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Outline

Algebraizability is a key concept from the field of Abstract Algebraic Logic (AAL)
— the general study of relations between logics and algebras.

In this talk we shall see:

I The notion of algebraizability and its scope;

I A generalization of the standard framework to weak logics;

I Application of our framework to inquisitive and dependence logic.
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Logic as a consequence relation

Fix a (countable) set of variables Var in a signature L.
Let FmL(Var) or simply Fm be the free term algebra over L.

A consequence relation is a relation ` ⊆ P(Fm)×Fm, s.t. for all
Γ ∪∆ ∪ {φ, ψ} ⊆ Fm:

1. if φ ∈ Γ, then Γ ` φ ;

2. if Γ ` φ for all φ ∈ ∆ and ∆ ` ψ, then Γ ` ψ.

A substitution is an endomorphism σ : Fm→ Fm.

A logic of type L is a consequence relation ` on the set FmL that is closed
under uniform substitution:

3. For all substitutions σ, if Γ ` φ, then σ[Γ] ` σ[φ].
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Algebraizability

Let τ : Fm→ P(Eq) and ∆ : Eq→ P(Fm) be functions commuting with
substitutions of Eq and Fm. We call them structural transformers.

A logic ` is algebraizable by structural transformers τ,∆ and a quasi-variety Q if:

Γ ` φ⇐⇒ τ [Γ] �Q τ(φ) (Alg1)

∆[Θ] ` ∆(η, δ)⇐⇒ Θ �Q η ≈ δ (Alg2)

φ a` ∆[τ(φ)] (Alg3)

η ≈ δ ≡Q τ [∆(η, δ)]. (Alg4)

We then call Q the equivalent algebraic semantics for `.
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Algebraizability

Theorem (Uniqueness)

If the tuples (Q0, τ0,∆0) and (Q1, τ1,∆1) both witness the algebraizability of a
standard logic `, then:

1. Q0 = Q1;

2. ∆0(x , y) a` ∆1(x , y);

3. τ0(φ) ≡Qi τ1(φ) with i ∈ {0, 1}.

I CPC is algebraized by BA, τ(x) := {x ≈ 1}, ∆(x , y) = {x → y , y → x}.
I IPC is algebraized by HA, τ(x) := {x ≈ 1}, ∆(x , y) = {x → y , y → x}.
I Kl is not algebraizable,

Kl = {(Γ, φ) : ∀〈W ,R, v〉, ∀w ∈W , if w 
 Γ then w 
 φ}.
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Extending algebraizability — Motivation

The standard framework of algebraizability applies exclusively to consequence
relations closed under uniform substitution.

There has been however an
interest in logics that are not closed under uniform substitution:

I Public Announcement Logic and various epistemic logics;

I various logics based on team semantics (inquisitive, dependence logic, etc.);

I negative variants of intermediate logics (intermediate logics + ¬¬p → p).

Interestingly, many of these logics have been investigated from an algebraic
perspective. Can we then treat them with the tools of abstract algebraic logic?
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Weak Logics and Expanded Algebras

Algebraizability of Weak Logics

Applications to Inquisitive (Dependence) Logic
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Weak Logics

Let Subst := Hom(Fm,Fm) and let AT := {σ ∈ Subst : σ[Var] ⊆ Var}.

A Weak Logic is a consequence relation ` such that:

for all σ ∈ AT, Γ ` φ =⇒ σ[Γ] ` σ(φ).

This generalises the notion of weak logic from Ciardelli 2009.
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Core Semantics

Let L be a language consisting only of functional symbols.

An expanded algebra
A is a structure of type L ∪ {P}, where P is a fresh predicate symbol. We let
core(A) := PA.

If Q is a class of expanded algebras and Θ ∪ {ε ≈ δ} a set of equations, we
define:

Θ �cQ ε ≈ δ ⇐⇒ for all A ∈ Q,

for all h ∈ Hom(Fm,A), s.t. h[Var] ⊆ core(A)

if h(εi ) = h(δi ) for all εi ≈ δi ∈ Θ, then h(ε) = h(δ).
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Quasivarieties of Expanded Algebras

For any set of equations Σ = {εi (x) ≈ δi (x) : i ≤ n} we let:

Σ(x ,A) := {x ∈ A : A � εi (x) ≈ δi (x) for all i ≤ n}.

A class of expanded algebras K is (uniformly) equationally definable if there is
some finite set of equations Σ such that for all A ∈ K, core(A) = Σ(x ,A).

Theorem
Let Q be a class of expanded algebras whose underlying core is defined by Σ,
then we have the following:

1. For all B ∈ O(Q) we have core(B) = Σ(x ,B), for O ∈ {I, S,P,PU}.
2. For all O ∈ {I, S,P,PU} we have that �cQ

∧
i≤n εi ≈ δi → α ≈ β entails

�cO(Q)

∧
i≤n εi ≈ δi → α ≈ β.

3. The induced consequence relation �cQ is compact.
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Quasivarieties of Expanded Algebras

I An expanded algebra A is core-generated if A = 〈core(A)〉.

I A quasivariety Q is core-generated if Q = Q(K), where K is a class of
core-generated algebras.

I Given a class of expanded algebras Q, let QCG := {〈core(A)〉 : A ∈ Q}.

Let Thc(Q) be the set of quasi-equations true in some class of expanded
algebras Q under core semantics.

Theorem (Maltsev Theorem for Core-Generated Quasivarieties)

Let Q be a quasi-variety of expanded algebras and let A be core-generated, then:

A ∈ QCG ⇐⇒ A �c Thc(Q).
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Algebraizability of Weak Logics
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Algebraizability of Weak Logics

A weak logic ` is algebraizable if there are structural transformers
τ : Fm→ ℘(Eq) and ∆ : Eq→ ℘(Fm) and a core-generated, equationally
defined quasivariety Q such that:

Γ ` φ⇐⇒ τ [Γ] �cQ τ(φ) (Weak-Alg1)

∆[Θ] ` ∆(η, δ)⇐⇒ Θ �cQ η ≈ δ (Weak-Alg2)

φ a` ∆[τ(φ)] (Weak-Alg3)

η ≈ δ ≡c
Q τ [∆(η, δ)]. (Weak-Alg4)

We then say that Q is the equivalent algebraic semantics of `.
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Algebraizability of Weak Logics

Theorem (Uniqueness of Equivalent Semantics)

If (Q0, τ0,∆0,Σ0) and (Q1, τ1,∆1,Σ1) witness the algebraizability of a weak
logic `, then for i ∈ {0, 1}:

(1) Q0 = Q1 (3) ∆0(x , y) a` ∆1(x , y)

(2) τ0(x) ≡c
Qi
τ1(x) (4) Σ0 ≡c

Qi
Σ1.

Proof.
(sketch) Using the previous version of Maltsev’s theorem.
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Characterization of Algebraizability (i)

Let ` be a weak logic, we define its schematic fragment as follows:

Schm(`) := {(Γ, φ) : ∀σ ∈ Subst, σ[Γ] ` σ(φ)}.

We say that a weak logic ` is finitely representable if there is a finite set of
formulae Λ such that for all Γ ∪ {φ} ⊆ Fm:

Γ ` φ⇐⇒ (Γ ∪ At[Λ], φ) ∈ Schm(`).

Theorem
For a weak logic `, the following are equivalent:

1. ` is algebraizable;

2. Schm(`) is algebraizable and ` is finitely representable.

Proof (sketch).

I (⇒) Suppose (Q, τ,∆,Σ) algebraizes `, then verify that (Q, τ,∆)
algebraizes Schm(`) and ∆(Σ) finitely represents `.

I (⇐) Verify that (Q, τ,∆, τ(Λ)) algebraizes `.
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Characterization of Algebraizability (ii)

We recall the isomorphism theorem for algebraizable standard logics.

Let ` be a
standard logic and A an algebra, we fix the following notation:

I Fi`(A) is the lattice of deductive filters of ` over A, i.e. subsets F ⊆ A s.t:
Γ ` φ =⇒ ∀h ∈ Hom(Fm,A), h[Γ] ⊆ F entails h(φ) ∈ F ;

I ConQ(A) is the lattice of all congruences θ over A such that A/θ ∈ Q;

I Th(`) is the lattice of all (syntactic) theories over ` and Th(�Q) the lattice
of (semantical) theories over Q.

Theorem (Blok, Pigozzi)

Let ` be a standard logic and Q a quasi-variety, then the following are
equivalent:

1. ` is algebraizable with equivalent algebraic semantics Q;

2. Fi`(A) ∼= ConQ(A), for any algebra A;

3. Th(`) ∼= Th(�Q).
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Characterization of Algebraizability (iii)

Let ` be a weak logic, A be an expanded algebra, we extend the standard
framework in the natural way:

I Fi c`(A) is the lattice of core deductive filters of ` over A, i.e. subsets
F ⊆ A s.t: Γ ` φ =⇒ ∀h ∈ Homc(Fm,A), h[Γ] ⊆ F entails h(φ) ∈ F ;

I Conc
Q(A) is the lattice of all core congruences θ over A such that

〈core(A/θ)〉 ∈ Q;

I Th(`) is the lattice of all core (syntactic) theories over ` and Th(�Q) the
lattice of core (semantical) theories over Q.

When A has an equationally definable core and ` is finitely representable, the
previous definitions are equivalent to the following notions.

I FiΛ
`(A) is the lattice of deductive filters F ⊆ A of ` over A s.t. h[Λ] ⊆ F

for all h ∈ Hom(Fm,A).

I ConΣ
Q(A) is the lattice of all Q-congruences θ of A such that A/θ � Σ.

I ThΛ(`) is the lattice of all (syntactical) theories Γ over ` s.t. At[Λ] ⊆ Γ.
ThΣ(�Q) is the lattice of (semantical) theories Θ s.t. At[Σ] ⊆ Θ.
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Characterization of Algebraizability (iv)

Theorem (Isomorphism Theorem for Weak Logics)

Let ` be a weak logic and Q a core-generated quasi-variety of expanded algebras
with core defined by Σ. The following are equivalent:

1. ` is algebraized by (Q,Σ, τ,∆);

2. For every expanded algebra A, Fi`(A) ∼= ConQ(A) and there are finite
Λ ⊆ Fm and Σ ⊆ Eq such that Fi c`(A) = FiΛ

`(A) and
Conc

Q(A) = ConΣ
Q(A).

3. Th(Schm(`)) ∼= Th(�Q) and there are finite Λ ⊆ Fm, Σ ⊆ Eq s.t.
ThΛ(Schm(`)) = Th(`) and Th(�cQ) = ThΣ(�Q).
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Inquisitive logics InqB and InqI

Inquisitive (dependence) logics are typically defined via team semantics –
formulas are evaluated with respect to set of assignments.

Definition (Intuitionistic Inquisitive Logic)

We call an IPC formula standard if it is ∨-free.
Let α be a standard formula and φ, ψ — formulas in IPC.
Then InqI is axiomatized by:

InqI := (an axiomatization of) IPC

+

(α→ (φ ∨ ψ))→ ((α→ φ) ∨ (α→ ψ))

and is closed under the rule of modus ponens (MP).

We can obtain the classical variant InqB as InqI + {¬¬α→ α : α is standard},
closing under MP.

Fact
InqB and InqI are not closed under uniform substitution.
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Algebraizability of InqB

We recall the following facts from the literature (Ciardelli 2009; Bezhanishvili,
Grilletti, and Holliday 2019; Bezhanishvili, Grilletti, and Quadrellaro 2021):

I Schm(InqB) = ML and ML¬ = InqB;

I Every algebra in Var(ML) is core-generated by Σ = {x ≈ ¬¬x}.

Theorem
InqB is algebraizable.

Proof.
It suffices to consider the following witnesses:

I Var(ML);

I Σ := {x ≈ ¬¬x};
I τ(φ) = φ ≈ 1;

I ∆(x , y) = x ↔ y .
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Non-Algebraizability of InqI

Theorem
InqI is not algebraizable.

Proof.

I (sketch) Suppose InqI is algebraized by (Q, τ,∆,Σ). The standard logic of
Q, Schm(InqI), is an intermediate logic and algebraized by
(Q, φ ≈ 1, x ↔ y), for Q a subvariety of Heyting algebras.

I Over InqI, we have wlog Σ ⊆ {
∨

i≤n τi (x) ≈ 1 : τi is ∨ -free}. By DP
Σ ⊆ {τi (x) ≈ 1 : τi is ∨ -free}.

I For any suitable candidate τi (x), we show by the usual semantics of InqI
that InqI 0 τi (x), contradiction.
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Conclusions and Further Directions

What we have done so far:

I Introduced suitable notion of algebraizability for logics without uniform
substitution.

I Proved uniqueness of the equivalent algebraic semantics of weak logics and
a version of the isomorphism theorem.

I Showed that InqB is algebraizable and InqI is not.

What we should do next:

I Extension of our setting to non-algebraizable weak logics, e.g InqI.

I Applications to other logics without uniform substitution.
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Thank you for your attention!
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