Hereditary Structural Completeness over K4: Rybakov's Theorem Revisited

James Carr

University of Queensland, TACL Talk

June 20, 2022

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Definition A rule Γ/φ is said to be admissible for a deductive system \vdash iff the set of tautologies of \vdash is closed under applications of Γ/φ . It is derivable for \vdash iff $\Gamma \vdash \varphi$.

Definition A rule Γ/φ is said to be admissible for a deductive system \vdash iff the set of tautologies of \vdash is closed under applications of Γ/φ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It is derivable for \vdash iff $\Gamma \vdash \varphi$.

Whilst every derivable rule for a given deductive system is admissible the converse can fail.

Definition A rule Γ/φ is said to be admissible for a deductive system \vdash iff the set of tautologies of \vdash is closed under applications of Γ/φ .

It is derivable for \vdash iff $\Gamma \vdash \varphi$.

Whilst every derivable rule for a given deductive system is admissible the converse can fail.

This gap has motivated an in depth study of admissibility, including Friedman [1975], Rybakov [1984], lemhoff [2001] and Jeřábek [2010].

<u>Definition</u> When every admissible rule for \vdash is derivable we say that \vdash is structurally complete (SC).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

<u>Definition</u> When every admissible rule for \vdash is derivable we say that \vdash is structurally complete (SC).

Investigations by Pruchal [1972] and Dzik & Wroński [1973] among others suggested that whilst a full characterisation of SC intermediate and modal logics was out of reach a herediarily strucutrally complete (HSC) characterisation might be possible.

<u>Definition</u> If every finitary extension of \vdash is structurally complete then we say \vdash is HSC.

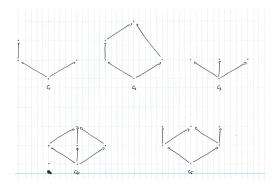
Citkin's Theorem

Citkin did just this for intermediate logics.

Citkin's Theorem

Citkin did just this for intermediate logics.

<u>Citkin's Theorem</u> [1978] In order for an intermediate logic Λ to be HSC it is necessary and sufficient that Λ is not included in any of the logics $Log(C_i) : 1 \le i \le 5$.



Rybakov [1995] produced a characterisation of HSC logics over K4.

(ロ)、(型)、(E)、(E)、 E) の(()

Rybakov [1995] produced a characterisation of HSC logics over K4. Both his and Citkin's milestone results pose difficulties.

Bezhanishvili and Moraschini [2020] gave a new proof of Citkin's theorem utilising two branches of theory - (abstract) algebraic logic and Esakia duality.

Rybakov [1995] produced a characterisation of HSC logics over K4. Both his and Citkin's milestone results pose difficulties.

Bezhanishvili and Moraschini [2020] gave a new proof of Citkin's theorem utilising two branches of theory - (abstract) algebraic logic and Esakia duality.

Together these allow one to translate the logical problem into an algebraic one whose solution is aided with topological methods.

Rybakov [1995] produced a characterisation of HSC logics over K4. Both his and Citkin's milestone results pose difficulties.

Bezhanishvili and Moraschini [2020] gave a new proof of Citkin's theorem utilising two branches of theory - (abstract) algebraic logic and Esakia duality.

Together these allow one to translate the logical problem into an algebraic one whose solution is aided with topological methods.

This strategy can also be applied to the modal case and Rybakov's result.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Rybakov [1995] produced a characterisation of HSC logics over K4. Both his and Citkin's milestone results pose difficulties.

Bezhanishvili and Moraschini [2020] gave a new proof of Citkin's theorem utilising two branches of theory - (abstract) algebraic logic and Esakia duality.

Together these allow one to translate the logical problem into an algebraic one whose solution is aided with topological methods.

This strategy can also be applied to the modal case and Rybakov's result.

However, more than simply provide a new proof, this approach illuminates a mistake in Rybakov's characterisation. It is too restrictive and misses an infinite collection of HSC transitive modal logics.

We want to both correct and prove the characterisation.

Rybakov's Theorem In order for a modal logics Λ over K4 to be HSC it is necessary and sufficient that Λ is not included in any of the logics $Log(F_i)$: $1 \le i \le 13$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Rybakov's Theorem In order for a modal logics Λ over K4 to be HSC it is necessary and sufficient that Λ is not included in any of the logics $Log(F_i)$: $1 \le i \le 13$.

<u>Revised Theorem</u> In order for a modal logics Λ over K4 to be HSC it is necessary and sufficient that Λ is not included in any of the logics $Log(F_i) : 1 \le i \le 17$ and $Log(G_n)$ for some $n \in \omega$.

Characterising the HSC logics over K4 is equivalent to characterising primitive sub-vareties of K4-algebras.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Characterising the HSC logics over K4 is equivalent to characterising primitive sub-vareties of K4-algebras.

<u>Definition</u> A variety \mathcal{A} is primitive iff every sub-quasivarity of \mathcal{A} is a variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

<u>**Theorem</u>** A normal modal logic Λ over K4 is HSC iff its corresponding variety \mathcal{A} is primitive.</u>

Employing results from universal algebra further reduces this problem.

Employing results from universal algebra further reduces this problem.

<u>Definition</u> An algebra *A* is weakly projective in a variety *A* iff $\forall B \in A$ iff $A \in \mathbb{H}(B)$ then $A \in \mathbb{IS}(B)$.

An algebra A is finitely subdirectly irreducible (FSI) iff the identity relation is \wedge -irreducible in the congrunence lattice of A.

Employing results from universal algebra further reduces this problem.

<u>Definition</u> An algebra A is weakly projective in a variety \mathcal{A} iff $\forall B \in \mathcal{A}$ iff $A \in \mathbb{H}(B)$ then $A \in \mathbb{IS}(B)$.

An algebra A is finitely subdirectly irreducible (FSI) iff the identity relation is \wedge -irreducible in the congrunence lattice of A.

Lemma Let \mathcal{A} be a variety of K4-algebras.

- (i) If A is primitive then the finite, non-trivial FSI members of A are weakly projective in A.
- (ii) Suppose all sub-vareties of A have the FMP. If the finite, non-trivial FSI members of A are weakly projective in A then A is primitive.

We aid our investigation into this algebraic problem using topological methods via the Jónsson-Tarski Duality applied to K4-algebras.

We aid our investigation into this algebraic problem using topological methods via the Jónsson-Tarski Duality applied to K4-algebras.

Definition A transitive space is a triple $\mathcal{X} := (X, \tau, R)$ where (X, R) is a Kripke frame, (X, τ) is a Stone space and such that (i) R[x] is closed for all $x \in X$; (ii) $R^{-1}[U]$ is clopen for all clopen $U \subseteq X$;

(iii) *R* is a transitive relation.

<u>**Theorem</u>** The category of K4-algebras and category of transitive spaces are dually equivalent.</u>

We aid our investigation into this algebraic problem using topological methods via the Jónsson-Tarski Duality applied to K4-algebras.

Definition A transitive space is a triple $\mathcal{X} := (X, \tau, R)$ where (X, R) is a Kripke frame, (X, τ) is a Stone space and such that (i) R[x] is closed for all $x \in X$; (ii) $R^{-1}[U]$ is clopen for all clopen $U \subseteq X$;

(iii) R is a transitive relation.

<u>**Theorem</u>** The category of K4-algebras and category of transitive spaces are dually equivalent.</u>

Algebra	Topology
FSI	Rooted
Sub-algebra	Quotient Space
Quotient Algebra	Closed Upset
Direct Product	Disjoint Union

<u>**Theorem</u>** The variety generated by the algebraic dual of irreflexive F_3 is primitive.</u>

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

<u>**Theorem</u>** The variety generated by the algebraic dual of irreflexive F_3 is primitive.</u>

Proof Sketch: The variety A is locally finite, so it is sufficient to show its finite non-trivial FSI members are weakly projective members are primitive.

<u>**Theorem</u>** The variety generated by the algebraic dual of irreflexive F_3 is primitive.</u>

Proof Sketch: The variety A is locally finite, so it is sufficient to show its finite non-trivial FSI members are weakly projective members are primitive.

We argue via duality that all its members have a particular shape and conclude the main result form there.

Recall If a variety of K4-algebras \mathcal{A} is primitive then the finite, non-trivial FSI members of \mathcal{A} are weakly projective in \mathcal{A} .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Recall If a variety of K4-algebras \mathcal{A} is primitive then the finite, non-trivial FSI members of \mathcal{A} are weakly projective in \mathcal{A} .

Lemma Primitive varieties of K4-algebras omit F_i^* : $1 \le i \le 17$ and G_n^* for some n > 0.

Recall If a variety of K4-algebras \mathcal{A} is primitive then the finite, non-trivial FSI members of \mathcal{A} are weakly projective in \mathcal{A} .

Lemma Primitive varieties of K4-algebras omit F_i^* : $1 \le i \le 17$ and G_n^* for some n > 0.

Proof Sketch: For each $1 \le i \le 17$ we show that if \mathcal{A} contains F_i^{**} then it contains a finite, non-trivial FSI member not weakly projective in \mathcal{A} .

Recall If a variety of K4-algebras \mathcal{A} is primitive then the finite, non-trivial FSI members of \mathcal{A} are weakly projective in \mathcal{A} .

Lemma Primitive varieties of K4-algebras omit F_i^* : $1 \le i \le 17$ and G_n^* for some n > 0.

Proof Sketch: For each $1 \le i \le 17$ we show that if \mathcal{A} contains F_i^** then it contains a finite, non-trivial FSI member not weakly projective in \mathcal{A} .

For the G_n^* claim, we show that if \mathcal{A} includes G_n^* for all $n \in \omega$ then it contains G_{ω}^* which makes G_1^* finite, non-trivial FSI but not weakly projective.

Recall: To show that any variety omitting F_i^* : $1 \le i \le 17$ and G_n^* for some n > 0 is primitive we must:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Recall: To show that any variety omitting F_i^* : $1 \le i \le 17$ and G_n^* for some n > 0 is primitive we must:

- (i) Show that such a variety A has the FMP.
- (ii) Show all the finite, non-trivial FSI members in such a variety \mathcal{A} are weakly projective in \mathcal{A} .

Recall: To show that any variety omitting F_i^* : $1 \le i \le 17$ and G_n^* for some n > 0 is primitive we must:

- (i) Show that such a variety A has the FMP.
- (ii) Show all the finite, non-trivial FSI members in such a variety \mathcal{A} are weakly projective in \mathcal{A} .

We first establish a detailed description of the finitely generated, non-trivial SI members of the varieties.

Recall: To show that any variety omitting F_i^* : $1 \le i \le 17$ and G_n^* for some n > 0 is primitive we must:

- (i) Show that such a variety A has the FMP.
- (ii) Show all the finite, non-trivial FSI members in such a variety \mathcal{A} are weakly projective in \mathcal{A} .

We first establish a detailed description of the finitely generated, non-trivial SI members of the varieties.

This requires establishing a group of results demonstrating certain frame substructures never appear in our spaces.

<u>Theorem</u> Let \mathcal{A} be a variety omitting $F_i^* : 1 \le i \le 17$ and G_n^* for some n > 0. Let $A \in V$ be finitely generated, non-trivial and SI. Then the frame underlying A_* is a sequential composition of frames $\bigoplus_{\alpha \le \beta} Q_{\alpha}$ for some $\beta \in Ord$ and such that:

 $Q_{\alpha} \text{ is } \begin{cases} \text{a single cluster} & \text{if } \alpha = \beta \text{ or } \alpha \text{ is a limit ordinal} \\ \text{a single cluster, a two cluster anti-chain or } H & \text{if } \alpha = 0 \\ \text{a single cluster or a two cluster anti-chain} & \text{otherwise} \end{cases}$

<u>Theorem</u> Let \mathcal{A} be a variety omitting $F_i^* : 1 \le i \le 17$ and G_n^* for some n > 0. Let $A \in V$ be finitely generated, non-trivial and SI. Then the frame underlying A_* is a sequential composition of frames $\bigoplus_{\alpha \le \beta} Q_{\alpha}$ for some $\beta \in Ord$ and such that:

 $Q_{\alpha} \text{ is } \begin{cases} \text{a single cluster} & \text{if } \alpha = \beta \text{ or } \alpha \text{ is a limit ordinal} \\ \text{a single cluster, a two cluster anti-chain or } H & \text{if } \alpha = 0 \\ \text{a single cluster or a two cluster anti-chain} & \text{otherwise} \end{cases}$

Moreover: Any maximal clusters are single reflexive points If Q_{α} is a two cluster anti-chain then clusters in $Q_{\alpha+1}$ are improper. If A_* contains an irreflexive point then $\beta = \lambda + n$ for some limit ordinal λ , $n \neq 0$ and $\exists 0 < m \leq n : \forall \alpha < \lambda + m \ Q_{\alpha}$ contains no irreflexive points, $\forall k \geq m \ Q_{\lambda+k}$ is a single irreflexive point and if m < n then $Q_{\lambda+m-1}$ is a single cluster. **Theorem** All our varieties have the FMP.

Proof Sketch: We follow a variation on the drop point technique of K. Fine. Given an algebra A and formula φ it invalidates, we use the previous structural result to construct a finite sub-algebra of A that also invalidates φ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

<u>**Theorem</u>** Let \mathcal{A} be one of our varieties. Every finite, non-trivial FSI member of \mathcal{A} is weakly projective in \mathcal{A} .</u>

Proof Sketch: Letting $A \in \mathbb{H}(B)$ we want to show that $A \in \mathbb{IS}(B)$. By the duality this amounts to assuming A_* is a closed upset of B_* and we want to show A_* is also a *p*-morphic image of B_* .

<u>Theorem</u> Let \mathcal{A} be one of our varieties. Every finite, non-trivial FSI member of \mathcal{A} is weakly projective in \mathcal{A} .

Proof Sketch: Letting $A \in \mathbb{H}(B)$ we want to show that $A \in \mathbb{IS}(B)$. By the duality this amounts to assuming A_* is a closed upset of B_* and we want to show A_* is also a *p*-morphic image of B_* .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

We do this by recursively collapsing B_* into A_* in a process enabled by the structural result.

Summary

Combing all our results we have a complete characterisation of primitive K4-algebras.

<u>Theorem</u> A variety of K4-algebras \mathcal{A} is primitive iff \mathcal{A} omits $(F_i)^* : 1 \le i \le 17$ and $(G_n)^*$ for some n > 0.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Summary

Combing all our results we have a complete characterisation of primitive K4-algebras.

<u>Theorem</u> A variety of K4-algebras \mathcal{A} is primitive iff \mathcal{A} omits $(F_i)^* : 1 \le i \le 17$ and $(G_n)^*$ for some n > 0.

Consequently we also have a complete characterisation of HSC logics over K4.

<u>**Revised Theorem</u>** In order for a modal logics Λ over K4 to be HSC it is necessary and sufficient that Λ is not included in any of the logics $Log(F_i) : 1 \le i \le 17$ and $Log(G_n)$ for some $n \in \omega$.</u>

Further Study

Extend the strategy to situations with a comparable set-up. Candidates include:

- 1. Modal logics over wK4;
- 2. All modal logics;
- 3. Intuitionistic modal logic;
- 4. Multi-modal logic.

Thanks

Thank you all for listening.

Additional thanks goes to Nick and Tommaso, the supervisors of my master's thesis from which this talk is based.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ