Sahlqvist theory for deductive systems

Damiano Fornasiere*, Tommaso Moraschini

Department of Philosophy, University of Barcelona

TACL 2022

Recap on Sahlqvist theory (for intuitionistic logic);

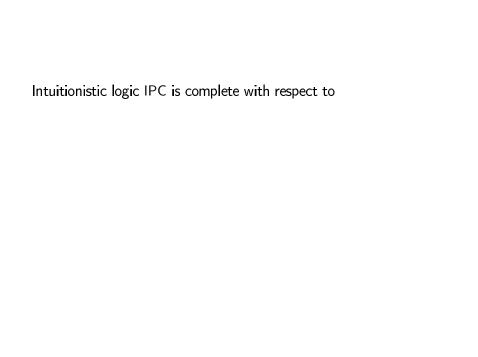
- Recap on Sahlqvist theory (for intuitionistic logic);
- Sahlqvist theory for fragments of intuitionistic logic;

- Recap on Sahlqvist theory (for intuitionistic logic);
- Sahlqvist theory for fragments of intuitionistic logic;
- Sahlqvist theory for protoalgebraic logics;

- Recap on Sahlqvist theory (for intuitionistic logic);
- Sahlqvist theory for fragments of intuitionistic logic;
- Sahlqvist theory for protoalgebraic logics;
- Applications.

Let's start

- Recap on Sahlqvist theory (for intuitionistic logic);
- Sahlqvist theory for fragments of intuitionistic logic;
- Sahlqvist theory for protoalgebraic logics;
- ► Applications.



Intuitionistic logic IPC is complete with respect to

▶ Intuitionistic Kripke frames, i.e., posets $\mathbb{X} = \langle X, \leqslant \rangle$;

Intuitionistic logic IPC is complete with respect to

- ▶ Intuitionistic Kripke frames, i.e., posets $\mathbb{X} = \langle X, \leqslant \rangle$;
- ▶ Heyting algebras, i.e., structures $A = \langle A; \land, \lor, \rightarrow, 0, 1 \rangle$ that comprise a bounded lattice $\langle A; \land, \lor, 0, 1 \rangle$ and satisfy
- $a \wedge b \leqslant c \Longleftrightarrow a \leqslant b \rightarrow c$, for every $a,b,c \in A$.

 \blacktriangleright With every Heyting algebra A we associate the poset A_* of meet irreducible filters of A.

- ▶ With every Heyting algebra A we associate the poset A_* of meet irreducible filters of A.
- lacktriangle With every poset X we associate a Heyting algebra

$$\mathsf{Up}(\mathbb{X}) \coloneqq \langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$$

provided by the upsets of X

- ▶ With every Heyting algebra A we associate the poset A_* of meet irreducible filters of A.
- ightharpoonup With every poset eal we associate a Heyting algebra

$$\mathsf{Up}(\mathbb{X}) \coloneqq \langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$$

provided by the upsets of $\mathbb X$ and whose \to is defied as

 $U \to V := \{x \in X : \text{for every } y \geqslant x, \text{ if } y \in U, \text{ then } y \in V\}.$

- ▶ With every Heyting algebra A we associate the poset A_* of meet irreducible filters of A.
- lacktriangle With every poset X we associate a Heyting algebra

$$\mathsf{Up}(\mathbb{X}) \coloneqq \langle \mathsf{Up}(\mathbb{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$$

provided by the upsets of $\mathbb X$ and whose o is defied as

$$U \to V := \{x \in X : \text{for every } y \geqslant x, \text{ if } y \in U, \text{ then } y \in V\}.$$

In addition, every Heyting algebra A embeds into $Up(A_*)$.

► Canonicity: Is it true that if $A \models \varphi$, then $Up(A_*) \models \varphi$?

- **Canonicity**: Is it true that if $A \models \varphi$, then $\bigcup p(A_*) \models \varphi$?
- ► Correspondence: Is there a sentence $tr(\phi)$ in the language of posets s.t. for every poset X,

$$\mathsf{Up}(\mathbb{X}) \vDash \varphi \Longleftrightarrow \mathbb{X} \vDash \mathsf{tr}(\varphi)?$$

- ► Canonicity: Is it true that if $A \models \varphi$, then $\bigcup p(A_*) \models \varphi$?
- ► Correspondence: Is there a sentence $tr(\phi)$ in the language of posets s.t. for every poset X,

$$\mathsf{Up}(\mathbb{X}) \vDash \varphi \Longleftrightarrow \mathbb{X} \vDash \mathsf{tr}(\varphi)?$$

- a Sahlqvist antecedent (SA) if it is constructed from atoms, negative formulas, and 0 and 1 using only ∧ and ∨;
- ▶ a Sahlqvist implication (SI) if it is positive, or of the form $\neg \varphi$ for a SA φ , or of the form $\varphi \rightarrow \psi$ for a SA φ and a positive ψ ;
- ► Sahlqvist if it is constructed from SI using only ∧ and ∨.

- **►** Canonicity: Is it true that if $A \models \varphi$, then $\bigcup p(A_*) \models \varphi$?
- ► Correspondence: Is there a sentence $tr(\varphi)$ in the language of posets s.t. for every poset X,

$$\mathsf{Up}(\mathbb{X}) \vDash \varphi \Longleftrightarrow \mathbb{X} \vDash \mathsf{tr}(\varphi)?$$

- ➤ a Sahlqvist antecedent (SA) if it is constructed from atoms, negative formulas, and 0 and 1 using only \land and \lor ;
- ▶ a Sahlqvist implication (SI) if it is positive, or of the form $\neg \varphi$ for a SA φ , or of the form $\varphi \rightarrow \psi$ for a SA φ and a positive ψ ;
- **Sahlqvist** if it is constructed from SI using only \wedge and \vee .

Remark. Sahlqvist formulas are of the form $\varphi = \varphi_1 \vee ... \vee \varphi_n$.

- **►** Canonicity: Is it true that if $A \models \varphi$, then $\bigcup p(A_*) \models \varphi$?
- ► Correspondence: Is there a sentence $tr(\varphi)$ in the language of posets s.t. for every poset X,

$$\mathsf{Up}(\mathbb{X}) \vDash \varphi \Longleftrightarrow \mathbb{X} \vDash \mathsf{tr}(\varphi)?$$

- ➤ a Sahlqvist antecedent (SA) if it is constructed from atoms, negative formulas, and 0 and 1 using only \land and \lor ;
- ▶ a Sahlqvist implication (SI) if it is positive, or of the form $\neg \varphi$ for a SA φ , or of the form $\varphi \rightarrow \psi$ for a SA φ and a positive ψ ;
- Sahlqvist if it is constructed from SI using only ∧ and ∨.

Remark. Sahlqvist formulas are of the form $\varphi = \varphi_1 \vee ... \vee \varphi_n$. For example, $x \vee \neg x$ and $(x \to y) \vee (y \to x)$ are Sahlqvist.

Instead of formulas we will consider quasiequations.

Instead of formulas we will consider quasiequations.

Definition

A Sahlqvist quasiequation is an expression of the form

$$\Phi = (\varphi_1 \wedge y \leqslant z) \& \dots \& (\varphi_n \wedge y \leqslant z) \Longrightarrow (y \leqslant z),$$

where $\varphi_1, \ldots, \varphi_n$ are Sahlqvist formulas.

Instead of formulas we will consider quasiequations.

Definition

A Sahlqvist quasiequation is an expression of the form

$$\Phi = (\varphi_1 \wedge y \leqslant z) \& \dots \& (\varphi_n \wedge y \leqslant z) \Longrightarrow (y \leqslant z),$$

where $\varphi_1, \ldots, \varphi_n$ are Sahlqvist formulas.

Remark

For every Heyting algebra A it holds

$$A \vDash \Phi$$
 iff $A \vDash \varphi_1 \lor \ldots \lor \varphi_n$.

We move to fragments

- Recap on Sahlqvist theory (for intuitionistic logic);
- Sahlqvist theory for fragments of intuitionistic logic;
- Sahlqvist theory for protoalgebraic logics;
- ► Applications.

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \vdash \Phi$, then $\operatorname{Lip}(A) \vdash \Phi$

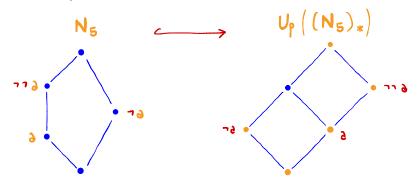
if $A \vDash \Phi$, then $\mathsf{Up}(A_*) \vDash \Phi$.

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\mathsf{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\operatorname{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).



Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\mathsf{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A \in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A \models \Phi$.

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\mathsf{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A \in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A \models \Phi$. We want to show $\mathsf{Up}(A_*) \models \Phi$.

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\mathsf{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A \in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A \models \Phi$. We want to show $\mathsf{Up}(A_*) \models \Phi$.

1. Model theoretic trick:

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\mathsf{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A\in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A \vDash \Phi$. We want to show $\mathsf{Up}(A_*) \vDash \Phi$.

1. Model theoretic trick: There's an embedding $f: A \to B$ for a Heyting algebra B s.t. $Up(B_*) \models \Phi$.

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\operatorname{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A \in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A \models \Phi$. We want to show $\mathsf{Up}(A_*) \models \Phi$.

1. Model theoretic trick: There's an embedding $f: A \to B$ for a Heyting algebra B s.t. $Up(B_*) \models \Phi$.

This is the hardest part!

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\mathsf{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A\in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A\models \Phi$. We want to show $\mathsf{Up}(A_*)\models \Phi$.

- 1. Model theoretic trick: There's an embedding $f: A \to B$ for a Heyting algebra B s.t. $Up(B_*) \models \Phi$.
- 2. Duality theoretic trick:

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\mathsf{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A\in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A \vDash \Phi$. We want to show $\mathsf{Up}(A_*) \vDash \Phi$.

- 1. Model theoretic trick: There's an embedding $f: A \to B$ for a Heyting algebra B s.t. $Up(B_*) \models \Phi$.
- 2. Duality theoretic trick:
 - There is a partial map $f_* \colon B_* \rightsquigarrow A_*$ which is a surjective partial negative p-morphism;

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\mathsf{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A \in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A \models \Phi$. We want to show $\mathsf{Up}(A_*) \models \Phi$.

- 1. Model theoretic trick: There's an embedding $f: A \to B$ for a Heyting algebra B s.t. $Up(B_*) \models \Phi$.
- 2. Duality theoretic trick:
 - There is a partial map $f_* : B_* \rightsquigarrow A_*$ which is a surjective partial negative p-morphism;
 - There is an embedding of pseudocomplemented semilattices $(f_*)^* \colon \mathsf{Up}(A_*) \to \mathsf{Up}(B_*).$

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \models \Phi$, then $\operatorname{Up}(A_*) \models \Phi$.

Proof sketch (the case \land , \neg , 0 of pseudocomplemented semilattices).

Let $A \in \mathsf{PSL}$ and Φ a Sahlqvist quasiequation s.t. $A \models \Phi$. We want to show $\mathsf{Up}(A_*) \models \Phi$.

- 1. Model theoretic trick: There's an embedding $f: A \to B$ for a Heyting algebra B s.t. $Up(B_*) \models \Phi$.
- 2. Duality theoretic trick:
 - ▶ There is a partial map $f_* : B_* \rightsquigarrow A_*$ which is a surjective partial negative p-morphism;
 - ► There is an embedding of pseudocomplemented semilattices $(f_*)^* \colon \mathsf{Up}(A_*) \to \mathsf{Up}(B_*).$

Since $Up(B_*)$ validates Φ , so does $Up(A_*)$.

$$\Psi = x \land y \leqslant z \& \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

$$\Psi = x \land y \leqslant z \& \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

Moreover, $\mathbb{U}(\mathbb{X}) \vDash \Psi \iff$ the order of \mathbb{X} is the identity.

$$\Psi = x \wedge y \leqslant z \& \neg x \wedge y \leqslant z \Longrightarrow y \leqslant z.$$

Moreover, $\mathbb{U}(\mathbb{X}) \vDash \Psi \iff$ the order of \mathbb{X} is the identity.

 \blacktriangleright The bounded top width n formula btw_n can be rendered as

$$\Phi_n = \underbrace{\$}_{1 \leqslant i \leqslant n+1} \left(\neg (\neg x_i \land \bigwedge_{0 < j < i} x_j) \land y \leqslant z \right) \Longrightarrow y \leqslant z.$$

$$\Psi = x \land y \leqslant z \& \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

Moreover, $\mathbb{U}(\mathbb{X}) \vDash \Psi \Longleftrightarrow$ the order of \mathbb{X} is the identity.

 \blacktriangleright The bounded top width n formula btw_n can be rendered as

$$\Phi_n = \underbrace{\$}_{1 \leqslant i \leqslant n+1} \left(\neg (\neg x_i \land \bigwedge_{0 < j < i} x_j) \land y \leqslant z \right) \Longrightarrow y \leqslant z.$$

For every poset X, we have

$$\Psi = x \land y \leqslant z \& \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

Moreover, $\mathbb{U}(\mathbb{X}) \vDash \Psi \iff$ the order of \mathbb{X} is the identity.

 \blacktriangleright The bounded top width n formula btw_n can be rendered as

$$\Phi_n = \underbrace{\$}_{1 \leqslant i \leqslant n+1} \left(\neg (\neg x_i \land \bigwedge_{0 < j < i} x_j) \land y \leqslant z \right) \Longrightarrow y \leqslant z.$$

For every poset X, we have

 $\mathsf{Up}(\mathbb{X}) \vDash \Phi_n \iff$ in principal upsets in \mathbb{X} , every (n+1)-element antichain is below an n-element one.

$$\Psi = x \land y \leqslant z \& \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

Moreover, $\mathbb{U}(\mathbb{X}) \models \Psi \iff$ the order of \mathbb{X} is the identity.

ightharpoonup The bounded top width n formula btw_n can be rendered as

$$\Phi_n = \underbrace{\xi}_{1 \leqslant i \leqslant n+1} \left(\neg (\neg x_i \land \bigwedge_{0 < j < i} x_j) \land y \leqslant z \right) \Longrightarrow y \leqslant z.$$

For every poset X, we have

 $Up(X) \models \Phi_n \iff$ in principal upsets in X, every (n+1)-element antichain is below an n-element one.

Remark. The formula btw_n cannot be rendered as an equation!

A quick detour in algebraic logic

- Recap on Sahlqvist theory (for intuitionistic logic);
- Sahlqvist theory for fragments of intuitionistic logic;
- Sahlqvist theory for protoalgebraic logics;
- ► Applications.

Abstract Sahlqvist Theorem.

Let \vdash be a protoalgebraic logic and Φ be a Sahlqvist quasiequation "compatible" with it.

Abstract Sahlqvist Theorem.

Let \vdash be a protoalgebraic logic and Φ be a Sahlqvist quasiequation "compatible" with it. TFAE:

Abstract Sahlqvist Theorem.

Let \vdash be a protoalgebraic logic and Φ be a Sahlqvist quasiequation "compatible" with it. TFAE:

► \(\text{validates "certain" metarules of the form \)

$$\frac{\Gamma, \Delta_1(\Phi) \rhd \psi \quad \dots \quad \Gamma, \Delta_n(\Phi) \rhd \psi}{\Gamma \rhd \psi};$$

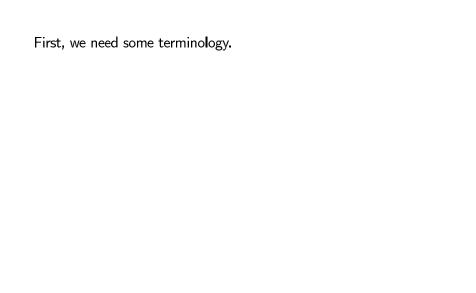
Abstract Sahlqvist Theorem.

Let \vdash be a protoalgebraic logic and Φ be a Sahlqvist quasiequation "compatible" with it. TFAE:

► validates "certain" metarules of the form

$$\frac{\Gamma, \Delta_1(\Phi) \rhd \psi \quad \dots \quad \Gamma, \Delta_n(\Phi) \rhd \psi}{\Gamma \rhd \psi};$$

▶ The "spectrum" of \vdash validates tr(Φ).



▶ A logic \vdash is said to be protoalgebraic if it admits a set of formulas $\Delta(x,y)$ such that $\varnothing \vdash \Delta(x,x)$ and $x,\Delta(x,y) \vdash y$.

▶ A logic \vdash is said to be protoalgebraic if it admits a set of formulas $\Delta(x,y)$ such that $\varnothing \vdash \Delta(x,x)$ and $x,\Delta(x,y) \vdash y$.

Most logics with a very weak implication \rightarrow are protoalgebraic as witnessed by the set $\Delta = \{x \rightarrow y\}$.

- ▶ A logic \vdash is said to be protoalgebraic if it admits a set of formulas $\Delta(x,y)$ such that $\varnothing \vdash \Delta(x,x)$ and $x,\Delta(x,y) \vdash y$.
- ▶ $\mathsf{Fi}_{\vdash}(A)$ denotes the lattice of deductive filters of \vdash on an algebra A, i.e., the subsets of A closed under the rules of \vdash .

- ▶ A logic \vdash is said to be protoalgebraic if it admits a set of formulas $\Delta(x,y)$ such that $\varnothing \vdash \Delta(x,x)$ and $x,\Delta(x,y) \vdash y$.
- ▶ $\operatorname{Fi}_{\vdash}(A)$ denotes the lattice of deductive filters of \vdash on an algebra A, i.e., the subsets of A closed under the rules of \vdash . $\operatorname{Fi}_{\vdash}(A)^{\omega}$ denotes its semilattice of compact elements.

- ▶ A logic \vdash is said to be protoalgebraic if it admits a set of formulas $\Delta(x,y)$ such that $\varnothing \vdash \Delta(x,x)$ and $x,\Delta(x,y) \vdash y$.
- ▶ $\operatorname{Fi}_{\vdash}(A)$ denotes the lattice of deductive filters of \vdash on an algebra A, i.e., the subsets of A closed under the rules of \vdash . $\operatorname{Fi}_{\vdash}(A)^{\omega}$ denotes its semilattice of compact elements.
- ▶ The spectrum of an algebra A is the poset $Spec_{\vdash}(A)$ of the meet irreducible deductive filters of \vdash on A.

Abstract Sahlqvist Theorem.

Let \vdash be a protoalgebraic logic, and Φ be a Sahlqvist quasiequation "compatible" with it. TFAE

► \(\text{validates "certain" metarules of the form } \)

$$\frac{\Gamma, \Delta_1(\Phi) \rhd \psi \quad \dots \quad \Gamma, \Delta_n(\Phi) \rhd \psi}{\Gamma \rhd \psi};$$

► The "spectrum" of \vdash validates $tr(\Phi)$.

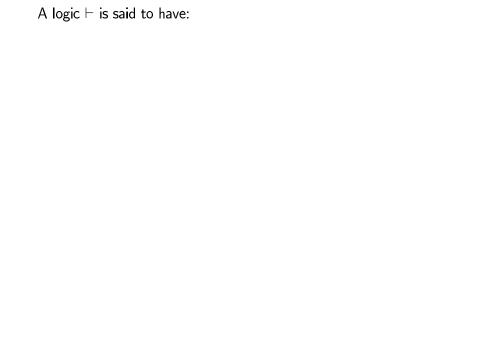
Abstract Sahlqvist Theorem.

Let \vdash be a protoalgebraic logic, and Φ be a Sahlqvist quasiequation "compatible" with it. TFAE

► validates "certain" metarules of the form

$$\frac{\Gamma, \Delta_1(\Phi) \rhd \psi \quad \dots \quad \Gamma, \Delta_n(\Phi) \rhd \psi}{\Gamma \rhd \psi};$$

▶ $\operatorname{\mathsf{Spec}}_{\vdash}(A) \vDash \operatorname{\mathsf{tr}}(\Phi)$, for every algebra A.



▶ the inconsistency lemma (IL) when for every $n \in \mathbb{Z}^+$ there exists a finite set $\sim_n(x_1, \dots, x_n)$ of formulas s.t.

$$\Gamma \cup \{\varphi_1, \dots, \varphi_n\}$$
 is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \dots, \varphi_n)$;

▶ the inconsistency lemma (IL) when for every $n \in \mathbb{Z}^+$ there exists a finite set $\sim_n(x_1, \dots, x_n)$ of formulas s.t.

$$\Gamma \cup \{\varphi_1, \dots, \varphi_n\}$$
 is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \dots, \varphi_n)$;

Intuitionistic logic has the IL witnessed by the set $\sim_n := \{ \neg(x_1 \land \cdots \land x_n) \}.$

▶ the inconsistency lemma (IL) when for every $n \in \mathbb{Z}^+$ there exists a finite set $\sim_n(x_1, \dots, x_n)$ of formulas s.t.

$$\Gamma \cup \{\varphi_1, \ldots, \varphi_n\}$$
 is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \ldots, \varphi_n)$;

▶ the deduction theorem (DT) if there is $x \Rightarrow y$ s.t.

$$\Gamma, \varphi \vdash \psi \text{ iff } \Gamma \vdash \varphi \Rightarrow \psi;$$

▶ the inconsistency lemma (IL) when for every $n \in \mathbb{Z}^+$ there exists a finite set $\sim_n(x_1, \ldots, x_n)$ of formulas s.t.

$$\Gamma \cup \{\varphi_1, \dots, \varphi_n\}$$
 is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \dots, \varphi_n)$;

▶ the deduction theorem (DT) if there is $x \Rightarrow y$ s.t.

$$\Gamma, \varphi \vdash \psi \text{ iff } \Gamma \vdash \varphi \Rightarrow \psi;$$

ightharpoonup the proof by cases (PC) if there is x
gamma y s.t.

$$\Gamma, \varphi \vdash \gamma \text{ and } \Gamma, \psi \vdash \gamma \text{ iff } \Gamma, \varphi \bigvee \psi \vdash \gamma.$$

A logic \vdash is said to have:

▶ the inconsistency lemma (IL) when for every $n \in \mathbb{Z}^+$ there exists a finite set $\sim_n(x_1, \ldots, x_n)$ of formulas s.t.

$$\Gamma \cup \{\varphi_1, \ldots, \varphi_n\}$$
 is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \ldots, \varphi_n)$;

▶ the deduction theorem (DT) if there is $x \Rightarrow y$ s.t.

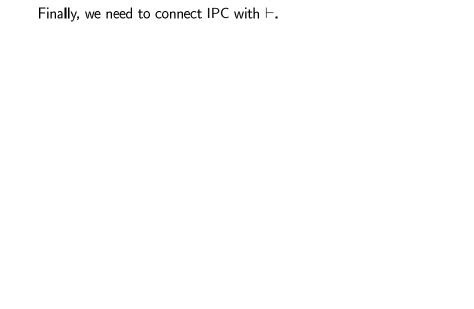
$$\Gamma, \varphi \vdash \psi \text{ iff } \Gamma \vdash \varphi \Rightarrow \psi;$$

 \blacktriangleright the proof by cases (PC) if there is $x \lor y$ s.t.

$$\Gamma, \varphi \vdash \gamma \text{ and } \Gamma, \psi \vdash \gamma \text{ iff } \Gamma, \varphi \bigvee \psi \vdash \gamma.$$

Theorem (Blok & Pigozzi, Czelakowski & Dziobiak, Raftery)

A protoalgebraic logic \vdash has the IL (resp. DT, PC) iff the semilattice $\mathsf{Fi}^\omega_\vdash(A)$ is pseudocomplemented (resp. implicative semilattice, distributive lattice) for every algebra A.



Definition

A formula φ of IPC is compatible with a logic \vdash when

Definition

A formula φ of IPC is compatible with a logic \vdash when

▶ If \neg occurs in φ , then \vdash has the Inconsistency Lemma;

Definition

A formula φ of IPC is compatible with a logic \vdash when

- ▶ If \neg occurs in φ , then \vdash has the Inconsistency Lemma;
- ▶ If \rightarrow occurs in φ , then \vdash has the Deduction Theorem;

Definition

A formula φ of IPC is compatible with a logic \vdash when

- ▶ If \neg occurs in φ , then \vdash has the Inconsistency Lemma;
- ▶ If \rightarrow occurs in φ , then \vdash has the Deduction Theorem;
- ▶ If \vee occurs in φ , then \vdash has the Proof by Cases.

Definition

A formula φ of IPC is compatible with a logic \vdash when

- ▶ If \neg occurs in φ , then \vdash has the Inconsistency Lemma;
- ▶ If \rightarrow occurs in φ , then \vdash has the Deduction Theorem;
- ▶ If \vee occurs in φ , then \vdash has the Proof by Cases.

In this case, for every $k \in \mathbb{Z}^+$ we define a finite set φ^k of formulas of \vdash as follows:

Definition

A formula φ of IPC is compatible with a logic \vdash when

- ▶ If \neg occurs in φ , then \vdash has the Inconsistency Lemma;
- ▶ If \rightarrow occurs in φ , then \vdash has the Deduction Theorem;
- ▶ If \vee occurs in φ , then \vdash has the Proof by Cases.

In this case, for every $k \in \mathbb{Z}^+$ we define a finite set φ^k of formulas of \vdash as follows:

▶ If $\varphi = x$, then $\varphi^k := \{x_1, \ldots, x_k\}$;

Definition

A formula φ of IPC is compatible with a logic \vdash when

- ▶ If \neg occurs in φ , then \vdash has the Inconsistency Lemma;
- ▶ If \rightarrow occurs in φ , then \vdash has the Deduction Theorem;
- ▶ If \vee occurs in φ , then \vdash has the Proof by Cases.

In this case, for every $k \in \mathbb{Z}^+$ we define a finite set φ^k of formulas of \vdash as follows:

- ▶ If $\varphi = x$, then $\varphi^k := \{x_1, \ldots, x_k\}$;
- If $\varphi = \psi_1 \wedge \psi_2$, then $\pmb{\varphi}^k := \pmb{\psi}_1^k \cup \pmb{\psi}_2^k$;

Definition

A formula φ of IPC is compatible with a logic \vdash when

- ▶ If \neg occurs in φ , then \vdash has the Inconsistency Lemma;
- ▶ If \rightarrow occurs in φ , then \vdash has the Deduction Theorem;
- ▶ If \vee occurs in φ , then \vdash has the Proof by Cases.

In this case, for every $k \in \mathbb{Z}^+$ we define a finite set φ^k of formulas of \vdash as follows:

- ▶ If $\varphi = x$, then $\varphi^k := \{x_1, \ldots, x_k\}$;
- ▶ If $\varphi = \psi_1 \wedge \psi_2$, then $\boldsymbol{\varphi}^k := \boldsymbol{\psi}_1^k \cup \boldsymbol{\psi}_2^k$;
- If $\varphi = \neg \psi$ and $\psi^k = \{\chi_1, \dots, \chi_m\}$, then

$$\boldsymbol{\varphi}^k := \sim_m (\chi_1, \ldots, \chi_m);$$

Definition

A formula φ of IPC is compatible with a logic \vdash when

- ▶ If \neg occurs in φ , then \vdash has the Inconsistency Lemma;
- ▶ If \rightarrow occurs in φ , then \vdash has the Deduction Theorem;
- ▶ If \vee occurs in φ , then \vdash has the Proof by Cases.

In this case, for every $k \in \mathbb{Z}^+$ we define a finite set φ^k of formulas of \vdash as follows:

- ▶ If $\varphi = \psi_1 \wedge \psi_2$, then $\varphi^k := \psi_1^k \cup \psi_2^k$;
- ▶ If $\varphi = \neg \psi$ and $\psi^k = \{\chi_1, \dots, \chi_m\}$, then

$$\boldsymbol{\varphi}^k := \sim_m (\chi_1, \ldots, \chi_m);$$

ightharpoonup Similarly, for \lor and \to .

We can now formally state the announced theorem.

We can now formally state the announced theorem.

Abstract Sahlqvist Theorem

TFAE for a Sahlqvist quasiequation

$$\Phi = ({\color{red} \varphi_1} \wedge y \leqslant z) \& \dots \& ({\color{red} \varphi_m} \wedge y \leqslant z) \Longrightarrow (y \leqslant z)$$

compatible with a protoalgebraic logic ⊢:

We can now formally state the announced theorem.

Abstract Sahlqvist Theorem

TFAE for a Sahlqvist quasiequation

$$\Phi = (\varphi_1 \land y \leqslant z) \& \dots \& (\varphi_m \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

compatible with a protoalgebraic logic ⊢:

► The logic ⊢ validates the metarules

$$\frac{\Gamma, \boldsymbol{\varphi}_{1}^{k}(\vec{\gamma}_{1}, \dots, \vec{\gamma}_{n}) \triangleright \psi \quad \dots \quad \Gamma, \boldsymbol{\varphi}_{m}^{k}(\vec{\gamma}_{1}, \dots, \vec{\gamma}_{n}) \triangleright \psi}{\Gamma \triangleright \psi}$$

for all $k \in \mathbb{Z}^+$ and finite sets of formulas $\Gamma \cup \{\psi, \vec{\gamma}_1, \dots, \vec{\gamma}_n\}$;

We can now formally state the announced theorem.

Abstract Sahlqvist Theorem

TFAE for a Sahlqvist quasiequation

$$\Phi = (\varphi_1 \land y \leqslant z) \& \dots \& (\varphi_m \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

compatible with a protoalgebraic logic ⊢:

► The logic ⊢ validates the metarules

$$\frac{\Gamma, \boldsymbol{\varphi_1^k}(\vec{\gamma_1}, \dots, \vec{\gamma_n}) \rhd \psi \quad \dots \quad \Gamma, \boldsymbol{\varphi_m^k}(\vec{\gamma_1}, \dots, \vec{\gamma_n}) \rhd \psi}{\Gamma \rhd \psi}$$

for all $k \in \mathbb{Z}^+$ and finite sets of formulas $\Gamma \cup \{\psi, \vec{\gamma_1}, \dots, \vec{\gamma}_n\}$;

▶ $\mathsf{Spec}_{\vdash}(A) \vDash \mathsf{tr}(\Phi)$ for every algebra A.

Proof sketch by example.

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash .

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\text{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

$$\Phi = (\underline{x} \land \underline{y} \leqslant \underline{z}) \& (\underline{\neg x} \land \underline{y} \leqslant \underline{z}) \Longrightarrow (\underline{y} \leqslant \underline{z})$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Remark. The semilattice $\operatorname{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A \blacktriangleright Suppose that \vdash validates the metarules

$$\frac{\mathbf{y}}{\Gamma, \gamma_1, \dots, \gamma_n} \triangleright \psi \qquad \frac{\mathbf{y}}{\Gamma, \sim_n (\gamma_1, \dots, \gamma_n)} \triangleright \psi \\
\Gamma \triangleright \psi \\
\mathbf{y} \qquad \mathbf{z}$$

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}_{\vdash}^{\omega}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

We want to prove $Spec_{\vdash}(A) \models tr(\Phi)$.

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

We want to prove $\operatorname{Spec}_{\vdash}(A) \vDash \operatorname{tr}(\Phi)$.

▶ From the assumption, we obtain $Fi^{\omega}_{\vdash}(Fm) \models \Phi$

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

We want to prove $Spec_{\vdash}(A) \models tr(\Phi)$.

- ► From the assumption, we obtain $Fi^{\omega}(Fm) \models \Phi$
- ▶ By protoalgebraicity, $Fi^{\omega}_{\vdash}(A) \models \Phi$, for every A.

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

We want to prove $Spec_{\vdash}(A) \models tr(\Phi)$.

- ► From the assumption, we obtain $Fi^{\omega}_{\vdash}(Fm) \models \Phi$
- ▶ By protoalgebraicity, $Fi^{\omega}_{\vdash}(A) \models \Phi$, for every A.
- ▶ By Canonicity, $Up(Fi^{\omega}_{\vdash}(A)_*) \models \Phi$.

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

We want to prove $\operatorname{Spec}_{\vdash}(A) \vDash \operatorname{tr}(\Phi)$.

- ► From the assumption, we obtain $Fi^{\omega}(Fm) \models \Phi$
- ▶ By protoalgebraicity, $Fi^{\omega}_{\vdash}(A) \models \Phi$, for every A.
- ▶ By Canonicity, $Up(Fi^{\omega}_{\vdash}(A)_*) \models \Phi$.
- ▶ Using that $\operatorname{Fi}_{\vdash}(A)$ is an algebraic lattice, we get $\operatorname{Spec}_{\vdash}(A) \cong \operatorname{Fi}_{\vdash}^{\omega}(A)_*$.

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\text{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

We want to prove $Spec_{\vdash}(A) \models tr(\Phi)$.

- ► From the assumption, we obtain $Fi^{\omega}(Fm) \models \Phi$
- ▶ By protoalgebraicity, $Fi^{\omega}_{\vdash}(A) \models \Phi$, for every A.
- ▶ By Canonicity, $Up(Fi^{\omega}_{\vdash}(A)_*) \models \Phi$.
- ▶ Using that $\operatorname{Fi}_{\vdash}(A)$ is an algebraic lattice, we get $\operatorname{Spec}_{\vdash}(A) \cong \operatorname{Fi}_{\vdash}^{\omega}(A)_*$.
- ▶ Thus, $Up(Spec_{\vdash}(A)) \models \Phi$.

$$\Phi = (x \land y \leqslant z) \& (\neg x \land y \leqslant z) \Longrightarrow (y \leqslant z)$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\text{Fi}^{\omega}_{\vdash}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

We want to prove $\operatorname{Spec}_{\vdash}(A) \vDash \operatorname{tr}(\Phi)$.

- ► From the assumption, we obtain $Fi^{\omega}(Fm) \models \Phi$
- ▶ By protoalgebraicity, $Fi^{\omega}_{\vdash}(A) \models \Phi$, for every A.
- ▶ By Canonicity, $Up(Fi^{\omega}_{\vdash}(A)_*) \models \Phi$.
- ▶ Using that $\operatorname{Fi}_{\vdash}(A)$ is an algebraic lattice, we get $\operatorname{Spec}_{\vdash}(A) \cong \operatorname{Fi}_{\vdash}^{\omega}(A)_*$.
- ▶ Thus, $Up(Spec_{\vdash}(A)) \models \Phi$.
- ▶ Finally, by Correspondence, $Spec_{\vdash}(A) \models tr(\Phi)$.

Any applications?

- ► Recap on Sahlqvist theory (for intuitionistic logic);
- Sahlqvist theory for fragments of intuitionistic logic;
- ► Sahlqvist theory for protoalgebraic logics;
- Applications.

Examples. Let \vdash be a protoalgebraic logic with the IL.

Examples. Let \vdash be a protoalgebraic logic with the IL.

Corollary (Lávička & Přenosil)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

iff it is semisimple: the poset $\operatorname{Spec}_{\vdash}(A)$ is discrete, for every A.

Examples. Let \vdash be a protoalgebraic logic with the IL.

Corollary (Lávička & Přenosil)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

iff it is semisimple: the poset $\operatorname{Spec}_{\vdash}(A)$ is discrete, for every A.

Corollary (for n = 1, Lávička, M., Raftery)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \sim (\vec{\gamma}_1 \cup \dots \cup \vec{\gamma}_{i-1} \cup \sim \vec{\gamma}_i) \rhd \psi \text{ for every } 1 \leqslant i \leqslant n+1}{\Gamma \rhd \psi}$$

iff it has bounded top width n: the principal upsets in $Spec_{\vdash}(A)$ have at most n maximal elements, for every A.

▶ For every $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ and φ , we write

$$\Gamma \to \varphi := (\gamma_1 \to (\gamma_2 \to (\dots (\gamma_n \to \varphi) \dots)))$$

▶ For every $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ and φ , we write

$$\Gamma \to \varphi := (\gamma_1 \to (\gamma_2 \to (\dots (\gamma_n \to \varphi) \dots)))$$

► Then for every Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \& \dots \& \varphi_n \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a logic \vdash , we define a set of formulas

$$\mathbf{\Phi}^* := \bigcup_{k \in \mathbb{Z}^+} ((\boldsymbol{\varphi}_1^k \to x) \cup \cdots \cup (\boldsymbol{\varphi}_n^k \to x)) \to x.$$

▶ For every $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ and φ , we write

$$\Gamma \to \varphi \coloneqq (\gamma_1 \to (\gamma_2 \to (\dots (\gamma_n \to \varphi) \dots)))$$

Then for every Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \& \dots \& \varphi_n \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a logic \vdash , we define a set of formulas

$$\Phi^* := \bigcup_{k \in \mathbb{Z}^+} ((\boldsymbol{\varphi}_1^k \to x) \cup \cdots \cup (\boldsymbol{\varphi}_n^k \to x)) \to x.$$

Salhqvist Canonicity for fragments of IPC with ightarrow

Let L be a fragment of IPC comprising \rightarrow .

▶ For every $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ and φ , we write

$$\Gamma \to \varphi \coloneqq (\gamma_1 \to (\gamma_2 \to (\dots (\gamma_n \to \varphi) \dots)))$$

Then for every Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \& \dots \& \varphi_n \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a logic \vdash , we define a set of formulas

$$\Phi^* := \bigcup_{k \in \mathbb{Z}^+} ((\boldsymbol{\varphi}_1^k \to x) \cup \cdots \cup (\boldsymbol{\varphi}_n^k \to x)) \to x.$$

Salhqvist Canonicity for fragments of IPC with \rightarrow

Let L be a fragment of IPC comprising \rightarrow . For every L-subreduct A of a Heyting algebra,

if
$$A \vDash \Phi^*$$
, then $\mathsf{Up}(\mathsf{Spec_L}(A)) \vDash \Phi^*$,

where $\operatorname{Spec}_{\mathsf{L}}(A)$ is the poset of meet irr. implicative filters of A.

One last example.

One last example.

Correspondence for intuitionistic linear logics.

Let $\Phi = \varphi_1 \wedge y \leqslant z \& \dots \& \varphi_m \wedge y \leqslant z \Longrightarrow y \leqslant z$ be a Sahlqvist quasiequation compatible with an axiomatic extension \vdash of ILL. The theorems of \vdash include the formula $(1 \wedge \varphi_1^1) \vee \dots \vee (1 \wedge \varphi_m^1)$

The theorems of \vdash include the formula $(1 \land \varphi_1^1) \lor \cdots \lor (1 \land \varphi_m^1)$ iff $Spec(A) \models tr(\Phi)$, for every algebra $A \in \mathsf{K}_{\vdash}$.

Thank you very much for your attention!