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Background

Definition A rule Γ/φ is said to be admissible for a deductive
system ⊢ iff the set of tautologies of ⊢ is closed under applications
of Γ/φ.
It is derivable for ⊢ iff Γ ⊢ φ.

Whilst every derivable rule for a given deductive system is
admissible the converse can fail.

This gap has motivated an in depth study of admissibility,
including Friedman [1975], Rybakov [1984], Iemhoff [2001] and
Jěrábek [2010].
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that ⊢ is structurally complete (SC).

Investigations by Prucnal [1972] and Dzik & Wroǹski [1973]
among others suggested that whilst a full characterisation of SC
intermediate and modal logics was out of reach a herediarily
strucutrally complete (HSC) characterisation might be possible.

Definition If every finitary extension of ⊢ is structurally complete
then we say ⊢ is HSC.
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among others suggested that whilst a full characterisation of SC
intermediate and modal logics was out of reach a herediarily
strucutrally complete (HSC) characterisation might be possible.

Definition If every finitary extension of ⊢ is structurally complete
then we say ⊢ is HSC.



Citkin’s Theorem

Citkin did just this for intermediate logics.

Citkin’s Theorem [1978] In order for an intermediate logic Λ to
be HSC it is necessary and sufficient that Λ is not included in any
of the logics Log(Ci ) : 1 ≤ i ≤ 5.
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The Modal Case

Rybakov [1995] produced a characterisation of HSC logics over K4.

Both his and Citkin’s milestone results pose difficulties.

Bezhanishvili and Moraschini [2020] gave a new proof of Citkin’s
theorem utilising two branches of theory - (abstract) algebraic logic
and Esakia duality.

Together these allow one to translate the logical problem into an
algebraic one whose solution is aided with topological methods.

This strategy can also be applied to the modal case and Rybakov’s
result.

However, more than simply provide a new proof, this approach
illuminates a mistake in Rybakov’s characterisation. It is too
restrictive and misses an infinite collection of HSC transitive modal
logics.

We want to both correct and prove the characterisation.
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The Two Characterisations

Rybakov’s Theorem In order for a modal logics Λ over K4 to be
HSC it is necessary and sufficient that Λ is not included in any of
the logics Log(Fi ) : 1 ≤ i ≤ 13.

Revised Theorem In order for a modal logics Λ over K4 to be
HSC it is necessary and sufficient that Λ is not included in any of
the logics Log(Fi ) : 1 ≤ i ≤ 17 and Log(Gn) for some n ∈ ω.
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Proof Strategy

Characterising the HSC logics over K4 is equivalent to
characterising primitive sub-vareties of K4-algebras.

Definition A variety A is primitive iff every sub-quasivarity of A is
a variety.

Theorem A normal modal logic Λ over K4 is HSC iff its
corresponding variety A is primitive.
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Employing results from universal algebra further reduces this
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Definition An algebra A is weakly projective in a variety A iff
∀B ∈ A iff A ∈ H(B) then A ∈ IS(B).
An algebra A is finitely subdirectly irreducible (FSI) iff the identity
relation is ∧-irreducible in the congrunence lattice of A.

Lemma Let A be a variety of K4-algebras.

(i) If A is primitive then the finite, non-trivial FSI members of A
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(ii) Suppose all sub-vareties of A have the FMP. If the finite,
non-trivial FSI members of A are weakly projective in A then
A is primitive.
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Proof Strategy
We aid our investigation into this algebraic problem using
topological methods via the Jónsson-Tarski Duality applied to
K4-algebras.

Definition A transitive space is a triple X := (X , τ,R) where
(X ,R) is a Kripke frame, (X , τ) is a Stone space and such that

(i) R[x ] is closed for all x ∈ X ;

(ii) R−1[U] is clopen for all clopen U ⊆ X ;

(iii) R is a transitive relation.

Theorem The category of K4-algebras and category of transitive
spaces are dually equivalent.

Algebra Topology

FSI Rooted
Sub-algebra Quotient Space

Quotient Algebra Closed Upset
Direct Product Disjoint Union
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Explaining the Mistake

Theorem The variety generated by the algebraic dual of irreflexive
F3 is primitive.

Proof Sketch: The variety A is locally finite, so it is sufficient to
show its finite non-trivial FSI members are weakly projective
members are primitive.

We argue via duality that all its members have a particular shape
and conclude the main result form there.
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The Easy Direction

Recall If a variety of K4-algebras A is primitive then the finite,
non-trivial FSI members of A are weakly projective in A.

Lemma Primitive varieties of K4-algebras omit F ∗
i : 1 ≤ i ≤ 17

and G ∗
n for some n > 0.

Proof Sketch: For each 1 ≤ i ≤ 17 we show that if A contains F ∗
i ∗

then it contains a finite, non-trivial FSI member not weakly
projective in A.

For the G ∗
n claim, we show that if A includes G ∗

n for all n ∈ ω then
it contains G ∗

ω which makes G ∗
1 finite, non-trivial FSI but not

weakly projective.
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The Difficult Direction

Recall: To show that any variety omitting F ∗
i : 1 ≤ i ≤ 17 and G ∗

n

for some n > 0 is primitive we must:

(i) Show that such a variety A has the FMP.

(ii) Show all the finite, non-trivial FSI members in such a variety
A are weakly projective in A.

We first establish a detailed description of the finitely generated,
non-trivial SI members of the varieties.

This requires establishing a group of results demonstrating certain
frame substructures never appear in our spaces.
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The Difficult Direction

Theorem Let A be a variety omitting F ∗
i : 1 ≤ i ≤ 17 and G ∗

n for
some n > 0. Let A ∈ V be finitely generated, non-trivial and SI.
Then the frame underlying A∗ is a sequential composition of
frames

⊕
α≤β

Qα for some β ∈ Ord and such that:

Qα is


a single cluster if α = β or α is a limit ordinal

a single cluster, a two cluster anti-chain or H if α = 0

a single cluster or a two cluster anti-chain otherwise

Moreover: Any maximal clusters are single reflexive points

If Qα is a two cluster anti-chain then clusters in Qα+1 are improper.

If A∗ contains an irreflexive point then β = λ+ n for some limit
ordinal λ, n ̸= 0 and ∃0 < m ≤ n : ∀α < λ+m Qα contains no
irreflexive points, ∀k ≥ m Qλ+k is a single irreflexive point and if
m < n then Qλ+m−1 is a single cluster.
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The Difficult Direction

Theorem All our varieties have the FMP.

Proof Sketch: We follow a variation on the drop point technique of
K. Fine. Given an algebra A and formula φ it invalidates, we use
the previous structural result to construct a finite sub-algebra of A
that also invalidates φ.



The Difficult Direction

Theorem Let A be one of our varieties. Every finite, non-trivial
FSI member of A is weakly projective in A.

Proof Sketch: Letting A ∈ H(B) we want to show that A ∈ IS(B).
By the duality this amounts to assuming A∗ is a closed upset of B∗
and we want to show A∗ is also a p-morphic image of B∗.

We do this by recursively collapsing B∗ into A∗ in a process
enabled by the structural result.
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Summary

Combing all our results we have a complete characterisation of
primitive K4-algebras.

Theorem A variety of K4-algebras A is primitive iff A omits
(Fi )

∗ : 1 ≤ i ≤ 17 and (Gn)
∗ for some n > 0.

Consequently we also have a complete characterisation of HSC
logics over K4.
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HSC it is necessary and sufficient that Λ is not included in any of
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Further Study

Extend the strategy to situations with a comparable set-up.
Candidates include:

1. Modal logics over wK4;

2. All modal logics;

3. Intuitionistic modal logic;

4. Multi-modal logic.



Thanks

Thank you all for listening.

Additional thanks goes to Nick and Tommaso, the supervisors of
my master’s thesis from which this talk is based.
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