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The starting point of point-free topology is the adjunction

] b5

Sob ————— Sploc
Sobriety is an important property in the theory of locales (e.g,, it
allows one to reconstruct a space from its lattice of open sets). But

there is also the equally important Tp-axiom. A space X is Ty if for
every x € X, there is an open x € U with U — {x} open.
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Actually, it is well known that sobriety and the Tp-axiom are in a
certain sense dual to each other. For example,

X is sober <= Anon-trivial .: X < Y such that Q(:) is an isomorphism.

Xis Tp <= Anon-trivial .: Y < X such that Q(:) is an isomorphism.

There are pairs of parallel results for sober spaces and for
Tp-spaces. For example,

+ One can also reconstruct a Tp-space from its lattice of open
sets.

+ Given a space X consider the natural map
¢: P(X) — { spatial sublocales of Q(X) }.
Then X is sober iff ¢ is surjective, and X is Ty iff ¢ is injective.

In this context, it is natural whether there is a similar categorical
framework as the classical duality between spaces and frames.
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» B. Banaschewski and A. Pultr Pointfree aspects of the Tp axiom
of classical topology, Quaestiones Mathematicae 33 2010.

There is an adjunction

Q
— ,
Top, \J__/ Locp

5/

Top, ————— ToSplog,
Here Top,, is the category of Tp-spaces and continuous maps, and
Locp is certain non-full subcategory of Loc.

Because Q is full and faithful, we may regard Locp has a category of
generalized Tp-spaces.
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Let L be a frame.

« Ap #1is called covered prime if A\;x; = p = x; = p for some
i. Every covered prime is obviously a prime, and every maximal
element is a covered prime. Denote
pty(L) :=={p € L | pis a covered prime.}

+ Localic maps always send prime elements into prime elements.
But the analogous assertion for covered primes is not true.

+ Alocalicmap f: L — M is D-localic if

p € ptp(L) = f(p) € ptp(M).
If every prime in M is covered, then it is trivially satisfied (e.g. M
is the topology of a sober Tp-space).
« Their left adjoints are called frame D-homomorphisms.
+ Define the category Locp: Objects: locales. Morphisms: D-localic
maps.
+ We will also consider its dual category, Frmp, of frames and

. 5/16
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« SetY,={peptyl)|aLp} Then
T(L) = (ptp(L). {Zg [a€L})

is a Tp-space which yields the Tp-spectrum functor
Y': Locp — Topp.
« Alocale L is Tp-spatial if L = Q(X) for a Tp-space X.
+ We also denote by TpSplLoc,, the category of Tp-spatial locales
and D-localic maps between them.
Q
Topp L log

-]

Top, —————— ToSplog,
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Aim of the talk: to study the category Locp, specially its lattices of
regular subobjects, and provide some applications in point-free
topology.

» |. A, ). Gutiérrez Garcia, On the categorical behaviour of locales
and D-localic maps, Quaestiones Mathematicae (2022).

» |.A,A.L. Suarez, The coframe of D-sublocales and the
Tp-duality, Topology and its Applications (2021).
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Limits in Loc,

« Infinite products do not generally exist in Locp.
- However, Locp is closed under finite products in Loc.
+ Equalizers in Locp are precisely embeddings of D-sublocales.

A sublocale S C L is a D-sublocale if pt,(S) C ptp(L) —i.e, ifand
only if the embedding S — L belongs to Locp.
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The system of D-sublocales

Actually we have a bit more:

Sp(L) is a dense’ subcolocale of S(L). In particular, it is a
zero-dimensional coframe.

'Shorthand for “Sp(L)°P is a dense sublocale of S(L)°P”
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Some examples of D-sublocales:

1. All joins of complemented sublocales are D-sublocales. In

particular, open, closed, complemented, locally closed
sublocales are D-sublocales.

2. Every pointless sublocale is a D-sublocale.

3. The diagonal sublocale is a D-sublocale of the square L @ L.
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Functoriality

Classical duality

The assignment L — S(L)°P can be made into a functor
S(—)°P: Frm — Frm naturally — i.e., for every frame homomorphism
f, the following square is commutative:

S <z SN

] ]
L —> M

Tp-duality

Say that a frame homomorphism lifts if there is another frame

homomorphism Sp(f) such that the following square commutes:

Sp(L)°P Sp(M)°P
(L) W p(M)
ICL (7]

f

L——— M
12/16
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Do morphisms in Frmp admit lifts?

+ Surjections: A frame surjection L — S lifts iff it is a
D-homomorphism.

S Monomorphisms: However, one can construct an open

D-homomorphism between Tp-spatial frames which does not
lift.

The construction Sp(L) is not functorial in general.
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Actually we can add one more condition

This situation cannot happen in the T,;-case. If every sublocale is
T,-spatial, then every prime is automatically maximal!
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Thank you!
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