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Basic definitions (wrt. `-spectrum)

A subset I , in an Abelian `-group G , is an `-ideal if it is an
order-convex subgroup closed under ∨ (equivalently, ∧).

It is prime if I 6= G and x ∧ y ∈ I ⇒ {x , y} ∩ I 6= ∅.

Spec` G
def
= {prime `-ideals of G}, topologized by the

closed sets the {P ∈ Spec` G | X ⊆ P} for X ⊆ G
(hull-kernel topology).

The topological space Spec` G is called the `-spectrum
of G .
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Basic definitions (wrt. real spectrum)

A subset, in a commutative unital ring A, is a cone if it is
both an additive and a multiplicative submonoid of A,
containing {x2 | x ∈ A}.

A cone P is prime if A = P ∪ (−P) and the “support”
P ∩ (−P) is a prime ideal of the ring A. It follows that
−1 /∈ P (otherwise 1 ∈ P ∩ (−P)).

Specr A
def
= {prime cones of A}, endowed with the topology

generated by all open subsets {P ∈ Specr A | a /∈ P} for
a ∈ A, and we call Specr A the real spectrum of A.

Specr A is homeomorphic to the Zariski spectrum of the
real closure (Schwartz 1989) of the ring A.
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Basic definitions (spectral spaces)

Specialization preorder on a topological space X : x 6 y if
y ∈ {x}.

A topological space X is spectral if it is T0 (i.e., 6 is
antisymmetric), every irreducible closed set is some {x},
and

◦
K(X )

def
= {compact open subsets of X} is a basis of

open sets in X , closed under finite intersections (thus X is
compact).

A spectral space X is completely normal if (X ,6) is a root
system, that is, each {x} is a chain wrt 6.

Proposition (Keimel 1971; Coste and Roy 1981)

All Spec` G , for an Abelian `-group G with unit, and Specr A,
for a commutative unital ring A, are completely normal spectral
spaces.
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Stone duality

A map f : X → Y (between spectral spaces) is spectral if

f −1[V ] ∈
◦
K(X ) whenever V ∈

◦
K(Y ).

Hence spectral ⇒
continuous.

A spectral subspace of Y is X ⊆ Y such that the inclusion
map X ↪→ Y is spectral.

Theorem (Stone 1933)

The category of all spectral spaces, with spectral maps, is dual
to the category of all bounded distributive lattices, with
0, 1-lattice homomorphisms.

Extended to generalized spectral spaces, with spectral
maps, and distributive 0-lattices, with cofinal 0-lattice
homomorphisms (Rump and Yang 2009).
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Stone duality (cont’d)

The dual of a spectral space X is the lattice
◦
K(X )

def
= {compact opens of X}.

The dual of a bounded distributive lattice D is
SpecD

def
= {prime ideals of D}.

Spectral subspaces are dual to surjective lattice
homomorphisms.
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Statement of the problem

For a class X of spectral spaces, denote by SX the class of
all spectral subspaces of members of X.

CN
def
= {completely normal spectral spaces}.

`
def
= {X | (∃G Abelian `-group)(X ∼= Spec` G )}.

R
def
= {X | (∃A commutative unital ring)(X ∼= Specr A)}.

Problem

Determine all possible containments and non-containments
between CN = SCN, `, S`, R, SR, in every cardinality (i.e.,

according to card
◦
K(X )).
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⊆ between CN, `, R, S`, SR: the SPANNER

κ
def
= card

◦
K(X ); red line � sharp bound;

• = black hole (SR = ` = R = S` = SR)

CN

S` CN = S`

SR SR •
` R ` R

κ ≥ ℵ2 κ = ℵ1 κ ≤ ℵ0
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Preliminary steps (Stone duality)

Using Stone duality, we reduce everything to problems
about bounded distributive lattices (and bounded
homomorphisms).

By Monteiro (1954), complete normality translates to the
lattice-theoretical condition

(∀a, b)(∃x , y)(a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0) .

That property is obviously closed under homomorphic
images. Hence, CN = SCN.

10/33
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Preliminary steps (`-spectrum)

For an Abelian `-group G , the Stone dual of Spec` G is
the distributive 0-lattice Id`c G = {〈a〉` | a ∈ G+}.

Here 〈a〉` = {x ∈ G | (∃n ∈ N)(|x | ≤ na)}.
Thus questions about Spec` G translate to questions
about lattices Id`c G , for Abelian `-groups G .

11/33
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Thus questions about Spec` G translate to questions
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Points of the Brumfiel spectrum SpecB A of an f-ring A
are `-ideals P (i.e., both additive `-ideals and ring ideals)
that are also prime as ring ideals (thus also as `-ideals).

The Stone dual of SpecB A is the lattice Idr
c A of all radical

`-ideals of A.

Brumfiel spectra are the same as real spectra
(Specr A

∼= SpecB F(A), where F(A) f-ring-envelope of A;
SpecB A ∼= {Q ∈ Specr A | A+ ⊆ Q} via P 7→ A+ + P,
closed subspace of a real spectrum, thus a real spectrum).

Thus questions about real spectra translate to questions
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c A, for f-rings A.
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The other trivial spanner containment

It is SR ⊆ S` (equivalently, R ⊆ S`).

This means that every Idr
c A (for a f-ring A) is a

homomorphic image of Id`c G for some Abelian `-group G
with unit.

Take G
def
= {x ∈ A | (∃n ∈ N)(|x | ≤ n · 1)} with induced

`-group structure, and Id`c G � Idr
c A, 〈a〉` 7→ 〈a〉r.
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Condensates for one arrow: a basis for a few
spanner non-containments

We are given a homomorphism ϕ : A→ B of first-order
structures (over a vocabulary v).

The condensate construction on ϕ means to concentrate
in a single object the “repetition” of ϕ, κ times where κ is
an infinite cardinal.

Formally, Cond(ϕ, κ) is the v-structure with universe

{(x , y) ∈ A× Bκ | y is almost constant and y∞ = ϕ(x)} .

Under quite general conditions, if κ is large enough and
the arrow ϕ is not representable wrt a given functor, then
neither is the object Cond(ϕ, κ).
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Applications to ` $ S` and R $ SR

The maps ϕ will be 0, 1-homomorphisms between bounded
distributive lattices, best described by their Birkhoff dual
maps (here, isotone maps between finite chains).

For ` $ S`, consider Cond(ϕ, ω1) where ϕ is the dual map
of {1} → {1, 2}, 1 7→ 1 (not closed).

For R $ SR, consider Cond(ϕ, ω1) where ϕ is the dual
map of {1, 2} → {1, 2, 3}, 1 7→ 1, 2 7→ 3 (not convex).
(Solves, in the negative, a 2012 problem by Mellor and
Tressl, asking whether a spectral subspace of a real
spectrum is a real spectrum).
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An example for ` 6⊆ SR

Involves the lexicographical power Z〈ωop
1 〉 (a totally

ordered Abelian group).

The elements of Z〈ωop
1 〉 are finite linear combinations

x =
∑

i<n xit
αi where each xi ∈ Z, each αi < ω1, and the

indeterminate t is “infinitely small”.

Then consider the Abelian `-group F on generators a, b
and relations a, b ≥ 0.

The desired counterexample is the Abelian `-group

G
def
= Z〈ωop

1 〉 ×lex F (lexicographical product).

Theorem (W 2017)

There is no commutative unital ring A such that Spec` G is a
spectral subspace of Specr A.
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An example for S` $ CN (and more, e.g. CBD)

Relies on a non-commutative diagram ~A of Abelian `-groups:

A123(a, a′, b, c)

A12(a, b) A13(a′, c) A23(b, c)

A1(a) A2(b) A3(c)

A∅ = {0}

0 ≤ a ≤ a′ ≤ 2a; b ≥ 0; c ≥ 0.
All arrows inclusion maps, except A1(a)→A13(a′, c) via a 7→ a′.
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An example for S` $ CN (cont’d)

For every set I , Id`c
~A I is a commutative diagram (indexed

by {0, 1}3×I ) of completely normal distributive 0-lattices.

For every {0, 1}3-indexed commutative diagram ~G of
Abelian `-groups, Id`c

~A 6∼= Id`c G .

By using the condensate machinery (Gillibert and W 2011;
here not just for one arrow, but for the whole
{0, 1}3-indexed diagram Id`c

~A), this enables to construct a
completely normal distributive 0-lattice (very roughly
speaking, “ω2 ⊗ Id`c

~A ”), of cardinality ℵ2, which is not a
homomorphic image of Id`c G for any Abelian `-group G .

Further extensions of the condensate construction (W
2021), together with Tuuri’s Interpolation Theorem
(1992), then make it possible to prove that

Id`c G
def
= {D | (∃G Abelian `-group)(D ∼= Id`c G )} is not

co-projective over L∞∞.
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by {0, 1}3×I ) of completely normal distributive 0-lattices.

For every {0, 1}3-indexed commutative diagram ~G of
Abelian `-groups, Id`c

~A 6∼= Id`c G .

By using the condensate machinery (Gillibert and W 2011;
here not just for one arrow, but for the whole
{0, 1}3-indexed diagram Id`c

~A), this enables to construct

a
completely normal distributive 0-lattice (very roughly
speaking, “ω2 ⊗ Id`c

~A ”), of cardinality ℵ2, which is not a
homomorphic image of Id`c G for any Abelian `-group G .

Further extensions of the condensate construction (W
2021), together with Tuuri’s Interpolation Theorem
(1992), then make it possible to prove that

Id`c G
def
= {D | (∃G Abelian `-group)(D ∼= Id`c G )} is not

co-projective over L∞∞.
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Moving towards• (← I mean, the black one)

Theorem (W 2019)

Every (at most) countable completely normal distributive
0-lattice is isomorphic to Id`c G for some Abelian `-group G
with unit.

Hence every second countable, completely normal spectral
space is homeomorphic to Spec` G for some Abelian
`-group G with unit (i.e., “` = CN on countable”).

In fact, G can be taken a vector lattice over any given
countable totally ordered division ring k (`-ideals then
need be closed under scalar multiplication; the countability
assumption on k cannot be dispensed with).
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Idea of the proof (` = CN on countable)

A lattice homomorphism ϕ : A→ B is closed if whenever
a0, a1 ∈ A and b ∈ B, if ϕ(a0) ≤ ϕ(a1) ∨ b then ∃x ∈ A
such that a0 ≤ a1 ∨ x and ϕ(x) ≤ b.

For any `-homomorphism f : G → H between `-groups,
the map Id`c f : Id`c G → Id`cH, 〈a〉` 7→ 〈f (a)〉` is closed.

Conversely, any surjective closed lattice homomorphism
ϕ : Id`c G � D induces Id`c(G/I ) ∼= D where

I
def
= {x ∈ G | ϕ(〈x〉`) = 0}.

Let L = {a0, a1, a2 . . . } be a countable, completely normal
bounded distributive lattice.

Let F`(ω)
def
= free Abelian `-group on ω. It suffices to

construct a surjective closed lattice homomorphism
ϕ : Id`c F`(ω)� L (because then, L ∼= Id`c

(
F`(ω)/I

)
for a

suitable `-ideal I ).
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Idea of the proof (` = CN on countable, cont’d)

Construct ϕ : Id`c F`(ω)� L, by iteratively defining an
ascending sequence of 0, 1-lattice homomorphisms
ϕn : OpFn → L for suitable finite sublattices OpFn of
Id`c F`(ω).

For any F ⊆ Z(ω), OpF denotes the 0, 1-sublattice of
P
(
Z(ω)

)
generated by all

[[f > 0]]
def
= {x ∈ Z(ω) | 〈f | x〉 > 0} where f ∈ F ∪ (−F).

Then set Op− F
def
= OpF \ {Z(ω)}.

By Baker-Beynon duality, Id`c F`(ω) ∼= Op− Z(ω).

Let Z(ω) = {fn | n < ω}.
Given ϕn : OpFn → L, we find an extension
ϕn+1 : OpFn+1 → L, with Fn ⊆ Fn+1, as follows.
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Idea of the proof (` = CN on countable, cont’d 2)

Domain step: if n ≡ 0 (mod 3), then
Fn+1 = Fn ∪ {fbn/3c} and pick any extension
ϕn+1 : OpFn+1 → L (requires a nontrivial
lattice-theoretical technical lemma for existence).

Range step: if n ≡ 1 (mod 3), then Fn+1 = Fn ∪{δk} for
large enough k, then pick the extension [[δk > 0]] 7→ abn/3c,
[[δk < 0]] 7→ 0 (easy, because then OpFn+1

∼= OpFn ∗ J2).

Closure step: if n ≡ 2 (mod 3), then Fn+1 is a large
enough finite subset of Z(ω) containing Fn such that all
“closure defects” ϕn(X ) ≤ ϕn(Y ) ∨ ak , where
X ,Y ∈ OpFn and k ≤ n, are corrected in Fn+1 (the
hardest part of the argument).
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Further feeding the (black)•: R = CN on
countable

Proceeds in a similar fashion as the argument for ` = CN
on countable, with more ingredients added. We fix a
countable real-closed field k.

The basic features of the lattices OpF need to be
extended to the case where F consists of affine
functionals, restricted to convex subsets of any kd .

Triangulation Theorem (Bochnak, Coste, and Roy 1987?)

Given semi-algebraic sets S0, . . . ,Sl ⊆ S ⊆ kd with S closed
bounded, there are a simplicial complex K in kd and a
semi-algebraic homeomorphism τ : S → |K| such that
each τ [Si ] is partitioned (i.e., union of open simplices) by K.
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R = CN on countable (cont’d)

The following improvement of the Triangulation Theorem is
needed:

Normal Triangulation Theorem (Baro 2010)

Let K be a simplicial complex of kd and let S1, . . . , Sl be
semi-algebraic subsets of |K|. Then there are a triangulation
(L, ψ) of (|K|; S1, . . . ,Sl) such that L is a subdivision of K and
ψ[S ] = S for each open simplex of K.

“Straightening up the semi-algebraic sets Si while keeping the
open simplices of K intact.”
Then the role of the lattices OpF is played by images of
lattices Op(F,Ω) (relativization of OpF to a convex subset Ω)
under semi-algebraic homeomorphisms. Induction step taken
care of via the Normal Triangulation Theorem.
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(L, ψ) of (|K|; S1, . . . ,Sl) such that L is a subdivision of K and
ψ[S ] = S for each open simplex of K.

“Straightening up the semi-algebraic sets Si while keeping the
open simplices of K intact.”
Then the role of the lattices OpF is played by images of
lattices Op(F,Ω) (relativization of OpF to a convex subset Ω)
under semi-algebraic homeomorphisms. Induction step taken
care of via the Normal Triangulation Theorem.
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Stating R = CN for countable (and more)

Theorem (W 2021)

Let k be a countable formally real field (−1 6=
∑

i x
2
i ). Then

every countable completely normal bounded distributive lattice
is isomorphic to Idr

c A for some (commutative unital) f-ring and
k-algebra A.

The countability of k cannot be dispensed with (W 2021).

Corollary

Every second countable completely normal spectral space is
homeomorphic to the real spectrum of some commutative
unital ring.

27/33



Spectra and
subspectra

arising from
`-groups and
commutative

rings

Basic
definitions

Stone duality

The problem

Preliminary
steps

Non-
containments
(ℵ1 and ℵ2)

Remaining
identifications
(ℵ0 and ℵ1)

Stating R = CN for countable (and more)

Theorem (W 2021)

Let k be a countable formally real field (−1 6=
∑

i x
2
i ). Then

every countable completely normal bounded distributive lattice
is isomorphic to Idr

c A for some (commutative unital) f-ring and
k-algebra A.

The countability of k cannot be dispensed with (W 2021).

Corollary

Every second countable completely normal spectral space is
homeomorphic to the real spectrum of some commutative
unital ring.

27/33



Spectra and
subspectra

arising from
`-groups and
commutative

rings

Basic
definitions

Stone duality

The problem

Preliminary
steps

Non-
containments
(ℵ1 and ℵ2)

Remaining
identifications
(ℵ0 and ℵ1)

Stating R = CN for countable (and more)

Theorem (W 2021)

Let k be a countable formally real field (−1 6=
∑

i x
2
i ). Then

every countable completely normal bounded distributive lattice
is isomorphic to Idr

c A for some (commutative unital) f-ring and
k-algebra A.

The countability of k cannot be dispensed with (W 2021).

Corollary

Every second countable completely normal spectral space is
homeomorphic to the real spectrum of some commutative
unital ring.

27/33



Spectra and
subspectra

arising from
`-groups and
commutative

rings

Basic
definitions

Stone duality

The problem

Preliminary
steps

Non-
containments
(ℵ1 and ℵ2)

Remaining
identifications
(ℵ0 and ℵ1)

The remaining identification: CN = S` at ℵ1

Theorem (Ploščica and W 2022)

Every completely normal bounded distributive lattice with ≤ ℵ1

elements is a homomorphic image of Id`c G for some Abelian
`-group G with unit.

Again, this extends to vector lattices over countable totally
ordered division rings k. The countability of k cannot be
dispensed with (W 2021).

Corollary

Every completely normal spectral space, with ≤ ℵ1 compact
open sets, can be embedded as a spectral subspace into
Spec` G for some Abelian `-group G with unit.
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Idea of the proof

Write a completely normal bounded distributive lattice L
with ℵ1 elements as an ascending union
L =

⋃
(Lξ | ξ < ω1) for countable completely normal

bounded sublattices Lξ.

Iteratively represent all subdiagrams (Lξ | ξ < α), for
α < ω1, as homomorphic images of k-vector lattices
diagrams (k given countable totally ordered division ring).

The next slide describes what the induction step looks like.
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Idea of the proof (cont’d)

For I ⊆ J countably infinite, D ⊆ k(J) finite, a ∈ k(J), and
a completely normal bounded distributive lattice L, we
need to extend a 0, 1-lattice homomorphism
f : Op(k(I ) ∪D,k(J))→ L to a lattice homomorphism
g : Op(k(I ) ∪D ∪ {a},k(J))→ L.

This is done as in the finite case (i.e., extend
f : Op(D,k(J))→ L with D finite), via a more general
lattice-theoretical extension lemma. A key point is that
the Boolean algebra Bool(k(I ) ∪D,k(J)) (generated by
Op(k(I ) ∪D,k(J))) is relatively complete in
Bool(k(J),k(J)).

There is no longer any need to consider the closure step.
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A few references (logic, category theory)

1 J. Adámek and J. Rosický, Locally Presentable and
Accessible Categories, London Mathematical Society
Lecture Notes Series 189, Cambridge University Press,
Cambridge, 1994.

2 P. Gillibert and F. Wehrung, From Objects to Diagrams
for Ranges of Functors, Springer Lecture Notes 2029,
Springer, Heidelberg, 2011.

3 H.M. Tuuri, Relative separation theorems for Lκ+κ, Notre
Dame J. Formal Logic 33 (1992), no. 3, 383–401.

4 F. Wehrung, From non-commutative diagrams to
anti-elementary classes, J. Math. Logic 21, no. 2 (2021),
2150011.

5 F. Wehrung, Projective classes as images of accessible
functors, J. Logic Comput., to appear, 45 p.

31/33



Spectra and
subspectra

arising from
`-groups and
commutative

rings

Basic
definitions

Stone duality

The problem

Preliminary
steps

Non-
containments
(ℵ1 and ℵ2)

Remaining
identifications
(ℵ0 and ℵ1)

A few references (spectra)

1 F. Wehrung, Spectral spaces of countable Abelian
lattice-ordered groups, Trans. Amer. Math. Soc. 371
(2019), no. 3, 2133–2158.

2 F. Wehrung, Cevian operations on distributive lattices, J.
Pure Appl. Algebra 224 (2020), no. 4, 106202, 23 p.

3 F. Wehrung, Real spectra and `-spectra of algebras and
vector lattices over countable fields, J. Pure Appl. Algebra
226 (2022), no. 4, Paper No. 106861, 25 p.

4 F. Wehrung, Real spectrum versus `-spectrum via Brumfiel
spectrum, Algebr. Represent. Theory, to appear, 22 p.

5 M. Ploščica and F. Wehrung, Spectral subspaces of
spectra of Abelian lattice-ordered groups in size aleph one,
preprint, in preparation.
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Thanks for your attention!
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