David Fernández-Duque

ICS of the Czech Academy of Sciences Ghent University

TACL 2022

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

TACL 2011

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The perfect core

Theorem (Cantor-Bendixson)

Any closed subset of a Polish space is the disjoint union of a perfect set and a countable set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The perfect core

Theorem (Cantor-Bendixson)

Any closed subset of a Polish space is the disjoint union of a perfect set and a countable set.

Theorem (General C-B)

If X is any topological space and $A \subseteq X$, A has a maximal perfect subset, called its **perfect core.**

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The perfect core

Theorem (Cantor-Bendixson)

Any closed subset of a Polish space is the disjoint union of a perfect set and a countable set.

Theorem (General C-B)

If X is any topological space and $A \subseteq X$, A has a maximal perfect subset, called its **perfect core.**

The perfect core is an example of a **topological fixed point**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Unimodal language

Modal language \mathcal{L}_{\Diamond} :

 $\boldsymbol{p} ~|~ \neg \varphi ~|~ \varphi \wedge \psi ~|~ \Box \varphi$

Unimodal language

```
Modal language \mathcal{L}_{\Diamond}:
```

$$\boldsymbol{p} \mid \neg \varphi \mid \varphi \land \psi \mid \Box \varphi$$

Usual abbreviations:

$$\blacktriangleright \varphi \lor \psi := \neg (\neg \varphi \land \neg \psi)$$

$$\triangleright \Diamond \varphi := \neg \Box \neg \varphi$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Topological *c*-semantics of modal logic

If X = (X, c) is a topological space, a topological model is a tuple $(X, \llbracket \cdot \rrbracket)$ where $\llbracket \cdot \rrbracket : \mathcal{L}^{\Diamond}_{\mu} \to 2^{X}$ is such that

$$\llbracket \Box \varphi \rrbracket = i \llbracket \varphi \rrbracket \qquad \qquad \llbracket \Diamond \varphi \rrbracket := \boldsymbol{c} \llbracket \varphi \rrbracket$$

(日) (日) (日) (日) (日) (日) (日)

Topological *c*-semantics of modal logic

If X = (X, c) is a topological space, a topological model is a tuple $(X, \llbracket \cdot \rrbracket)$ where $\llbracket \cdot \rrbracket : \mathcal{L}^{\Diamond}_{\mu} \to 2^{X}$ is such that

$$\llbracket \Box \varphi \rrbracket = i \llbracket \varphi \rrbracket \qquad \qquad \llbracket \Diamond \varphi \rrbracket := c \llbracket \varphi \rrbracket$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modal logic S4:

$$\square(p \rightarrow q) \rightarrow (\squarep \rightarrow \squareq)$$

$$\squarep \rightarrow p$$

$$\squarep \rightarrow \square\squarep$$

$$\frac{\varphi}{\square\varphi}$$

If (W, \sqsubseteq) is a Kripke frame where \sqsubseteq is a preorder, the upwards-closed sets form a topology $\mathcal{U}_{\sqsubseteq}$ on W.

If (W, \sqsubseteq) is a Kripke frame where \sqsubseteq is a preorder, the upwards-closed sets form a topology $\mathcal{U}_{\sqsubseteq}$ on W.

• Kripke semantics for \sqsubseteq and topological semantics for $\mathcal{U}_{\sqsubseteq}$ coincide.

If (W, \sqsubseteq) is a Kripke frame where \sqsubseteq is a preorder, the upwards-closed sets form a topology $\mathcal{U}_{\sqsubseteq}$ on W.

Kripke semantics for ⊑ and topological semantics for U_⊑ coincide.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Every finite topological space is of this form.

If (W, \sqsubseteq) is a Kripke frame where \sqsubseteq is a preorder, the upwards-closed sets form a topology $\mathcal{U}_{\sqsubseteq}$ on W.

Kripke semantics for ⊑ and topological semantics for U_⊑ coincide.

(日) (日) (日) (日) (日) (日) (日)

Every finite topological space is of this form.

Theorem (McKinsey, Tarski, 1940's) S4 *is the logic of*

1. All topological spaces (with closure semantics)

If (W, \sqsubseteq) is a Kripke frame where \sqsubseteq is a preorder, the upwards-closed sets form a topology $\mathcal{U}_{\sqsubseteq}$ on W.

(ロ) (同) (三) (三) (三) (○) (○)

Every finite topological space is of this form.

Theorem (McKinsey, Tarski, 1940's) S4 *is the logic of*

- 1. All topological spaces (with closure semantics)
- 2. Finite transitive reflexive frames

If (W, \sqsubseteq) is a Kripke frame where \sqsubseteq is a preorder, the upwards-closed sets form a topology $\mathcal{U}_{\sqsubseteq}$ on W.

- Kripke semantics for ⊑ and topological semantics for U_⊑ coincide.
- Every finite topological space is of this form.

Theorem (McKinsey, Tarski, 1940's) S4 *is the logic of*

- 1. All topological spaces (with closure semantics)
- 2. Finite transitive reflexive frames
- 3. Any crowded metric space (Rasiowa and Sikorski, 1960's)

Language $\mathcal{L}^{\Diamond}_{\mu}$:

Add expressions $\mu p.\varphi(p)$ to the modal language, where *p* appears only **positively** in φ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Language $\mathcal{L}_{\mu}^{\Diamond}$:

Add expressions $\mu p.\varphi(p)$ to the modal language, where *p* appears only **positively** in φ .

• $\llbracket \mu p.\varphi(p) \rrbracket$ is the least fixed point of $A \mapsto \llbracket \varphi(A) \rrbracket$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Language $\mathcal{L}_{\mu}^{\Diamond}$:

Add expressions $\mu p.\varphi(p)$ to the modal language, where *p* appears only **positively** in φ .

• $\llbracket \mu p.\varphi(p) \rrbracket$ is the least fixed point of $A \mapsto \llbracket \varphi(A) \rrbracket$.

νρ.φ(ρ) := ¬µρ.¬φ(¬ρ) is the greatest fixed point of A ↦ [[φ(A)]].

(日) (日) (日) (日) (日) (日) (日)

Language $\mathcal{L}_{\mu}^{\Diamond}$:

Add expressions $\mu p.\varphi(p)$ to the modal language, where *p* appears only **positively** in φ .

• $\llbracket \mu p.\varphi(p) \rrbracket$ is the least fixed point of $A \mapsto \llbracket \varphi(A) \rrbracket$.

Example: Transitive closure:

$$\Diamond^*\varphi := \mu p.(\varphi \lor \Diamond p)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Results for the μ -calculus

Axiomatization of μ -K4: Extend the logic K by

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$$\blacktriangleright \varphi(\mu p.\varphi(p)) \to \mu p.\varphi(p)$$

$$\blacktriangleright \frac{\varphi(\theta) \to \theta}{\mu p.\varphi(p) \to \theta}$$

Results for the μ -calculus

Axiomatization of μ -K4: Extend the logic K by

$$\blacktriangleright \varphi(\mu p.\varphi(p)) \to \mu p.\varphi(p)$$

$$\blacktriangleright \ \frac{\varphi(\theta) \to \theta}{\mu p.\varphi(p) \to \theta}$$

Theorem (Kozen 1982)

The μ -calculus has the finite model property over the class of Kripke frames.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Results for the μ -calculus

Axiomatization of μ -K4: Extend the logic K by

$$\blacktriangleright \varphi(\mu p.\varphi(p)) \to \mu p.\varphi(p)$$

Theorem (Kozen 1982)

The μ -calculus has the finite model property over the class of Kripke frames.

Theorem (Walukiewicz 1995)

The μ -calculus is sound and complete for the class of Kripke frames.

The μ -calculus can also be defined on topological spaces.

The μ -calculus can also be defined on topological spaces.

Theorem

The μ -calculus over S4 (μ -S4) is sound and complete for the class of topological spaces.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The μ -calculus can also be defined on topological spaces.

Theorem

The μ -calculus over S4 (μ -S4) is sound and complete for the class of topological spaces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof idea.

Let φ^* be the result of replacing \Diamond by \Diamond^* , and apply Walukiewicz's theorem.

The μ -calculus can also be defined on topological spaces.

Theorem

The μ -calculus over S4 (μ -S4) is sound and complete for the class of topological spaces.

Proof idea.

Let φ^* be the result of replacing \Diamond by \Diamond^* , and apply Walukiewicz's theorem.

Theorem

The μ -calculus has the finite model property over the class of topological spaces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The μ -calculus can also be defined on topological spaces.

Theorem

The μ -calculus over S4 (μ -S4) is sound and complete for the class of topological spaces.

Proof idea.

Let φ^* be the result of replacing \Diamond by \Diamond^* , and apply Walukiewicz's theorem.

Theorem

The μ -calculus has the finite model property over the class of topological spaces.

Theorem (Goldblatt and Hodkinson, 2016)

 $\mu\text{-S4}$ is sound and strongly complete for the class of topological spaces.

Theorem (D'Agostino and Lenzi, 2010)

Every formula of the μ -calculus is equivalent to one in the alternation-free fragment over the class of transitive frames.

Theorem (D'Agostino and Lenzi, 2010)

Every formula of the μ -calculus is equivalent to one in the alternation-free fragment over the class of transitive frames.

Corollary

Every formula of the μ -calculus is topologically equivalent to an alternation-free one.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Define

$$\Diamond^{\infty}\{\varphi_1,\ldots,\varphi_n\}:=\nu p.\bigwedge \Diamond(p\land \varphi_i).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Define

$$\Diamond^{\infty}\{\varphi_{1},\ldots,\varphi_{n}\}:=\nu\boldsymbol{p}.\bigwedge\Diamond(\boldsymbol{p}\wedge\varphi_{i}).$$

 If (W, □) is a finite S4 frame and A₁,..., A_n ⊆ W, w ∈ [[◊[∞]{A₁,..., A_n}]] iff there is a cluster C □ w such that for each i ≤ n, A_i ∩ C ≠ Ø.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Define

$$\Diamond^{\infty}\{\varphi_{1},\ldots,\varphi_{n}\}:=\nu\boldsymbol{p}.\bigwedge\Diamond(\boldsymbol{p}\wedge\varphi_{i}).$$

- If (W, □) is a finite S4 frame and A₁,..., A_n ⊆ W, w ∈ [[◊[∞]{A₁,..., A_n}]] iff there is a cluster C □ w such that for each i ≤ n, A_i ∩ C ≠ Ø.
- 2. If (W, \sqsubseteq) is an arbitrary S4 frame, $w \in [\langle \Diamond^{\infty} \{A_1, \dots, A_n \}]]$ iff there is a path

 $W_0 \sqsubseteq W_1 \sqsubseteq W_2 \sqsubseteq \dots$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

such that $w_i \in A_i$ for infinitely many *j*.

Define

$$\Diamond^{\infty}\{\varphi_{1},\ldots,\varphi_{n}\}:=\nu\boldsymbol{p}.\bigwedge\Diamond(\boldsymbol{p}\wedge\varphi_{i}).$$

- If (W, □) is a finite S4 frame and A₁,..., A_n ⊆ W, w ∈ [[◊[∞]{A₁,..., A_n}]] iff there is a cluster C □ w such that for each i ≤ n, A_i ∩ C ≠ Ø.
- 2. If (W, \sqsubseteq) is an arbitrary S4 frame, $w \in [\langle \Diamond^{\infty} \{A_1, \dots, A_n \}]]$ iff there is a path

 $W_0 \sqsubseteq W_1 \sqsubseteq W_2 \sqsubseteq \dots$

such that $w_j \in A_j$ for infinitely many *j*.

Topologically, [[◊[∞]{A₁,..., A_n}]] is the largest subspace in which every A_i is dense.

Universality of tangle

Theorem (Dawar and Otto 2009)

Every formula of the μ -calculus is equivalent to a formula in $\mathcal{L}_{\Diamond\infty}^{\Diamond}$ over the class of transitive frames.

(ロ) (同) (三) (三) (三) (○) (○)

Universality of tangle

Theorem (Dawar and Otto 2009)

Every formula of the μ -calculus is equivalent to a formula in $\mathcal{L}_{\Diamond \infty}^{\Diamond}$ over the class of transitive frames.

Corollary

Every formula of the μ -calculus is equivalent to a formula in $\mathcal{L}_{\Diamond\infty}^{\Diamond}$ over the class of topological spaces.

(日) (日) (日) (日) (日) (日) (日)

Tangled modal logic

Define S4^{∞} by adding, for $\Phi = \{\varphi_1, \ldots, \varphi_n\}$,

$$\Diamond^{\infty} \Phi \to \bigwedge_{i} \Diamond \Big(\varphi_{i} \land \Diamond^{\infty} \Phi \Big) \qquad \qquad \frac{\theta \to \bigwedge_{i} \Diamond \Big(\varphi_{i} \land \theta \Big)}{\theta \to \Diamond^{\infty} \Phi}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Tangled modal logic

Define S4^{∞} by adding, for $\Phi = \{\varphi_1, \ldots, \varphi_n\}$,

$$\Diamond^{\infty} \Phi \to \bigwedge_{i} \Diamond \Big(\varphi_{i} \land \Diamond^{\infty} \Phi \Big) \qquad \qquad \frac{\theta \to \bigwedge_{i} \Diamond \Big(\varphi_{i} \land \theta \Big)}{\theta \to \Diamond^{\infty} \Phi}$$

1

`

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (F-D, 2011)

 $S4^\infty$ is sound and complete for

- the class of all topological spaces
- the class of all finite topological spaces

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \Big\{ x \in X : x \in c(A \setminus \{x\}) \Big\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \Big\{ x \in X : x \in c(A \setminus \{x\}) \Big\}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

d-Semantics: $[\diamond \varphi] := d [\varphi]$.

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \Big\{ x \in X : x \in c(A \setminus \{x\}) \Big\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

d-Semantics: $[\langle \phi \varphi \rangle] := d [[\varphi]].$

Weak transitivity axiom: $\varphi \land \Box \varphi \rightarrow \Box \Box \varphi$.

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \Big\{ x \in X : x \in c(A \setminus \{x\}) \Big\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

d-Semantics: $[\langle \phi \varphi \rangle] := d [[\varphi]].$

Weak transitivity axiom: $\varphi \land \Box \varphi \rightarrow \Box \Box \varphi$.

Topological interior: Definable by $\Box \varphi := \varphi \land \Box \varphi$.

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \Big\{ x \in X : x \in c(A \setminus \{x\}) \Big\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

d-Semantics: $[\langle \phi \varphi \rangle] := d [[\varphi]].$

Weak transitivity axiom: $\varphi \land \Box \varphi \rightarrow \Box \Box \varphi$.

Topological interior: Definable by $\Box \varphi := \varphi \land \Box \varphi$.

Warning: From now on, \Diamond is *d*, \Leftrightarrow is *c*.

Kuratowski 1920s: The *d*-semantics are more expressive than the *c*-semantics.

Kuratowski 1920s: The *d*-semantics are more expressive than the *c*-semantics.

Let $Kur := \Box(\Box p \lor \Box \neg p) \rightarrow (\Box p \lor \Box \neg p).$

Kuratowski 1920s: The *d*-semantics are more expressive than the *c*-semantics.

Let $Kur := \Box(\Box p \lor \Box \neg p) \rightarrow (\Box p \lor \Box \neg p).$

Then, $\mathbb{R}^2 \models Kur$ but $\mathbb{R} \not\models Kur$.

Kuratowski 1920s: The *d*-semantics are more expressive than the *c*-semantics.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $Kur := \Box(\Box p \lor \Box \neg p) \rightarrow (\Box p \lor \Box \neg p).$

Then, $\mathbb{R}^2 \models Kur$ but $\mathbb{R} \not\models Kur$.

Theorem (Shehtman, 1990) K4 + Kur is the logic of \mathbb{R}^n if $n \ge 2$.

Kuratowski 1920s: The *d*-semantics are more expressive than the *c*-semantics.

Let $Kur := \Box(\Box p \lor \Box \neg p) \rightarrow (\Box p \lor \Box \neg p).$

Then, $\mathbb{R}^2 \models Kur$ but $\mathbb{R} \not\models Kur$.

Theorem (Shehtman, 1990) K4 + Kur is the logic of \mathbb{R}^n if $n \ge 2$.

Theorem (F-D and Iliev, 2018) \mathcal{L}^{\diamond} and $\mathcal{L}^{\diamond}_{\mu}$ are both exponentially more succinct than \mathcal{L}^{\diamond}

Fact: K4 is not sound for the class of topological spaces!

Fact: K4 is not sound for the class of topological spaces!

Definition A space X is T_D if it satisfies $ddA \subseteq dA$ for all $A \subseteq X$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fact: K4 is not sound for the class of topological spaces!

Definition A space X is T_D if it satisfies $ddA \subseteq dA$ for all $A \subseteq X$.

A space is T_D iff every singleton is the intersection of a closed set and an open set.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fact: K4 is not sound for the class of topological spaces!

Definition A space X is T_D if it satisfies $ddA \subseteq dA$ for all $A \subseteq X$.

A space is T_D iff every singleton is the intersection of a closed set and an open set.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$\blacktriangleright T_0 \supseteq T_D \supseteq T_1 \supseteq T_2$$

Fact: K4 is not sound for the class of topological spaces!

Definition A space X is T_D if it satisfies $ddA \subseteq dA$ for all $A \subseteq X$.

A space is T_D iff every singleton is the intersection of a closed set and an open set.

(日) (日) (日) (日) (日) (日) (日)

$$\blacktriangleright T_0 \supseteq T_D \supseteq T_1 \supseteq T_2$$

So, \mathbb{R} , \mathbb{Q} , the Cantor space, ... are all T_D .

K4 frames as T_D spaces

Transitive frames do not necessarily coincide with their c-semantics/d-semantics.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

K4 frames as T_D spaces

Transitive frames do not necessarily coincide with their *c*-semantics/*d*-semantics.

If (W, \Box) is **transitive** and **irreflexive** then the Cantor derivative semantics on U_{\Box} coincides with the Kripke semantics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

K4 frames as T_D spaces

Transitive frames do not necessarily coincide with their *c*-semantics/*d*-semantics.

If (W, \Box) is **transitive** and **irreflexive** then the Cantor derivative semantics on U_{\Box} coincides with the Kripke semantics.

If (W, \Box) is any Kripke frame, its tree unwinding can thus be seen as a T_D space.

(日) (日) (日) (日) (日) (日) (日)

Theorem K4 *is the logic of*

All transitive Kripke frames.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Theorem K4 *is the logic of*

- All transitive Kripke frames.
- ► All finite trantitive Kripke frames.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem K4 *is the logic of*

- All transitive Kripke frames.
- > All finite trantitive Kripke frames.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

All T_D spaces.

Theorem K4 *is the logic of*

- All transitive Kripke frames.
- > All finite trantitive Kripke frames.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

All T_D spaces.

No topological FMP!

Theorem K4 *is the logic of*

- All transitive Kripke frames.
- All finite trantitive Kripke frames.
- All T_D spaces.

No topological FMP!

Theorem GL is the logic of finite T_D spaces:

 $\Box(\Box
ho
ightarrow
ho)
ightarrow \Box
ho$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Basic results

Theorem

 $\mu\text{-K4}$ is the logic of

- All transitive frames.
- ► All finite, transitive frames.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

► All T_D spaces.

Basic results

Theorem

 $\mu\text{-K4}$ is the logic of

- All transitive frames.
- ► All finite, transitive frames.
- All T_D spaces.

Theorem

Any μ -calculus formula is equivalent to an alternation-free formula over the class of T_D spaces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The tangled derivative

Recall:

$$\Diamond^{\infty}\{\varphi_{1},\ldots,\varphi_{n}\}:=\nu\boldsymbol{p}.\bigwedge\Diamond(\boldsymbol{p}\wedge\varphi_{i}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The tangled derivative

Recall:

$$\Diamond^{\infty}\{\varphi_{1},\ldots,\varphi_{n}\}:=\nu\boldsymbol{p}.\bigwedge\Diamond(\boldsymbol{p}\wedge\varphi_{i}).$$

Theorem Every formula of the μ -calculus is equivalent to a formula in $\mathcal{L}_{\Diamond\infty}^{\Diamond}$ over the class of T_D spaces with Cantor derivative.

・ロト・日本・日本・日本・日本・日本

Tangled derivative in K4 frames

A finite K4 frame (W, \Box) has two types of clusters:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- reflexive clusters
- irreflexive singletons

Tangled derivative in K4 frames

A finite K4 frame (W, \Box) has two types of clusters:

- reflexive clusters
- irreflexive singletons

 \Diamond^{∞} { A_1, \ldots, A_n } holds in *w* iff there is a **reflexive** cluster $C \supseteq w$ such that for each *i* $\leq n$, $A_i \cap C \neq \emptyset$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Tangled derivative in K4 frames

A finite K4 frame (W, \Box) has two types of clusters:

- reflexive clusters
- irreflexive singletons

 \Diamond^{∞} { A_1, \ldots, A_n } holds in *w* iff there is a **reflexive** cluster $C \supseteq w$ such that for each *i* $\leq n$, $A_i \cap C \neq \emptyset$.

Topologically, $[[\diamond^{\infty} \{A_1, \dots, A_n\}]]$ is the largest subspace *S* in which every A_i is **strictly** dense:

$$S \subseteq d(S \cap A_i)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Tangled closure vs. derivative

Not equivalent in general:

$$\otimes^{\infty} \Big\{ (-\infty, \mathbf{0}], [\mathbf{0}, \infty) \Big\}
eq \Diamond^{\infty} \Big\{ (-\infty, \mathbf{0}], [\mathbf{0}, \infty) \Big\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Tangled closure vs. derivative

Not equivalent in general:

$$\otimes^{\infty} \Big\{ (-\infty, \mathbf{0}], [\mathbf{0}, \infty) \Big\}
eq \Diamond^{\infty} \Big\{ (-\infty, \mathbf{0}], [\mathbf{0}, \infty) \Big\}$$

Goldblatt and Hodkinson, 2016: Over T_D spaces,

$${\boldsymbol{\diamondsuit}}^{\infty} \Phi \equiv \bigwedge \Phi \lor {\boldsymbol{\diamondsuit}} \bigwedge \Phi \lor {\boldsymbol{\diamondsuit}}^{\infty} \Phi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A McKinsey-Tarski theorem

Theorem (Goldblatt, Hodkinson 2016) If X is any crowded metric space, the logics 1. $K4^{\infty} + Kur$

A McKinsey-Tarski theorem

Theorem (Goldblatt, Hodkinson 2016) If X is any crowded metric space, the logics

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 1. $K4^{\infty} + Kur$
- **2.** μ -K4 + Kur

are strongly complete for X.

A McKinsey-Tarski theorem

Theorem (Goldblatt, Hodkinson 2016) If X is any crowded metric space, the logics

- 1. $K4^{\infty} + Kur$
- **2**. μ -K4 + Kur

are strongly complete for X.

Note that *Kur* need not be **sound** for *X*!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
A relation $\Box \subseteq W \times W$ is weakly transitive if $w \Box v \Box u$ implies that $w \sqsubseteq u$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A relation $\Box \subseteq W \times W$ is **weakly transitive** if $w \Box v \Box u$ implies that $w \sqsubseteq u$.

Theorem (Esakia, 2000's)

The logic wK4 is sound and complete for the class of

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A relation $\Box \subseteq W \times W$ is **weakly transitive** if $w \Box v \Box u$ implies that $w \sqsubseteq u$.

Theorem (Esakia, 2000's)

The logic wK4 is sound and complete for the class of

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

weakly transitive frames

A relation $\Box \subseteq W \times W$ is **weakly transitive** if $w \Box v \Box u$ implies that $w \sqsubseteq u$.

Theorem (Esakia, 2000's)

The logic wK4 is sound and complete for the class of

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- weakly transitive frames
- finite irreflexive wK4 frames

A relation $\Box \subseteq W \times W$ is **weakly transitive** if $w \Box v \Box u$ implies that $w \sqsubseteq u$.

Theorem (Esakia, 2000's)

The logic wK4 is sound and complete for the class of

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- weakly transitive frames
- finite irreflexive wK4 frames
- finite topological spaces

A relation $\Box \subseteq W \times W$ is **weakly transitive** if $w \Box v \Box u$ implies that $w \sqsubseteq u$.

Theorem (Esakia, 2000's)

The logic wK4 is sound and complete for the class of

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- weakly transitive frames
- finite irreflexive wK4 frames
- finite topological spaces
- all topological spaces

The weakly transitive closure is **not** μ -**definable**

The weakly transitive closure is **not** μ -definable

Completeness

The weakly transitive closure is **not** μ -definable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Completeness

The weakly transitive closure is **not** μ -definable

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Completeness

The weakly transitive closure is **not** μ -definable

Completeness

- Alternation-elimination
- Expressive completeness of tangle

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The weakly transitive closure is **not** μ -definable

Completeness

- Alternation-elimination
- Expressive completeness of tangle

do not follow from classic μ -calculus results!

(ロ) (同) (三) (三) (三) (○) (○)

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame.

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame.

But: The **truth lemma** fails for \mathcal{M}_c over the μ -calculus: it may be that $\mu p.\varphi(p) \in T$ but $T \notin \llbracket \mu p.\varphi(p) \rrbracket_c$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame.

But: The **truth lemma** fails for \mathcal{M}_c over the μ -calculus: it may be that $\mu p.\varphi(p) \in T$ but $T \notin [\![\mu p.\varphi(p)]\!]_c$

Definition (Fine 1985)

Say that *T* is φ -final if $\varphi \in T$ and whenever $S \supseteq T$ and $\varphi \in S$, it follows that $T \supseteq S$.

(日) (日) (日) (日) (日) (日) (日)

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame.

But: The **truth lemma** fails for \mathcal{M}_c over the μ -calculus: it may be that $\mu p.\varphi(p) \in T$ but $T \notin [\![\mu p.\varphi(p)]\!]_c$

Definition (Fine 1985)

Say that *T* is φ -final if $\varphi \in T$ and whenever $S \supseteq T$ and $\varphi \in S$, it follows that $T \supseteq S$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Say that *T* is Σ -final if *T* is φ -final for some $\varphi \in \Sigma$.

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame.

But: The **truth lemma** fails for \mathcal{M}_c over the μ -calculus: it may be that $\mu p.\varphi(p) \in T$ but $T \notin \llbracket \mu p.\varphi(p) \rrbracket_c$

Definition (Fine 1985)

Say that *T* is φ -final if $\varphi \in T$ and whenever $S \supseteq T$ and $\varphi \in S$, it follows that $T \supseteq S$.

Say that *T* is Σ -final if *T* is φ -final for some $\varphi \in \Sigma$.

Final submodel: $\mathcal{M}_c^{\Sigma} = (W_c^{\Sigma}, \Box_c^{\Sigma}, \llbracket \cdot \rrbracket_c^{\Sigma})$ is the submodel of Σ -final theories.

Truth lemma for the final submodel

Lemma (Σ -Final Truth Lemma)

Let Σ be finite and closed under subformulas (and a few other operations, such as single negation).

(日) (日) (日) (日) (日) (日) (日)

Then, for $T \in W_c^{\Sigma}$ and $\varphi \in \Sigma$, $T \in \llbracket \varphi \rrbracket_c^{\Sigma}$ iff $\varphi \in W$.

Truth lemma for the final submodel

Lemma (Σ-Final Truth Lemma)

Let Σ be finite and closed under subformulas (and a few other operations, such as single negation).

Then, for $T \in W_c^{\Sigma}$ and $\varphi \in \Sigma$, $T \in \llbracket \varphi \rrbracket_c^{\Sigma}$ iff $\varphi \in W$.

Theorem (Baltag, Bezhanishvili, F-D, 2021)

 The logic μ-wK4 is sound and complete for the class of wK4 frames.

(日) (日) (日) (日) (日) (日) (日)

Truth lemma for the final submodel

Lemma (Σ -Final Truth Lemma)

Let Σ be finite and closed under subformulas (and a few other operations, such as single negation).

Then, for $T \in W_c^{\Sigma}$ and $\varphi \in \Sigma$, $T \in \llbracket \varphi \rrbracket_c^{\Sigma}$ iff $\varphi \in W$.

Theorem (Baltag, Bezhanishvili, F-D, 2021)

- The logic μ-wK4 is sound and complete for the class of wK4 frames.
- 2. The μ -calculus has the FMP over the class of wK4 frames.

A cofinal subframe of (W, \Box) is a subframe based on unbounded $U \subseteq W$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A cofinal subframe of (W, \Box) is a subframe based on unbounded $U \subseteq W$.

A logic is cofinal if any cofinal subframe of a $\Lambda\text{-frame}$ is a $\Lambda\text{-frame}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A cofinal subframe of (W, \Box) is a subframe based on unbounded $U \subseteq W$.

A logic is cofinal if any cofinal subframe of a Λ -frame is a Λ -frame.

Theorem (Baltag, Bezhanishvili, F-D)

If Λ is a canonical, cofinal subframe extension of wK4, then μ - Λ is sound and complete for the class of finite Λ frames.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A cofinal subframe of (W, \Box) is a subframe based on unbounded $U \subseteq W$.

A logic is cofinal if any cofinal subframe of a Λ -frame is a Λ -frame.

Theorem (Baltag, Bezhanishvili, F-D)

If Λ is a canonical, cofinal subframe extension of wK4, then μ - Λ is sound and complete for the class of finite Λ frames.

This includes μ -S4, μ -K4, and many other examples.

Theorem (Baltag, Bezhanishvili, F-D)

 The logic μ-wK4 is sound and complete for the class of topological spaces with Cantor derivative.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Baltag, Bezhanishvili, F-D)

- 1. The logic μ -wK4 is sound and complete for the class of topological spaces with Cantor derivative.
- 2. The logic μ -K4 is sound and complete for the class of T_D spaces with Cantor derivative.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (Baltag, Bezhanishvili, F-D)

- 1. The logic μ -wK4 is sound and complete for the class of topological spaces with Cantor derivative.
- 2. The logic μ -K4 is sound and complete for the class of T_D spaces with Cantor derivative.
- 3. The logic μ -S4 is sound and complete for the class of T_D spaces with topological closure.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Baltag, Bezhanishvili, F-D)

- 1. The logic μ -wK4 is sound and complete for the class of topological spaces with Cantor derivative.
- 2. The logic μ -K4 is sound and complete for the class of T_D spaces with Cantor derivative.
- 3. The logic μ -S4 is sound and complete for the class of T_D spaces with topological closure.
- The logic μ-wK4T₀ (which I won't define here) is sound and complete for the class of T₀ spaces with topological derivative.

Alternation elimination

Theorem (Pacheco and Tanaka, 2022)

Every formula of the μ -calculus is equivalent to an alternation-free formula over the class of topological spaces and over the class of wK4-frames.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Alternation elimination

Theorem (Pacheco and Tanaka, 2022)

Every formula of the μ -calculus is equivalent to an alternation-free formula over the class of topological spaces and over the class of wK4-frames.

D'Agostino and Lenzi's result does not apply, but the **proof** does (with some care).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Alternation elimination

Theorem (Pacheco and Tanaka, 2022)

Every formula of the μ -calculus is equivalent to an alternation-free formula over the class of topological spaces and over the class of wK4-frames.

D'Agostino and Lenzi's result does not apply, but the **proof** does (with some care).

Question: Is the tangled fragment expressively complete?

(日) (日) (日) (日) (日) (日) (日)

Expressive incompleteness

• Tangled closure: \diamond^{∞}

• Tangled derivative: \Diamond^{∞}

Expressive incompleteness

- Tangled closure: \diamond^{∞}
- Tangled derivative: \Diamond^{∞}

Theorem (F-D, Gougeon)

1. \Diamond^{∞} is not definable in $\mathcal{L}_{\Diamond \Diamond^{\infty}}$ over the class of T_D spaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Expressive incompleteness

- Tangled closure: \diamond^{∞}
- Tangled derivative: \Diamond^{∞}

Theorem (F-D, Gougeon)

1. \Diamond^{∞} is not definable in $\mathcal{L}_{\Diamond\Diamond^{\infty}}$ over the class of T_D spaces 2. \diamond^{∞} is not definable in $\mathcal{L}_{\Diamond\Diamond^{\infty}}$ over the class of T_0 spaces

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Undefinability of $\Diamond^{\infty}\{\top\}$ in $\mathcal{L}_{\diamond^{\infty}}^{\Diamond}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Given
$$\Phi = (\varphi_1, \dots, \varphi_n)$$
,
 $\mathbf{\Phi}^{\infty} \Phi := \nu p. \bigvee_{i \leq n} \left(\otimes (\varphi_i \wedge \mathbf{\Phi}^{\infty} \Phi) \wedge \bigwedge_{j \neq i} \Diamond (\varphi_j \wedge \mathbf{\Phi}^{\infty} \Phi) \right)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Given
$$\Phi = (\varphi_1, \dots, \varphi_n)$$
,
 $\mathbf{\Phi}^{\infty} \Phi := \nu p. \bigvee_{i \le n} \left(\otimes (\varphi_i \land \mathbf{\Phi}^{\infty} \Phi) \land \bigwedge_{j \ne i} \Diamond (\varphi_j \land \mathbf{\Phi}^{\infty} \Phi) \right)$

Theorem (F-D, Gougeon)

 \diamond^{∞} and \diamond^{∞} are definable in $\mathcal{L}_{\diamond \diamond^{\infty} \diamond^{\infty}}$ over the class of topological spaces.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Given
$$\Phi = (\varphi_1, \dots, \varphi_n)$$
,
 $\mathbf{\Phi}^{\infty} \Phi := \nu p. \bigvee_{i \le n} \left(\otimes (\varphi_i \land \mathbf{\Phi}^{\infty} \Phi) \land \bigwedge_{j \ne i} \Diamond (\varphi_j \land \mathbf{\Phi}^{\infty} \Phi) \right)$

Theorem (F-D, Gougeon)

 \diamond^{∞} and \diamond^{∞} are definable in $\mathcal{L}_{\diamond \diamond^{\infty} \diamond^{\infty}}$ over the class of topological spaces.

$$\Diamond^{\infty}\{\varphi_1,\ldots,\varphi_n\}:= \bigstar^{\infty}(\varphi_1,\varphi_1,\ldots,\varphi_n,\varphi_n)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Given
$$\Phi = (\varphi_1, \dots, \varphi_n)$$
,
 $\mathbf{\Phi}^{\infty} \Phi := \nu p. \bigvee_{i \le n} \left(\otimes (\varphi_i \land \mathbf{\Phi}^{\infty} \Phi) \land \bigwedge_{j \ne i} \Diamond (\varphi_j \land \mathbf{\Phi}^{\infty} \Phi) \right)$

Theorem (F-D, Gougeon)

 \diamond^{∞} and \diamond^{∞} are definable in $\mathcal{L}_{\diamond \diamond^{\infty} \diamond^{\infty}}$ over the class of topological spaces.

$$\Diamond^{\infty}\{\varphi_1,\ldots,\varphi_n\}:= \bigstar^{\infty}(\varphi_1,\varphi_1,\ldots,\varphi_n,\varphi_n)$$

Theorem (F-D, Gougeon) ϕ^{∞} is not definable in $\mathcal{L}_{\Diamond \Diamond^{\infty} \Diamond^{\infty}}$ over the class of topological spaces. Undefinability of $\blacklozenge^{\infty}(p,q,r)$ in $\mathcal{L}_{\diamondsuit^{\infty}\diamondsuit^{\infty}}^{\Diamond}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Much of the classic work on the μ-calculus largely carries over to its topological variant, but breaks down when dropping the T_D assumption.

- Much of the classic work on the μ-calculus largely carries over to its topological variant, but breaks down when dropping the T_D assumption.
- However, proofs from scratch are simpler than their Kripke analogues.

- Much of the classic work on the μ-calculus largely carries over to its topological variant, but breaks down when dropping the T_D assumption.
- However, proofs from scratch are simpler than their Kripke analogues.
- Well-studied tangled fragments are no longer expressively complete over arbitrary spaces.

(ロ) (同) (三) (三) (三) (○) (○)

- Much of the classic work on the μ-calculus largely carries over to its topological variant, but breaks down when dropping the T_D assumption.
- However, proofs from scratch are simpler than their Kripke analogues.
- Well-studied tangled fragments are no longer expressively complete over arbitrary spaces.

Question: Is there also a simple, expressively complete fragment for all topological spaces?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Much of the classic work on the μ-calculus largely carries over to its topological variant, but breaks down when dropping the T_D assumption.
- However, proofs from scratch are simpler than their Kripke analogues.
- Well-studied tangled fragments are no longer expressively complete over arbitrary spaces.

Question: Is there also a simple, expressively complete fragment for all topological spaces?

Open problems abound! (Connectedness, polytopological µ-calculus, definable classes...)

- Much of the classic work on the μ-calculus largely carries over to its topological variant, but breaks down when dropping the T_D assumption.
- However, proofs from scratch are simpler than their Kripke analogues.
- Well-studied tangled fragments are no longer expressively complete over arbitrary spaces.

Question: Is there also a simple, expressively complete fragment for all topological spaces?

Open problems abound! (Connectedness, polytopological µ-calculus, definable classes...)

Obrigado!