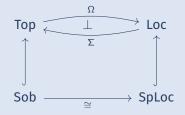
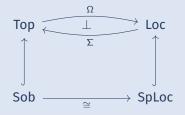
Generalized subspaces in the duality of T_D -spaces

TACL 2022

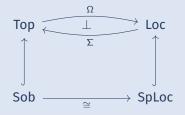
Igor Arrieta

University of Coimbra & UPV/EHU Parts of the talk are joint work with Javier Gutiérrez García and Anna Laura Suarez

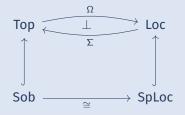




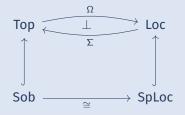
Sobriety is an important property in the theory of locales



Sobriety is an important property in the theory of locales (e.g., it allows one to reconstruct a space from its lattice of open sets).



Sobriety is an important property in the theory of locales (e.g., it allows one to reconstruct a space from its lattice of open sets). But there is also the equally important T_D -axiom.



Sobriety is an important property in the theory of locales (e.g., it allows one to reconstruct a space from its lattice of open sets). But there is also the equally important T_D -axiom. A space X is T_D if for every $x \in X$, there is an open $x \in U$ with $U - \{x\}$ open.

X is sober $\iff \not\exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is sober $\iff \exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is $T_D \iff A$ non-trivial $\iota: Y \hookrightarrow X$ such that $\Omega(\iota)$ is an isomorphism.

X is sober $\iff \exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is $T_D \iff \nexists$ non-trivial $\iota: Y \hookrightarrow X$ such that $\Omega(\iota)$ is an isomorphism. There are pairs of parallel results for sober spaces and for T_D -spaces.

X is sober $\iff \exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is $T_D \iff \not\exists$ non-trivial $\iota: Y \hookrightarrow X$ such that $\Omega(\iota)$ is an isomorphism. There are pairs of parallel results for sober spaces and for T_D -spaces. For example,

X is sober $\iff \exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is $T_D \iff \not\exists$ non-trivial $\iota: Y \hookrightarrow X$ such that $\Omega(\iota)$ is an isomorphism. There are pairs of parallel results for sober spaces and for T_D -spaces. For example,

• One can also reconstruct a *T_D*-space from its lattice of open sets.

X is sober $\iff \exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is $T_D \iff \not\exists$ non-trivial $\iota: Y \hookrightarrow X$ such that $\Omega(\iota)$ is an isomorphism. There are pairs of parallel results for sober spaces and for T_D -spaces. For example,

- One can also reconstruct a *T_D*-space from its lattice of open sets.
- Given a space X consider the natural map

 $\varphi \colon \mathcal{P}(X) \longrightarrow \{ \text{ spatial sublocales of } \Omega(X) \}.$

X is sober $\iff \exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is $T_D \iff \not\exists$ non-trivial $\iota: Y \hookrightarrow X$ such that $\Omega(\iota)$ is an isomorphism. There are pairs of parallel results for sober spaces and for T_D -spaces. For example,

- One can also reconstruct a *T_D*-space from its lattice of open sets.
- Given a space X consider the natural map

 $\varphi \colon \mathcal{P}(X) \longrightarrow \{ \text{ spatial sublocales of } \Omega(X) \}.$

Then X is sober iff φ is surjective,

X is sober $\iff \exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is $T_D \iff \not\exists$ non-trivial $\iota: Y \hookrightarrow X$ such that $\Omega(\iota)$ is an isomorphism. There are pairs of parallel results for sober spaces and for T_D -spaces. For example,

- One can also reconstruct a *T_D*-space from its lattice of open sets.
- Given a space X consider the natural map

 $\varphi \colon \mathcal{P}(X) \longrightarrow \{ \text{ spatial sublocales of } \Omega(X) \}.$

Then X is sober iff φ is surjective, and X is T_D iff φ is injective.

X is sober $\iff \exists$ non-trivial $\iota: X \hookrightarrow Y$ such that $\Omega(\iota)$ is an isomorphism.

X is $T_D \iff \not\exists$ non-trivial $\iota: Y \hookrightarrow X$ such that $\Omega(\iota)$ is an isomorphism. There are pairs of parallel results for sober spaces and for T_D -spaces. For example,

- One can also reconstruct a *T_D*-space from its lattice of open sets.
- Given a space X consider the natural map

 $\varphi \colon \mathcal{P}(X) \longrightarrow \{ \text{ spatial sublocales of } \Omega(X) \}.$

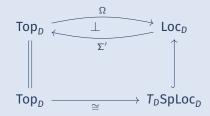
Then X is sober iff φ is surjective, and X is T_D iff φ is injective.

In this context, it is natural whether there is a similar categorical framework as the classical duality between spaces and frames.

 B. Banaschewski and A. Pultr Pointfree aspects of the T_D axiom of classical topology, Quaestiones Mathematicae 33 2010.

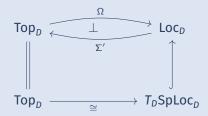
- B. Banaschewski and A. Pultr Pointfree aspects of the T_D axiom of classical topology, Quaestiones Mathematicae 33 2010.
- There is an adjunction

- B. Banaschewski and A. Pultr Pointfree aspects of the T_D axiom of classical topology, Quaestiones Mathematicae 33 2010.
- There is an adjunction



 B. Banaschewski and A. Pultr Pointfree aspects of the T_D axiom of classical topology, Quaestiones Mathematicae 33 2010.

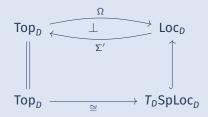
There is an adjunction



Here Top_D is the category of T_D -spaces and continuous maps, and Loc_D is certain non-full subcategory of Loc.

 B. Banaschewski and A. Pultr Pointfree aspects of the T_D axiom of classical topology, Quaestiones Mathematicae 33 2010.

There is an adjunction



Here Top_D is the category of T_D -spaces and continuous maps, and Loc_D is certain non-full subcategory of Loc.

Because Ω is full and faithful, we may regard Loc_D has a category of generalized T_D -spaces.

Let *L* be a frame.

Let *L* be a frame.

• A $p \neq 1$ is called **covered prime** if $\bigwedge_i x_i = p \implies x_i = p$ for some *i*.

Let *L* be a frame.

• A $p \neq 1$ is called **covered prime** if $\bigwedge_i x_i = p \implies x_i = p$ for some *i*. Every covered prime is obviously a prime, and every maximal element is a covered prime.

Let *L* be a frame.

A p ≠ 1 is called covered prime if ∧_i x_i = p ⇒ x_i = p for some i. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote pt_D(L) := {p ∈ L | p is a covered prime.}

Let *L* be a frame.

- A p ≠ 1 is called covered prime if ∧_i x_i = p ⇒ x_i = p for some i. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote pt_D(L) := {p ∈ L | p is a covered prime.}
- Localic maps always send prime elements into prime elements.

Let *L* be a frame.

- A p ≠ 1 is called covered prime if ∧_i x_i = p ⇒ x_i = p for some i. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote pt_D(L) := {p ∈ L | p is a covered prime.}
- Localic maps always send prime elements into prime elements. But the analogous assertion for covered primes is not true.

Let *L* be a frame.

- A p ≠ 1 is called covered prime if ∧_i x_i = p ⇒ x_i = p for some i. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote pt_D(L) := {p ∈ L | p is a covered prime.}
- Localic maps always send prime elements into prime elements. But the analogous assertion for covered primes is not true.
- A localic map $f: L \rightarrow M$ is *D*-localic if

 $p \in \operatorname{pt}_D(L) \implies f(p) \in \operatorname{pt}_D(M).$

Let *L* be a frame.

- A $p \neq 1$ is called **covered prime** if $\bigwedge_i x_i = p \implies x_i = p$ for some *i*. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote $pt_D(L) := \{p \in L \mid p \text{ is a covered prime.}\}$
- Localic maps always send prime elements into prime elements. But the analogous assertion for covered primes is not true.
- A localic map $f: L \rightarrow M$ is *D*-localic if

 $p \in \operatorname{pt}_D(L) \implies f(p) \in \operatorname{pt}_D(M).$

Let *L* be a frame.

- A p ≠ 1 is called covered prime if ∧_i x_i = p ⇒ x_i = p for some i. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote pt_D(L) := {p ∈ L | p is a covered prime.}
- Localic maps always send prime elements into prime elements. But the analogous assertion for covered primes is not true.
- A localic map $f: L \rightarrow M$ is *D*-localic if

 $p \in \operatorname{pt}_D(L) \implies f(p) \in \operatorname{pt}_D(M).$

If every prime in *M* is covered, then it is trivially satisfied (e.g. *M* is the topology of a sober *T*_D-space).

• Their left adjoints are called **frame** *D***-homomorphisms**.

Let *L* be a frame.

- A p ≠ 1 is called covered prime if ∧_i x_i = p ⇒ x_i = p for some i. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote pt_D(L) := {p ∈ L | p is a covered prime.}
- Localic maps always send prime elements into prime elements. But the analogous assertion for covered primes is not true.
- A localic map $f: L \rightarrow M$ is *D*-localic if

 $p \in \operatorname{pt}_D(L) \implies f(p) \in \operatorname{pt}_D(M).$

- Their left adjoints are called **frame** *D***-homomorphisms**.
- Define the category Loc_D: Objects:

Let *L* be a frame.

- A p ≠ 1 is called covered prime if ∧_i x_i = p ⇒ x_i = p for some i. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote pt_D(L) := {p ∈ L | p is a covered prime.}
- Localic maps always send prime elements into prime elements. But the analogous assertion for covered primes is not true.
- A localic map $f: L \rightarrow M$ is *D*-localic if

 $p \in \operatorname{pt}_D(L) \implies f(p) \in \operatorname{pt}_D(M).$

- Their left adjoints are called **frame** *D***-homomorphisms**.
- Define the category Loc_D: Objects: locales. Morphisms:

Let *L* be a frame.

- A p ≠ 1 is called covered prime if ∧_i x_i = p ⇒ x_i = p for some i. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote pt_D(L) := {p ∈ L | p is a covered prime.}
- Localic maps always send prime elements into prime elements. But the analogous assertion for covered primes is not true.
- A localic map $f: L \to M$ is **D-localic** if

 $p \in \operatorname{pt}_D(L) \implies f(p) \in \operatorname{pt}_D(M).$

- Their left adjoints are called **frame** *D***-homomorphisms**.
- Define the category Loc_D: Objects: locales. Morphisms: D-localic maps.

Let *L* be a frame.

- A $p \neq 1$ is called **covered prime** if $\bigwedge_i x_i = p \implies x_i = p$ for some *i*. Every covered prime is obviously a prime, and every maximal element is a covered prime. Denote $pt_D(L) := \{p \in L \mid p \text{ is a covered prime.}\}$
- Localic maps always send prime elements into prime elements. But the analogous assertion for covered primes is not true.
- A localic map $f: L \to M$ is **D-localic** if

 $p \in \operatorname{pt}_D(L) \implies f(p) \in \operatorname{pt}_D(M).$

- Their left adjoints are called **frame** *D***-homomorphisms**.
- Define the category Loc_D: Objects: locales. Morphisms: *D*-localic maps.
- We will also consider its dual category, Frm_D, of frames and D-homomorphisms.

• Set $\Sigma'_a = \{ p \in \mathsf{pt}_{D}(L) \mid a \not\leq p \}.$

• Set $\Sigma'_a = \{ p \in \mathsf{pt}_{\mathcal{D}}(L) \mid a \not\leq p \}$. Then

 $\Sigma'(L) = (\operatorname{pt}_D(L), \{ \Sigma'_a \mid a \in L \})$

is a T_D -space which yields the T_D -spectrum functor Σ' : $Loc_D \rightarrow Top_D$.

Background

• Set $\Sigma'_a = \{ p \in \mathsf{pt}_{D}(L) \mid a \not\leq p \}$. Then

 $\Sigma'(L) = (\operatorname{pt}_D(L), \{ \Sigma'_a \mid a \in L \})$

is a T_D -space which yields the T_D -spectrum functor $\Sigma' : \operatorname{Loc}_D \to \operatorname{Top}_D$.

• A locale *L* is T_D -spatial if $L \cong \Omega(X)$ for a T_D -space *X*.

Background

• Set $\Sigma'_a = \{ p \in \mathsf{pt}_{D}(L) \mid a \not\leq p \}$. Then

 $\Sigma'(L) = (\operatorname{pt}_D(L), \{ \Sigma'_a \mid a \in L \})$

is a T_D -space which yields the T_D -spectrum functor $\Sigma' : \operatorname{Loc}_D \to \operatorname{Top}_D$.

- A locale *L* is T_D -spatial if $L \cong \Omega(X)$ for a T_D -space *X*.
- We also denote by T_D SpLoc_D the category of T_D -spatial locales and D-localic maps between them.

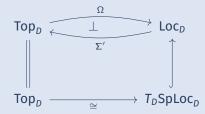
Background

• Set $\Sigma'_a = \{ p \in \mathsf{pt}_{D}(L) \mid a \not\leq p \}$. Then

 $\Sigma'(L) = \left(\mathsf{pt}_{D}(L), \{ \Sigma'_{a} \mid a \in L \}\right)$

is a T_D -space which yields the T_D -spectrum functor $\Sigma' : \operatorname{Loc}_D \to \operatorname{Top}_D$.

- A locale *L* is T_D -spatial if $L \cong \Omega(X)$ for a T_D -space *X*.
- We also denote by T_DSpLoc_D the category of T_D-spatial locales and D-localic maps between them.



Aim of the talk:

Aim of the talk: to study the category Loc_D, specially its lattices of regular subobjects, and provide some applications in point-free topology.

Aim of the talk: to study the category Loc_D, specially its lattices of regular subobjects, and provide some applications in point-free topology.

- ▶ I. A., J. Gutiérrez García, On the categorical behaviour of locales and *D*-localic maps, *Quaestiones Mathematicae* (2022).
- ► I. A., A.L. Suarez, The coframe of *D*-sublocales and the *T_D*-duality, *Topology and its Applications* (2021).

Limits in Loc_D

• Infinite products do not generally exist in Loc_D.

- Infinite products do not generally exist in Loc_D.
- However, Loc_D is closed under finite products in Loc.

- Infinite products do not generally exist in Loc_D.
- However, Loc_D is closed under finite products in Loc.
- Equalizers in Loc_D are precisely embeddings of *D*-sublocales.

- Infinite products do not generally exist in Loc_D.
- However, Loc_D is closed under finite products in Loc.
- Equalizers in Loc_D are precisely embeddings of *D*-sublocales.

Definition

A sublocale $S \subseteq L$ is a *D*-sublocale if $pt_D(S) \subseteq pt_D(L)$

- Infinite products do not generally exist in Loc_D.
- However, Loc_D is closed under finite products in Loc.
- Equalizers in Loc_D are precisely embeddings of D-sublocales.

Definition

A sublocale $S \subseteq L$ is a *D***-sublocale** if $pt_D(S) \subseteq pt_D(L)$ — i.e., if and only if the embedding $S \hookrightarrow L$ belongs to Loc_D .

T_D -duality

T_D -duality

Proposition

The regular subobjects of a locale L in Loc are precisely the sublocales of L.

T_D-duality

Proposition

The regular subobjects of a locale L in Loc are precisely the sublocales of L.

Proposition

The regular subobjects of a locale L in Loc_D are precisely the D-sublocales of L.

T_D-duality

Proposition

The regular subobjects of a locale L in Loc are precisely the sublocales of L.

Proposition

The regular subobjects of a locale L in Loc_D are precisely the D-sublocales of L.

Proposition

The system $\mathcal{S}(L)$ of all sublocales of L is a coframe, and the map

 $\mathfrak{c}_L \colon L o \mathcal{S}(L)^{op}$

is a frame homomorphism.

T_D-duality

Proposition

The regular subobjects of a locale L in Loc are precisely the sublocales of L.

Proposition

The regular subobjects of a locale L in Loc_D are precisely the D-sublocales of L.

Proposition

The system $\mathcal{S}(L)$ of all sublocales of L is a coframe, and the map

 $\mathfrak{c}_L \colon L \to \mathcal{S}(L)^{op}$

is a frame homomorphism.

Proposition

The system $\mathcal{S}_D(L)$ of all D-sublocales of L is a coframe and the map

 $\mathfrak{c}_L\colon L\to \mathcal{S}_D(L)^{op}$

is a frame D-homomorphism.

The system of *D*-sublocales

Theorem

Theorem

 $\mathcal{S}_D(L)$ is a dense subcolocale of $\mathcal{S}(L)$.

Theorem

 $S_D(L)$ is a dense¹ subcolocale of S(L). In particular, it is a zero-dimensional coframe.

¹Shorthand for " $S_D(L)^{op}$ is a dense sublocale of $S(L)^{op}$ "

1. All joins of complemented sublocales are *D*-sublocales.

 All joins of complemented sublocales are *D*-sublocales. In particular, open, closed, complemented, locally closed sublocales are *D*-sublocales.

- All joins of complemented sublocales are *D*-sublocales. In particular, open, closed, complemented, locally closed sublocales are *D*-sublocales.
- 2. Every pointless sublocale is a D-sublocale.

- All joins of complemented sublocales are *D*-sublocales. In particular, open, closed, complemented, locally closed sublocales are *D*-sublocales.
- 2. Every pointless sublocale is a *D*-sublocale.
- 3. The diagonal sublocale is a D-sublocale of the square $L \oplus L$.

Functoriality

Functoriality

Classical duality

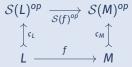
Functoriality

Classical duality

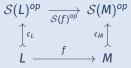
The assignment $L \mapsto S(L)^{op}$ can be made into a functor $S(-)^{op}$: Frm \to Frm naturally

The assignment $L \mapsto S(L)^{op}$ can be made into a functor $S(-)^{op}$: Frm \rightarrow Frm naturally – i.e., for every frame homomorphism f, the following square is commutative:

The assignment $L \mapsto S(L)^{op}$ can be made into a functor $S(-)^{op}$: Frm \rightarrow Frm naturally — i.e., for every frame homomorphism f, the following square is commutative:

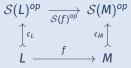


The assignment $L \mapsto S(L)^{op}$ can be made into a functor $S(-)^{op}$: Frm \rightarrow Frm naturally — i.e., for every frame homomorphism f, the following square is commutative:



T_D-duality

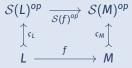
The assignment $L \mapsto S(L)^{op}$ can be made into a functor $S(-)^{op}$: Frm \rightarrow Frm naturally — i.e., for every frame homomorphism f, the following square is commutative:



T_D-duality

Say that a frame homomorphism **lifts** if there is another frame homomorphism $S_D(f)$ such that the following square commutes:

The assignment $L \mapsto S(L)^{op}$ can be made into a functor $S(-)^{op}$: Frm \rightarrow Frm naturally — i.e., for every frame homomorphism f, the following square is commutative:



T_D-duality

Say that a frame homomorphism **lifts** if there is another frame homomorphism $S_D(f)$ such that the following square commutes:

$$\begin{array}{ccc} \mathcal{S}_{D}(L)^{op} & \xrightarrow{} \mathcal{S}_{D}(f)^{op} & \mathcal{S}_{D}(M)^{op} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ L & \xrightarrow{} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Do morphisms in Frm_D admit lifts?

Do morphisms in Frm_D admit lifts?

 Surjections: A frame surjection L → S lifts iff it is a D-homomorphism. Do morphisms in Frm_D admit lifts?

- **Surjections**: A frame surjection *L* → *S* lifts iff it is a *D*-homomorphism.
- **Monomorphisms**: However, one can construct an open *D*-homomorphism between *T_D*-spatial frames which does not lift.

Do morphisms in Frm_D admit lifts?

- **Surjections**: A frame surjection *L* → *S* lifts iff it is a *D*-homomorphism.
- Monomorphisms: However, one can construct an open D-homomorphism between T_D-spatial frames which does not lift.

The construction $S_D(L)$ is not functorial in general.

An application to *T_D*-spatiality

An application to *T_D*-spatiality

Classical duality

T_D-duality

T_D-duality

A frame *L* is said to be **totally spatial** if every sublocale of *L* is spatial.

T_D-duality

A frame *L* is said to be **totally spatial** if every sublocale of *L* is spatial.

Theorem (Niefield-Rosenthal)

The following are equivalent for a frame L:
(i) L is totally spatial.
(ii) S(L)^{op} is spatial.

A frame *L* is said to be **totally spatial** if every sublocale of *L* is spatial.

T_D-duality

Similarly, we will say that a frame L is **totally** T_D -**spatial** if every sublocale of L is T_D -spatial.

Theorem (Niefield-Rosenthal)

The following are equivalent for a frame L:
(i) L is totally spatial.
(ii) S(L)^{op} is spatial.

A frame *L* is said to be **totally spatial** if every sublocale of *L* is spatial.

T_D-duality

Similarly, we will say that a frame *L* is **totally** T_D -**spatial** if every sublocale of *L* is T_D -spatial.

Theorem (Niefield-Rosenthal)

The following are equivalent for a frame L:
(i) L is totally spatial.
(ii) S(L)^{op} is spatial.

Theorem

The following are equivalent for a frame L: (i) L is totally T_D-spatial.

(ii) $S_D(L)^{op}$ is T_D -spatial.

Theorem

The following are equivalent for a frame L:

- (i) L is totally T_D -spatial.
- (ii) $S_D(L)^{op}$ is T_D -spatial.

Theorem

The following are equivalent for a frame L:

- (i) L is totally T_D-spatial.
- (ii) $S_D(L)^{op}$ is T_D -spatial.
- (iii) Every D-sublocale of L is T_D-spatial.

Theorem

The following are equivalent for a frame L:

- (i) L is totally T_D-spatial.
- (ii) $S_D(L)^{op}$ is T_D -spatial.
- (iii) Every D-sublocale of L is T_D-spatial.

Example

The Alexandroff topology on the natural numbers is totally T_D -spatial.

Theorem

The following are equivalent for a frame L:

- (i) L is totally T_D-spatial.
- (ii) $S_D(L)^{op}$ is T_D -spatial.
- (iii) Every D-sublocale of L is T_D-spatial.

Example

The Alexandroff topology on the natural numbers is totally T_D -spatial. But not every prime is covered.

Theorem

The following are equivalent for a frame L:

- (i) L is totally T_D-spatial.
- (ii) $S_D(L)^{op}$ is T_D -spatial.
- (iii) Every D-sublocale of L is T_D-spatial.

Example

The Alexandroff topology on the natural numbers is totally T_D -spatial. But not every prime is covered.

This situation cannot happen in the T_1 -case.

Theorem

The following are equivalent for a frame L:

- (i) L is totally T_D-spatial.
- (ii) $S_D(L)^{op}$ is T_D -spatial.
- (iii) Every D-sublocale of L is T_D-spatial.

Example

The Alexandroff topology on the natural numbers is totally T_D -spatial. But not every prime is covered.

This situation cannot happen in the T_1 -case. If every sublocale is T_1 -spatial, then every prime is automatically maximal!

Thank you!