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The perfect core

Theorem (Cantor-Bendixson)
Any closed subset of a Polish space is the disjoint union of a
perfect set and a countable set.

Theorem (General C-B)
If X is any topological space and A ⊆ X, A has a maximal
perfect subset, called its perfect core.

The perfect core is an example of a topological fixed point.
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Modal language L♢:

p | ¬φ | φ ∧ ψ | □φ

Usual abbreviations:

▶ φ ∨ ψ := ¬(¬φ ∧ ¬ψ)

▶ ♢φ := ¬□¬φ
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Topological c-semantics of modal logic

If X = (X , c) is a topological space, a topological model is a
tuple (X , J·K) where J·K : L♢

µ → 2X is such that

J□φK = i JφK J♢φK := c JφK

Modal logic S4:
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Topological completeness of S4

If (W ,⊑) is a Kripke frame where ⊑ is a preorder, the
upwards-closed sets form a topology U⊑ on W .

▶ Kripke semantics for ⊑ and topological semantics for U⊑
coincide.

▶ Every finite topological space is of this form.

Theorem (McKinsey, Tarski, 1940’s)
S4 is the logic of

1. All topological spaces (with closure semantics)
2. Finite transitive reflexive frames
3. Any crowded metric space (Rasiowa and Sikorski, 1960’s)
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The µ-calculus

Language L♢
µ:

Add expressions µp.φ(p) to the modal language, where p
appears only positively in φ.

▶ Jµp.φ(p)K is the least fixed point of A 7→ Jφ(A)K.

▶ νp.φ(p) := ¬µp.¬φ(¬p) is the greatest fixed point of
A 7→ Jφ(A)K.

Example: Transitive closure:

♢∗φ := µp.(φ ∨ ♢p)
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Results for the µ-calculus

Axiomatization of µ-K4: Extend the logic K by

▶ φ(µp.φ(p)) → µp.φ(p)

▶
φ(θ) → θ

µp.φ(p) → θ

Theorem (Kozen 1982)
The µ-calculus has the finite model property over the class of
Kripke frames.

Theorem (Walukiewicz 1995)
The µ-calculus is sound and complete for the class of Kripke
frames.
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The µ-calculus can also be defined on topological spaces.

Theorem
The µ-calculus over S4 (µ-S4) is sound and complete for the
class of topological spaces.

Proof idea.
Let φ∗ be the result of replacing ♢ by ♢∗, and apply
Walukiewicz’s theorem.

Theorem
The µ-calculus has the finite model property over the class of
topological spaces.

Theorem (Goldblatt and Hodkinson, 2016)
µ-S4 is sound and strongly complete for the class of topological
spaces.
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Hierarchy collapse

Theorem (D’Agostino and Lenzi, 2010)
Every formula of the µ-calculus is equivalent to one in the
alternation-free fragment over the class of transitive frames.

Corollary
Every formula of the µ-calculus is topologically equivalent to an
alternation-free one.
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The tangled closure

Define
♢∞{φ1, . . . , φn} := νp.

∧
♢(p ∧ φi).

1. If (W ,⊑) is a finite S4 frame and A1, . . . ,An ⊆ W ,
w ∈ J♢∞{A1, . . . ,An}K iff there is a cluster C ⊒ w such that
for each i ≤ n, Ai ∩ C ̸= ∅.

2. If (W ,⊑) is an arbitrary S4 frame, w ∈ J♢∞{A1, . . . ,An}K iff
there is a path

w0 ⊑ w1 ⊑ w2 ⊑ . . .

such that wj ∈ Ai for infinitely many j .

3. Topologically, J♢∞{A1, . . . ,An}K is the largest subspace in
which every Ai is dense.
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Topological d-semantics

If X is a topological space and A ⊆ X , define the Cantor
derivative or set of limit points of A by

dA =
{

x ∈ X : x ∈ c(A \ {x})
}
.

d-Semantics: J♢φK := d JφK.

Weak transitivity axiom: φ ∧□φ→ □□φ.

Topological interior: Definable by �φ := φ ∧□φ.

Warning: From now on, ♢ is d , ⟐ is c.
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Expressivity of d-semantics

Kuratowski 1920s: The d-semantics are more expressive than
the c-semantics.

Let Kur := □(�p ∨ �¬p) → (□p ∨□¬p).

Then, R2 |= Kur but R ̸|= Kur .

Theorem (Shehtman, 1990)
K4 + Kur is the logic of Rn if n ≥ 2.

Theorem (F-D and Iliev, 2018)
L⟐ and L♢

µ are both exponentially more succinct than L♢
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TD spaces

Fact: K4 is not sound for the class of topological spaces!

Definition
A space X is TD if it satisfies ddA ⊆ dA for all A ⊆ X .

▶ A space is TD iff every singleton is the intersection of a
closed set and an open set.

▶ T0 ⊇ TD ⊇ T1 ⊇ T2

So, R, Q, the Cantor space, . . . are all TD.
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K4 frames as TD spaces

Transitive frames do not necessarily coincide with their
c-semantics/d-semantics.

If (W ,⊏) is transitive and irreflexive then the Cantor derivative
semantics on U⊏ coincides with the Kripke semantics.

If (W ,⊏) is any Kripke frame, its tree unwinding can thus be
seen as a TD space.
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▶ All transitive Kripke frames.

▶ All finite trantitive Kripke frames.
▶ All TD spaces.

No topological FMP!

Theorem
GL is the logic of finite TD spaces:

□(□p → p) → □p
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Tangled derivative in K4 frames

A finite K4 frame (W ,⊏) has two types of clusters:
▶ reflexive clusters
▶ irreflexive singletons

♢∞{A1, . . . ,An} holds in w iff there is a reflexive cluster C ⊇ w
such that for each i ≤ n, Ai ∩ C ̸= ∅.

Topologically, J♢∞{A1, . . . ,An}K is the largest subspace S in
which every Ai is strictly dense:

S ⊆ d(S ∩ Ai)
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The final submodel

Let Mc = (Wc ,⊏c , J·Kc) be the canonical model for µ-wK4. This
model is based on a wK4 frame.

But: The truth lemma fails for Mc over the µ-calculus: it may
be that µp.φ(p) ∈ T but T ̸∈ Jµp.φ(p)Kc

Definition (Fine 1985)
Say that T is φ-final if φ ∈ T and whenever S ⊒ T and φ ∈ S, it
follows that T ⊒ S.

Say that T is Σ-final if T is φ-final for some φ ∈ Σ.

Final submodel: MΣ
c = (WΣ
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Truth lemma for the final submodel

Lemma (Σ-Final Truth Lemma)
Let Σ be finite and closed under subformulas (and a few other
operations, such as single negation).

Then, for T ∈ WΣ
c and φ ∈ Σ, T ∈ JφKΣc iff φ ∈ W.

Theorem (Baltag, Bezhanishvili, F-D, 2021)

1. The logic µ-wK4 is sound and complete for the class of
wK4 frames.

2. The µ-calculus has the FMP over the class of wK4 frames.
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Theorem (Baltag, Bezhanishvili, F-D)

1. The logic µ-wK4 is sound and complete for the class of
topological spaces with Cantor derivative.

2. The logic µ-K4 is sound and complete for the class of TD
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3. The logic µ-S4 is sound and complete for the class of TD
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4. The logic µ-wK4T0 (which I won’t define here) is sound and
complete for the class of T0 spaces with topological
derivative.
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Theorem (Pacheco and Tanaka, 2022)
Every formula of the µ-calculus is equivalent to an
alternation-free formula over the class of topological spaces
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D’Agostino and Lenzi’s result does not apply, but the proof
does (with some care).

Question: Is the tangled fragment expressively complete?
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Concluding remarks
▶ Much of the classic work on the µ-calculus largely carries

over to its topological variant, but breaks down when
dropping the TD assumption.

▶ However, proofs from scratch are simpler than their Kripke
analogues.

▶ Well-studied tangled fragments are no longer expressively
complete over arbitrary spaces.

Question: Is there also a simple, expressively complete
fragment for all topological spaces?

▶ Open problems abound! (Connectedness, polytopological
µ-calculus, definable classes. . . )
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