ $X \stackrel{f}{\underset{f \downarrow \downarrow}{\leftarrow}} 1$

we get the following situation:

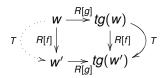


Congruence hyperextensivity is a special kind of congruence modularity:

starting with a punctual span, namely any commutative square of

split epimorphism above the zero object: $W \stackrel{g}{\underset{f \downarrow \uparrow s}{\leftarrow}} Y$

we get the following situation:



Proposition

Let \mathbb{E} be a congruence hyperextensible category. On any object X, there is at most one structure of internal group which is necessarily abelian.

And here began the surprise.

- because the explanation by the fact that some term in the definition of the variety becomes a homomorphism is no longer valid,
- it cannot remain possible to accept this uniqueness so easily and to keep this uniqueness as an unquestionned process.
- This opens to: a new kind of relationship between context and structure.
- So, we propose to call crystallographic for a given algebraic structure any varietal or categorical setting in which, on any object X in this setting, there is at most one internal algebraic structure of this kind.
- This terminology is chosen because, in such a setting, the algebraic structure in question becomes so scarce.

・ロト ・聞ト ・ヨト ・ヨト 三日

- because the explanation by the fact that some term in the definition of the variety becomes a homomorphism is no longer valid,
- it cannot remain possible to accept this uniqueness so easily and to keep this uniqueness as an unquestionned process.
- This opens to: a new kind of relationship between context and structure.
- So, we propose to call crystallographic for a given algebraic structure any varietal or categorical setting in which, on any object X in this setting, there is at most one internal algebraic structure of this kind.
- This terminology is chosen because, in such a setting, the algebraic structure in question becomes so scarce.

ヘロト ヘ週 ト イヨト イヨト 三日

- because the explanation by the fact that some term in the definition of the variety becomes a homomorphism is no longer valid,
- it cannot remain possible to accept this uniqueness so easily and to keep this uniqueness as an unquestionned process.

This opens to: a new kind of relationship between context and structure.

So, we propose to call crystallographic for a given algebraic structure any varietal or categorical setting in which, on any object X in this setting, there is at most one internal algebraic structure of this kind.

This terminology is chosen because, in such a setting, the algebraic structure in question becomes so scarce.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

- because the explanation by the fact that some term in the definition of the variety becomes a homomorphism is no longer valid,
- it cannot remain possible to accept this uniqueness so easily and to keep this uniqueness as an unquestionned process.
- This opens to:

a new kind of relationship between context and structure.

So, we propose to call crystallographic for a given algebraic structure any varietal or categorical setting in which, on any object X in this setting, there is at most one internal algebraic structure of this kind.

This terminology is chosen because, in such a setting, the algebraic structure in question becomes so scarce.

- because the explanation by the fact that some term in the definition of the variety becomes a homomorphism is no longer valid,
- it cannot remain possible to accept this uniqueness so easily and to keep this uniqueness as an unquestionned process.
- This opens to: a new kind of relationship between context and structure.
- So, we propose to call crystallographic for a given algebraic structure any varietal or categorical setting in which, on any object X in this setting, there is at most one internal algebraic structure of this kind.
- This terminology is chosen because, in such a setting, the algebraic structure in question becomes so scarce.

- because the explanation by the fact that some term in the definition of the variety becomes a homomorphism is no longer valid,
- it cannot remain possible to accept this uniqueness so easily and to keep this uniqueness as an unquestionned process.
- This opens to: a new kind of relationship between context and structure.
- So, we propose to call crystallographic for a given algebraic structure any varietal or categorical setting in which, on any object X in this setting, there is at most one internal algebraic structure of this kind.
- This terminology is chosen because, in such a setting, the algebraic structure in question becomes so scarce.

Now, in restrospect, the uniqueness of the autonomous Mal'tsev operations

(ロ) (同) (三) (三) (三) (○) (○)

= affine structure in any congruence modular variety was actually already noticed by Gumm,

so we can say that any Congruence Modular Variety is crystallographic for the affine structures.

Outline

A double reading: Universal Algebra/Category Theory

The congruence modular varieties

Examples of crystallographic context

General principles and questionings

Spectacular outcome: some very large abelian and nat. Mal'tsev categories

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Short bibliography

- 1) any pointed Jónnson-Tarski variety or any unital category is crystallographic for the structure of commutative monoid;
- 2) -any stongly unital variety or any strongly unital category
 -any pointed subtractive variety in the sense of Ursini or any
 subtractive category in the sense of Z. Janelidze
 -and now any CongHyp category
 is crystallographic for the structure of abelian group;
- 3) any Mal'tsev variety or Mal'tsev category, any congruence modular variety or any Gumm category is crystallographic for the affine structure;

(日) (日) (日) (日) (日) (日) (日)

- 1) any pointed Jónnson-Tarski variety or any unital category is crystallographic for the structure of commutative monoid;
- 2) -any stongly unital variety or any strongly unital category
 -any pointed subtractive variety in the sense of Ursini or any
 subtractive category in the sense of Z. Janelidze
 -and now any CongHyp category
 is crystallographic for the structure of abelian group;
- 3) any Mal'tsev variety or Mal'tsev category, any congruence modular variety or any Gumm category is crystallographic for the affine structure;

(日) (日) (日) (日) (日) (日) (日)

- 1) any pointed Jónnson-Tarski variety or any unital category is crystallographic for the structure of commutative monoid;
- 2) -any stongly unital variety or any strongly unital category -any pointed subtractive variety in the sense of Ursini or any subtractive category in the sense of Z. Janelidze -and now any CongHyp category

is crystallographic for the structure of abelian group;

 3) any Mal'tsev variety or Mal'tsev category, any congruence modular variety or any Gumm category is crystallographic for the affine structure;

(ロ) (同) (三) (三) (三) (○) (○)

- 1) any pointed Jónnson-Tarski variety or any unital category is crystallographic for the structure of commutative monoid;
- 2) -any stongly unital variety or any strongly unital category -any pointed subtractive variety in the sense of Ursini or any subtractive category in the sense of Z. Janelidze -and now any CongHyp category

is crystallographic for the structure of abelian group;

 3) any Mal'tsev variety or Mal'tsev category, any congruence modular variety or any Gumm category is crystallographic for the affine structure;

(ロ) (同) (三) (三) (三) (○) (○)

We can add: 4) the setting $RGh\mathbb{E}$ of internal reflexive graphs in a Mal'tsev category \mathbb{E} is chrystallographic for the notion of internal groupoid in \mathbb{E} .

► 5) the setting *RGh*E of internal reflexive graphs in a Gumm category E is chrystallographic for the notion of internal category in E.

We can add: 4) the setting $RGh\mathbb{E}$ of internal reflexive graphs in a Mal'tsev category \mathbb{E} is chrystallographic for the notion of internal groupoid in \mathbb{E} .

► 5) the setting RGhE of internal reflexive graphs in a Gumm category E is chrystallographic for the notion of internal category in E.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

A double reading: Universal Algebra/Category Theory

The congruence modular varieties

Examples of crystallographic context

General principles and questionings

Spectacular outcome: some very large abelian and nat. Mal'tsev categories

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Short bibliography

when there is a "duality operator" on the algebraic structure, the uniqueness property implies that in a crystallographic context this algebraic structure is necessarily "commutative" as it is the case for the three first examples above.

Remark

- In such a situation we shall speak of intensive crystallographic context.
- linear categories are intensively crystallographic for the notion of commutative monoid;
- additive categories are intensively crystallographic for the notion of abelian group;
- naturally Mal'tsev categories are intensively crystallographic for the notion of affine structure.

when there is a "duality operator" on the algebraic structure, the uniqueness property implies that in a crystallographic context this algebraic structure is necessarily "commutative" as it is the case for the three first examples above.

Remark

- In such a situation we shall speak of intensive crystallographic context.
- linear categories are intensively crystallographic for the notion of commutative monoid;
- additive categories are intensively crystallographic for the notion of abelian group;
- naturally Mal'tsev categories are intensively crystallographic for the notion of affine structure.

when there is a "duality operator" on the algebraic structure, the uniqueness property implies that in a crystallographic context this algebraic structure is necessarily "commutative" as it is the case for the three first examples above.

Remark

- In such a situation we shall speak of intensive crystallographic context.
- linear categories are intensively crystallographic for the notion of commutative monoid;
- additive categories are intensively crystallographic for the notion of abelian group;
- naturally Mal'tsev categories are intensively crystallographic for the notion of affine structure.

when there is a "duality operator" on the algebraic structure, the uniqueness property implies that in a crystallographic context this algebraic structure is necessarily "commutative" as it is the case for the three first examples above.

Remark

- In such a situation we shall speak of intensive crystallographic context.
- linear categories are intensively crystallographic for the notion of commutative monoid;
- additive categories are intensively crystallographic for the notion of abelian group;
- naturally Mal'tsev categories are intensively crystallographic for the notion of affine structure.

when there is a "duality operator" on the algebraic structure, the uniqueness property implies that in a crystallographic context this algebraic structure is necessarily "commutative" as it is the case for the three first examples above.

Remark

- In such a situation we shall speak of intensive crystallographic context.
- linear categories are intensively crystallographic for the notion of commutative monoid;
- additive categories are intensively crystallographic for the notion of abelian group;
- naturally Mal'tsev categories are intensively crystallographic for the notion of affine structure.

when there is a "duality operator" on the algebraic structure, the uniqueness property implies that in a crystallographic context this algebraic structure is necessarily "commutative" as it is the case for the three first examples above.

Remark

- In such a situation we shall speak of intensive crystallographic context.
- linear categories are intensively crystallographic for the notion of commutative monoid;
- additive categories are intensively crystallographic for the notion of abelian group;
- naturally Mal'tsev categories are intensively crystallographic for the notion of affine structure.

if an algebraic structure has a non-intensive (let us say extensive) crystallographic context (as it it the case for abelian groups in a CongHyp variety), is there an intensive context (or an extremal crystallographic context relatively to some aspect)?

- And more generally: under which conditions a given algebraic structure has an intensive or an extensive crystallographic context?
- Now, on the one hand, this kind of relationship between context and structure has a classical positive side with respect to the context: in that context, any object X has at most one structure;
- but on the other hand, it could be thought as a kind of photographic negative w. r. to the structure: concerning this structure, on an object in this context there is no more than one.

if an algebraic structure has a non-intensive (let us say extensive) crystallographic context (as it it the case for abelian groups in a CongHyp variety), is there an intensive context (or an extremal crystallographic context relatively to some aspect)?

And more generally:

under which conditions a given algebraic structure has an intensive or an extensive crystallographic context?

Now, on the one hand, this kind of relationship between context and structure has a classical positive side with respect to the context: in that context, any object X has at most one structure;

but on the other hand, it could be thought as a kind of photographic negative w. r. to the structure: concerning this structure, on an object in this context there is no more than one.

if an algebraic structure has a non-intensive (let us say extensive) crystallographic context (as it it the case for abelian groups in a CongHyp variety), is there an intensive context (or an extremal crystallographic context relatively to some aspect)?

And more generally:

under which conditions a given algebraic structure has an intensive or an extensive crystallographic context?

 Now, on the one hand, this kind of relationship between context and structure has a classical positive side with respect to the context: in that context, any object X has at most one structure;

but on the other hand, it could be thought as a kind of photographic negative w. r. to the structure: concerning this structure, on an object in this context there is no more than one.

if an algebraic structure has a non-intensive (let us say extensive) crystallographic context (as it it the case for abelian groups in a CongHyp variety), is there an intensive context (or an extremal crystallographic context relatively to some aspect)?

And more generally:

under which conditions a given algebraic structure has an intensive or an extensive crystallographic context?

 Now, on the one hand, this kind of relationship between context and structure has a classical positive side with respect to the context: in that context, any object X has at most one structure;

but on the other hand, it could be thought as a kind of photographic negative w. r. to the structure: concerning this structure, on an object in this context there is no more than one.

if an algebraic structure has a non-intensive (let us say extensive) crystallographic context (as it it the case for abelian groups in a CongHyp variety), is there an intensive context (or an extremal crystallographic context relatively to some aspect)?

And more generally:

under which conditions a given algebraic structure has an intensive or an extensive crystallographic context?

- Now, on the one hand, this kind of relationship between context and structure has a classical positive side with respect to the context: in that context, any object X has at most one structure;
- but on the other hand, it could be thought as a kind of photographic negative w. r. to the structure: concerning this structure, on an object in this context there is no more than one.
- So, emerge a paradoxical and conjectural question: could it be possible to get some (positive) interesting information about a structure from the contexts in which this structure becomes so scarce?

Outline

A double reading: Universal Algebra/Category Theory

The congruence modular varieties

Examples of crystallographic context

General principles and questionings

Spectacular outcome: some very large abelian and nat. Mal'tsev categories

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Short bibliography

$$p_1(a,0,0) = a \qquad p_2(a,0,a) = a, \qquad p_3(0,0,a) = a$$
$$p_1(a,a,b) = p_2(a,a,b)$$
$$p_2(a,b,b) = p_3(a,b,b)$$
$$p_i(a,a,a) = a, \quad \forall i \ 1 \le i \le 3$$

- Let us denote by *Hex*₃ the variety defined by these only terms and equations.
- ▶ We get a fully faithful embedding $h : Gp \to Hex_3$: from a group (*G*, .), construct a Hex_3 -algebra on the set *G* with: $p_1(x, y, z) = x.y^{-1}.z; \quad p_2(x, y, z) = z = p_3(x, y, z)$ We then get a fully faithful restriction $h : Ab \to Ab(Hex_3)$.

(日) (日) (日) (日) (日) (日) (日)

Now consider any field K with $\chi(K) \neq 2$. We get another faithful functor $w_K : K - Vect \rightarrow Ab(Hex_3)$.

$$p_{1}(a,0,0) = a \qquad p_{2}(a,0,a) = a, \qquad p_{3}(0,0,a) = a$$
$$p_{1}(a,a,b) = p_{2}(a,a,b)$$
$$p_{2}(a,b,b) = p_{3}(a,b,b)$$
$$p_{i}(a,a,a) = a, \quad \forall i \ 1 \le i \le 3$$

- Let us denote by *Hex*₃ the variety defined by these only terms and equations.
- ▶ We get a fully faithful embedding $h : Gp \to Hex_3$: from a group (*G*, .), construct a Hex_3 -algebra on the set *G* with: $p_1(x, y, z) = x.y^{-1}.z; \quad p_2(x, y, z) = z = p_3(x, y, z)$ We then get a fully faithful restriction $h : Ab \to Ab(Hex_3)$.

A D F A 同 F A E F A E F A Q A

Now consider any field *K* with $\chi(K) \neq 2$. We get another faithful functor $w_K : K - Vect \rightarrow Ab(Hex_3)$.

$$p_1(a,0,0) = a \qquad p_2(a,0,a) = a, \qquad p_3(0,0,a) = a$$
$$p_1(a,a,b) = p_2(a,a,b)$$
$$p_2(a,b,b) = p_3(a,b,b)$$
$$p_i(a,a,a) = a, \quad \forall i \ 1 \le i \le 3$$

- Let us denote by *Hex*₃ the variety defined by these only terms and equations.
- ▶ We get a fully faithful embedding $h: Gp \to Hex_3$: from a group (*G*, .), construct a Hex_3 -algebra on the set *G* with: $p_1(x, y, z) = x.y^{-1}.z; \quad p_2(x, y, z) = z = p_3(x, y, z)$ We then get a fully faithful restriction $h: Ab \to Ab(Hex_3)$.

Now consider any field K with $\chi(K) \neq 2$. We get another faithful functor $w_K : K - Vect \rightarrow Ab(Hex_3)$.

$$p_1(a,0,0) = a \qquad p_2(a,0,a) = a, \qquad p_3(0,0,a) = a$$
$$p_1(a,a,b) = p_2(a,a,b)$$
$$p_2(a,b,b) = p_3(a,b,b)$$
$$p_i(a,a,a) = a, \quad \forall i \ 1 \le i \le 3$$

- Let us denote by *Hex*₃ the variety defined by these only terms and equations.
- ▶ We get a fully faithful embedding $h: Gp \to Hex_3$: from a group (*G*, .), construct a Hex_3 -algebra on the set *G* with: $p_1(x, y, z) = x.y^{-1}.z; \quad p_2(x, y, z) = z = p_3(x, y, z)$ We then get a fully faithful restriction $h: Ab \to Ab(Hex_3)$.

Now consider any field K with χ(K) ≠ 2. We get another faithful functor w_K : K-Vect → Ab(Hex₃).

- So, in the variety *Hex*₃, starting with any *K*-vector space V, we get the unexpected and remarkable situation where:
- 1) we have two distinct algebras H(V, +) and W(V) on the same underlying set V
 2) which are made abelian algebras in *Hex*₃ by the same subtractive homomorphism d(a, b) = a − b.
- So *Ab*(*Hex*₃) becomes a very large abelian category containing:
 1) the category *Ab* and independently
 2) any category *K*-*Vect*, provided that χ(K) ≠ 2.
- It is possible to extend this kind of construction to a non-pointed context.

- So, in the variety *Hex*₃, starting with any *K*-vector space V, we get the unexpected and remarkable situation where:
- 1) we have two distinct algebras H(V, +) and W(V) on the same underlying set V
 2) which are made abelian algebras in *Hex*₃ by the same subtractive homomorphism d(a, b) = a b.
- So *Ab*(*Hex*₃) becomes a very large abelian category containing:
 1) the category *Ab* and independently
 2) any category *K*-*Vect*, provided that χ(K) ≠ 2.
- It is possible to extend this kind of construction to a non-pointed context.

- So, in the variety *Hex*₃, starting with any *K*-vector space V, we get the unexpected and remarkable situation where:
- ▶ 1) we have two distinct algebras H(V, +) and W(V) on the same underlying set V
 2) which are made abelian algebras in *Hex*₃ by the same subtractive homomorphism d(a, b) = a b.
- So *Ab*(*Hex*₃) becomes a very large abelian category containing:
 1) the category *Ab* and independently
 2) any category *K*-*Vect*, provided that χ(K) ≠ 2.
- It is possible to extend this kind of construction to a non-pointed context.

- So, in the variety *Hex*₃, starting with any *K*-vector space V, we get the unexpected and remarkable situation where:
- ▶ 1) we have two distinct algebras H(V, +) and W(V) on the same underlying set V
 2) which are made abelian algebras in *Hex*₃ by the same subtractive homomorphism d(a, b) = a b.
- So *Ab*(*Hex*₃) becomes a very large abelian category containing:
 1) the category *Ab* and independently
 2) any category *K*-*Vect*, provided that χ(K) ≠ 2.
- It is possible to extend this kind of construction to a non-pointed context.

- So, in the variety *Hex*₃, starting with any *K*-vector space V, we get the unexpected and remarkable situation where:
- ▶ 1) we have two distinct algebras H(V, +) and W(V) on the same underlying set V
 2) which are made abelian algebras in *Hex*₃ by the same subtractive homomorphism d(a, b) = a b.
- So *Ab*(*Hex*₃) becomes a very large abelian category containing:
 1) the category *Ab* and independently
 2) any category *K*-*Vect*, provided that χ(K) ≠ 2.
- It is possible to extend this kind of construction to a non-pointed context.

Consider the congruence modular variety CM_3 defined by the following three ternary terms and equations:

$$p_1(a, b, b) = a$$
, $p_2(a, b, a) = a$
 $p_1(a, a, b) = p_2(a, a, b)$
 $p_2(a, b, b) = p_3(a, b, b)$
 $p_i(a, a, a) = a$, $orall i \le 3$

▶ Let *Mal* be the variety defined by a unique ternary operation *p* satisfying the Mal'tsev identities. We get a fully faithful embedding $m : Mal \rightarrow CM_3$, constructing a CM_3 -algebra on the set *X* and setting: $p_1 = p$, $p_2(x, y, z) = z = p_3(x, y, z)$.

▶ By restriction, we get a fully faithful functor $m : Aff \rightarrow Aff(CM_3)$, where Aff is the subvariety of Mal consisting in its affine objects.

(日) (日) (日) (日) (日) (日) (日)

Consider the congruence modular variety CM_3 defined by the following three ternary terms and equations:

$$p_1(a, b, b) = a$$
, $p_2(a, b, a) = a$
 $p_1(a, a, b) = p_2(a, a, b)$
 $p_2(a, b, b) = p_3(a, b, b)$
 $p_i(a, a, a) = a$, $\forall i \ 1 \le i \le 3$

▶ Let *Mal* be the variety defined by a unique ternary operation *p* satisfying the Mal'tsev identities. We get a fully faithful embedding $m : Mal \rightarrow CM_3$, constructing a CM_3 -algebra on the set *X* and setting: $p_1 = p$, $p_2(x, y, z) = z = p_3(x, y, z)$.

By restriction, we get a fully faithful functor m : Aff → Aff(CM₃), where Aff is the subvariety of Mal consisting in its affine objects.

(ロ) (同) (三) (三) (三) (○) (○)

Consider the congruence modular variety CM_3 defined by the following three ternary terms and equations:

$$p_1(a, b, b) = a$$
, $p_2(a, b, a) = a$
 $p_1(a, a, b) = p_2(a, a, b)$
 $p_2(a, b, b) = p_3(a, b, b)$
 $p_i(a, a, a) = a$, $orall i \le 3$

- ▶ Let *Mal* be the variety defined by a unique ternary operation *p* satisfying the Mal'tsev identities. We get a fully faithful embedding $m : Mal \rightarrow CM_3$, constructing a CM_3 -algebra on the set *X* and setting: $p_1 = p$, $p_2(x, y, z) = z = p_3(x, y, z)$.
- ▶ By restriction, we get a fully faithful functor $m : Aff \rightarrow Aff(CM_3)$, where Aff is the subvariety of Mal consisting in its affine objects.

(ロ) (同) (三) (三) (三) (○) (○)

Now consider any field *K* with $\chi(K) \neq 2$. We get a faithful functor $a_K : K - Aff \rightarrow Aff(CM_3)$ as well:

starting from a K-affine space X, construct a CM₃-algebra on the set X by setting:
p_i(x y z) − β(x + −y+z) = p₂(x y z) − β(x+z)

 $p_1(x, y, z) = \beta(x + \frac{y+z}{2}), \quad p_2(x, y, z) = \beta(\frac{x+z}{2}),$ $\bar{p}_3(x, y, z) = \beta(\frac{\dot{x}-\dot{y}}{2} + z),$

where β is the barycentric homomorphism: $\beta : K_1(X) \to X$.

the affine structure $X \times X \times X \to X$ on the algebra $A_{\mathcal{K}}(X)$ in the variety CM_3 being given by this same $p(x, y, z) = \beta(\dot{x} - \dot{y} + \dot{z})$.

(日) (日) (日) (日) (日) (日) (日)

So Aff(CM₃) becomes a very large finitely complete and cocomplete exact nat. Mal'tsev category containing:

1) the category *Aff* and independently

2) any category *K*-*Aff*, provided that $\chi(K) \neq 2$.

Now consider any field *K* with $\chi(K) \neq 2$. We get a faithful functor $a_K : K - Aff \rightarrow Aff(CM_3)$ as well:

starting from a K-affine space X, construct a CM₃-algebra on the set X by setting:

 $\bar{p}_1(x, y, z) = \beta(\dot{x} + \frac{-\dot{y} + \dot{z}}{2}), \ \bar{p}_2(x, y, z) = \beta(\frac{\dot{x} + \dot{z}}{2}),$ $\bar{p}_3(x, y, z) = \beta(\frac{\dot{x} - \dot{y}}{2} + z),$

where β is the barycentric homomorphism: $\beta : K_1(X) \to X$.

the affine structure $X \times X \times X \rightarrow X$ on the algebra $A_{\mathcal{K}}(X)$ in the variety CM_3 being given by this same $p(x, y, z) = \beta(\dot{x} - \dot{y} + \dot{z})$.

So Aff(CM₃) becomes a very large finitely complete and cocomplete exact nat. Mal'tsev category containing:
 1) the category Aff and independently
 2) any category K-Aff, provided that y(K) ≠ 2.

Now consider any field *K* with $\chi(K) \neq 2$. We get a faithful functor $a_K : K - Aff \rightarrow Aff(CM_3)$ as well:

starting from a K-affine space X, construct a CM₃-algebra on the set X by setting:

 $\bar{p}_1(x, y, z) = \beta(\dot{x} + \frac{-\dot{y} + \dot{z}}{2}), \quad \bar{p}_2(x, y, z) = \beta(\frac{\dot{x} + \dot{z}}{2}), \\ \bar{p}_3(x, y, z) = \beta(\frac{\dot{x} - \dot{y}}{2} + z),$

where β is the barycentric homomorphism: $\beta : K_1(X) \to X$.

the affine structure $X \times X \times X \rightarrow X$ on the algebra $A_{\mathcal{K}}(X)$ in the variety CM_3 being given by this same $p(x, y, z) = \beta(\dot{x} - \dot{y} + \dot{z})$.

So Aff(CM₃) becomes a very large finitely complete and cocomplete exact nat. Mal'tsev category containing:

1) the category Aff and independently

2) any category *K*-*Aff*, provided that $\chi(K) \neq 2$.

Outline

A double reading: Universal Algebra/Category Theory

The congruence modular varieties

Examples of crystallographic context

General principles and questionings

Spectacular outcome: some very large abelian and nat. Mal'tsev categories

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Short bibliography

[1] D. Bourn, *Intrinsic centrality and associated classifying properties*, Journal of Algebra, **256** (2002), 126-145.

[2] D. Bourn , *On congruence modular varieties and Gumm categorie*, Communications in Algebra, (2022).

[3] D. Bourn and Z. Janelidze, *Subtractive categories and extended subtractions*, Applied categorical structures **17** (2009), 302-327.

[4] H.P. Gumm, *Geometrical methods in congruence modular varieties*, Mem. Amer. Math. Soc. **45** (1983).

[5] Z. Janelidze, *Subtractive categories*, Applied categorical structures **13** (2005), 343-350.

[6] J.D.H. Smith, *Malcev varieties*, Springer L.N. in Math. **554** (1976).
[7] A. Ursini, *On subtractive varieties*, Algebra universalis **31** (1994), 204-222.