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Background

The starting point of point-free topology is the adjunction

Top ⊥ Loc

Sob SpLoc

Ω

Σ

∼=

Sobriety is an important property in the theory of locales (e.g., it
allows one to reconstruct a space from its lattice of open sets). But
there is also the equally important TD-axiom. A space X is TD if for
every x ∈ X, there is an open x ∈ U with U− {x} open.
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Actually, it is well known that sobriety and the TD-axiom are in a
certain sense dual to each other.

For example,

X is sober ⇐⇒ 6 ∃ non-trivial ι : X ↪→ Y such that Ω(ι) is an isomorphism.

X is TD ⇐⇒ 6 ∃ non-trivial ι : Y ↪→ X such that Ω(ι) is an isomorphism.
There are pairs of parallel results for sober spaces and for
TD-spaces. For example,

• One can also reconstruct a TD-space from its lattice of open
sets.

• Given a space X consider the natural map

ϕ : P(X) −→ { spatial sublocales of Ω(X) }.

Then X is sober i� ϕ is surjective, and X is TD i� ϕ is injective.

In this context, it is natural whether there is a similar categorical
framework as the classical duality between spaces and frames.
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Background

I B. Banaschewski and A. Pultr Pointfree aspects of the TD axiom
of classical topology, Quaestiones Mathematicae 33 2010.

There is an adjunction

TopD ⊥ LocD

TopD TDSpLocD

Ω

Σ′

∼=

Here TopD is the category of TD-spaces and continuous maps, and
LocD is certain non-full subcategory of Loc.

Because Ω is full and faithful, we may regard LocD has a category of
generalized TD-spaces.
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Background

Let L be a frame.

• A p 6= 1 is called covered prime if
∧
i xi = p =⇒ xi = p for some

i. Every covered prime is obviously a prime, and every maximal
element is a covered prime. Denote
ptD(L) := {p ∈ L | p is a covered prime.}

• Localic maps always send prime elements into prime elements.
But the analogous assertion for covered primes is not true.

• A localic map f : L→ M is D-localic if

p ∈ ptD(L) =⇒ f (p) ∈ ptD(M).

If every prime in M is covered, then it is trivially satisfied (e.g. M
is the topology of a sober TD-space).

• Their left adjoints are called frame D-homomorphisms.
• Define the category LocD: Objects: locales. Morphisms: D-localic

maps.
• We will also consider its dual category, FrmD, of frames and
D-homomorphisms.
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Background

• Set Σ′a = {p ∈ ptD(L) | a 6≤ p }.

Then

Σ′(L) =
(
ptD(L), {Σ′a | a ∈ L }

)
is a TD-space which yields the TD-spectrum functor
Σ′ : LocD → TopD.

• A locale L is TD-spatial if L ∼= Ω(X) for a TD-space X.
• We also denote by TDSpLocD the category of TD-spatial locales

and D-localic maps between them.

TopD ⊥ LocD

TopD TDSpLocD

Ω

Σ′

∼=
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Aim of the talk:

to study the category LocD, specially its lattices of
regular subobjects, and provide some applications in point-free
topology.

I I. A., J. Gutiérrez García, On the categorical behaviour of locales
and D-localic maps, Quaestiones Mathematicae (2022).

I I. A., A.L. Suarez, The coframe of D-sublocales and the
TD-duality, Topology and its Applications (2021).
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Limits in LocD

• Infinite products do not generally exist in LocD.
• However, LocD is closed under finite products in Loc.
• Equalizers in LocD are precisely embeddings of D-sublocales.

Definition
A sublocale S ⊆ L is a D-sublocale if ptD(S) ⊆ ptD(L) — i.e., if and
only if the embedding S ↪→ L belongs to LocD.
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Classical duality TD-duality

Proposition
The regular subobjects of a
locale L in Loc are precisely the
sublocales of L.

Proposition
The regular subobjects of a
locale L in LocD are precisely the
D-sublocales of L.

Proposition
The system S(L) of all
sublocales of L is a coframe,
and the map

cL : L→ S(L)op

is a frame homomorphism.

Proposition
The system SD(L) of all
D-sublocales of L is a coframe
and the map

cL : L→ SD(L)op

is a frame D-homomorphism.
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The system of D-sublocales

Actually we have a bit more:

Theorem
SD(L) is a dense subcolocale of S(L). In particular, it is a
zero-dimensional coframe.
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zero-dimensional coframe.
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Some examples of D-sublocales:

1. All joins of complemented sublocales are D-sublocales. In
particular, open, closed, complemented, locally closed
sublocales are D-sublocales.

2. Every pointless sublocale is a D-sublocale.
3. The diagonal sublocale is a D-sublocale of the square L⊕ L.
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Functoriality

Classical duality
The assignment L 7→ S(L)op can be made into a functor
S(−)op : Frm→ Frm naturally — i.e., for every frame homomorphism
f , the following square is commutative:

S(L)op S(M)op

L Mf

cL

S(f)op

cM

TD-duality
Say that a frame homomorphism lifts if there is another frame
homomorphism SD(f ) such that the following square commutes:

SD(L)op SD(M)op

L Mf

cL

SD(f)op

cM
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Do morphisms in FrmD admit lifts?

• Surjections: A frame surjection L� S lifts i� it is a
D-homomorphism.

• Monomorphisms: However, one can construct an open
D-homomorphism between TD-spatial frames which does not
lift.

The construction SD(L) is not functorial in general.
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An application to TD-spatiality

Classical duality TD-duality

A frame L is said to be
totally spatial if every sublocale
of L is spatial.

Similarly, we will say that a
frame L is totally TD-spatial
if every sublocale of L is TD-
spatial.

Theorem (Niefield-Rosenthal)
The following are equivalent
for a frame L:
(i) L is totally spatial.

(ii) S(L)op is spatial.

Theorem
The following are equivalent
for a frame L:
(i) L is totally TD-spatial.

(ii) SD(L)op is TD-spatial.
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Actually we can add one more condition

Theorem
The following are equivalent for a frame L:

(i) L is totally TD-spatial.
(ii) SD(L)op is TD-spatial.

(iii) Every D-sublocale of L is TD-spatial.

Example
The Alexandro� topology on the natural numbers is totally
TD-spatial. But not every prime is covered.

This situation cannot happen in the T1-case. If every sublocale is
T1-spatial, then every prime is automatically maximal!
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Thank you!
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