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» Intuitionistic Kripke frames, i.e., posets X = (X, <);

» Heyting algebras, i.e., structures A = (A; A,V,—,0,1) that
comprise a bounded lattice (A; A,V,0,1) and satisfy

aANb<Lc<=a<b—c foreveryab,c € A.
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» With every Heyting algebra A we associate the poset A, of
meet irreducible filters of A.

» With every poset X we associate a Heyting algebra
Up(X) :== (Up(X);N, U, —, D, X)

provided by the upsets of X and whose — is defied as

U—V:i={xeX:foreveryy >ux, ifyeU, theny eV}

In addition, every Heyting algebra A embeds into Up(A.).
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Given an IPC formula ¢, two questions arise:

» Canonicity: Is it true that if A E ¢, then Up(A,) F ¢7
» Correspondence: Is there a sentence tr(¢) in the language of
posets s.t. for every poset X,

Up(X) F ¢ <= X F tr(¢)?

» a Sahlqvist antecedent (SA) if it is constructed from atoms,
negative formulas, and 0 and 1 using only A and V;

» a Sahlqvist implication (SI) if it is positive, or of the form —¢
for a SA @, or of the form ¢ — ¢ for a SA ¢ and a positive ;

» Sahlquist if it is constructed from Sl using only A and V.

Remark. Sahlqvist formulas are of the form ¢ = ¢1 V...V ¢,. For
example, x V —x and (x — y) V (y — x) are Sahlqvist.
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Instead of formulas we will consider quasiequations.

Definition

A Sahlqvist quasiequation is an expression of the form
P=(p1Ny<2)&...&(ps Ny <z) = (y < z),

where ¢1, ..., ¢, are Sahlgvist formulas.

Remark
For every Heyting algebra A it holds

AE® iff AE@ V...V
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» Sahlquist theory for protoalgebraic logics;

» Applications.
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Sahlqvist Canonicity for fragments of IPC with A.

Let @ be a Sahlqvist quasiequation in the language of a fragment L
of IPC comprising A. For every L-subreduct A of a Heyting algebra,

if AFE ®, then Up(A,) E .

Proof sketch (the case N\, —,0 of pseudocomplemented
semilattices).

Let A € PSL and ® a Sahlqvist quasiequation s.t. A F ®. We
want to show Up(A,) F .

1. Model theoretic trick: There’'s an embedding f: A — B for a
Heyting algebra B s.t. Up(B.) F ®.

2. Duality theoretic trick:

» There is a partial map fi: By ~ A, which is a surjective
partial negative p-morphism;

» There is an embedding of pseudocomplemented semilattices
(f)*: Up(A.) — Up(B.).

Since Up(B,) validates ®, so does Up(A.). O
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» The excluded middle x VV —x can be rendered as
Y=xANy<z&xANy<z=y<z

Moreover, U(X) F ¥ <= the order of X is the identity.

» The bounded top width n formula btw, can be rendered as

o, = & (—|(—|xl~/\ /\ xj)/\yéz):ygz.

1<i<n+1 0<j<i
For every poset X, we have

Up(X) E @, <= in principal upsets in X, every (1 + 1)-element

antichain is below an n-element one.

Remark. The formula btw,, cannot be rendered as an equation!
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» A logic I is said to be protoalgebraic if it admits a set of
formulas A(x,y) such that @ - A(x, x) and x, A(x,y) F y.

» Fii (A) denotes the lattice of deductive filters of - on an
algebra A, i.e., the subsets of A closed under the rules of .
Fii (A)“ denotes its semilattice of compact elements.

» The spectrum of an algebra A is the poset Spec,_(A) of the
meet irreducible deductive filters of - on A.
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Abstract Sahlqvist Theorem.

Let - be a protoalgebraic logic, and ® be a Sahlqvist quasiequation
“compatible” with it. TFAE

» | validates “certain” metarules of the form

I'M@) >y ... TADP>Y
I'sy ’

» Spec. (A) E tr(®), for every algebra A.
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A logic - is said to have:

» the inconsistency lemma (IL) when for every n € Z* there
exists a finite set ~,(x1,...,x,) of formulas s.t.

I'U{ei,...,¢n} is inconsistent iff '~ (@1,..., Qn);

» the deduction theorem (DT) if there is x = y s.t.
oy iff TEe=1;
» the proof by cases (PC) if there is x Y y s.t.

IoFyand I+ iff F,(le[JI—'y.

Theorem (Blok & Pigozzi, Czelakowski & Dziobiak, Raftery)

A protoalgebraic logic - has the IL (resp. DT, PC) iff the
semilattice Fi{’(A) is pseudocomplemented (resp. implicative
semilattice, distributive lattice) for every algebra A.
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Finally, we need to connect IPC with .

Definition

A formula ¢ of IPC is compatible with a logic - when
» If = occurs in @, then I has the Inconsistency Lemma;
» If — occurs in ¢, then I has the Deduction Theorem;
» If V occurs in ¢, then I has the Proof by Cases.

In this case, for every k € Z* we define a finite set ¢ of formulas
of - as follows:

> If ¢ = x, then ¢ := {x1,..., % };
> If 9 = 1 Ao, then ¢f = kU gk,
> If o == and ¢ = {x1,..., xm} then

¢ = (X1, xm);

» Similarly, for V and —.
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Abstract Sahlqvist Theorem
TFAE for a Sahlqvist quasiequation

P=(p1Ny<2)&...&(pu N Ny<z) = (y < 2)

compatible with a protoalgebraic logic -:

» The logic |- validates the metarules

Flgoli(r?lr---/(?i'l)bw F/(P/:n(lflr'--/'?n)blp
T

for all k € Z* and finite sets of formulas ' U{y, 71, ...,V };
> Spec(A) F tr(®) for every algebra A.
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P=(xANy<z2)&(-xANy<z) = (y<z)
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Suppose that - validates the metarules
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» Finally, by Correspondence, Spec. (A)  tr(®).

Iy, oo, va> ¢ F;“‘n('}’l/---/'yn)blp
I'> .

We want to prove Spec, (A) F tr(®).

From the assumption, we obtain Fi{’(Fm) F &
By protoalgebraicity, Fii’(A) F ®, for every A.
By Canonicity, Up(Fif’(A).) F ®.

Using that Fi-(A) is an algebraic lattice, we get
Speci (A) = Fi’(A)..

Thus, Up(Speci-(A)) F .
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Any applications?

» Recap on Sahlqvist theory (for intuitionistic logic);
» Sahlqvist theory for fragments of intuitionistic logic;
» Sahlquist theory for protoalgebraic logics;

» Applications.
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Examples. Let - be a protoalgebraic logic with the IL.
Corollary (Lavicka & Prenosil)

The logic - validates the following metarules for n € Z*:

F/'le---/')/n|>¢ F/Nn('Yl/---/')/n)Dl/J
>y

iff it is semisimple: the poset Spec, (A) is discrete, for every A.

Corollary (for n = 1, Lavicka, M., Raftery)

The logic - validates the following metarules for n € Z*:

I~ (H1U---U¥qU~F)>pforevery l <i<n+1
Ty

iff it has bounded top width 7: the principal upsets in Spec; (A)
have at most n maximal elements, for every A.
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A concrete example.
» For every I' = {71,...,7n} and ¢, we write

Frse¢=m-=-mn—=>0.(nm—=>9-...))
» Then for every Sahlqvist quasiequation
=1 Ny<z&.. &, N\y<z=—y<z
compatible with a logic |-, we define a set of formulas
= |J (@ = x)U--- U@ = x) = x

keZ+t

Salhqvist Canonicity for fragments of IPC with —

Let L be a fragment of IPC comprising —. For every L-subreduct A
of a Heyting algebra,

if AFE @, then Up(Spec, (A)) F @,

where Spec; (A) is the poset of meet irr. implicative filters of A.




One last example.



One last example.

Correspondence for intuitionistic linear logics.

Let D=1 Ny <z&...& @y ANy <z= y < z be a Sahlqvist
quasiequation compatible with an axiomatic extension F of ILL.
The theorems of I include the formula (1A@Y) V-V (1 Agl,)
iff Spec(A) F tr(®), for every algebra A € K.




Thank you very much for your attention!



