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2-CATEGORIES VIA 2-PREORDERS

JOÃO J. XAREZ

Abstract. It is shown that the reflection 2Cat→ 2Preord of the
category of all 2-categories into the category of 2-preorders deter-
mines a monotone-light factorization system on 2Cat and that the
light morphisms are precisely the 2-functors faithful on 2-cells with
respect to the vertical structure. In order to achieve such result
it was also proved that the reflection 2Cat → 2Preord has stable
units, a stronger condition than admissibility in categorical Ga-
lois theory, and that the 2-functors surjective both on horizontally
and on vertically composable triples of 2-cells are effective descent
morphisms in 2Cat.

1. Introduction

1.1. Every map α : A→ B of compact Hausdorff spaces has a factor-
ization α = me such that m : C → B has totally disconnected fibres
and e : A→ C has only connected ones. This is known as the classical
monotone-light factorization of S. Eilenberg [3] and G. T. Whyburn
[10].

Consider now, for an arbitrary functor α : A→ B, the factorization
α = me such that m is a faithful functor and e is a full functor bi-
jective on objects. This familiar factorization for categories is as well
monotone-light. Meaning that both factorizations are special and very
similar cases of categorical monotone-light factorization in an abstract
category C, with respect to a full reflective subcategory X, as was stud-
ied at [1]. What we shall show is that there is also a monotone-light
factorization for 2-categories, very similar to the one given before for
categories if one ignores the horizontal composition of 2-cells.

It is well known that any full reflective subcategory X of a category
C gives rise, under mild conditions, to a factorization system (E ,M).
Hence, each of the three reflections CompHaus → Prof , of compact
Hausdorff spaces into Stone(profinite) spaces, Cat → Preord, of cat-
egories into preorders, and now 2Cat → 2Preord, of 2-categories into
2-preorders yields its own reflective factorization system.

Moreover, the process of simultaneously stabilizing E and localiz-
ing M, in the sense of [1], was already known to produce a new
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non reflective and stable factorization system (E ′
,M∗) for the ad-

junctions CompHaus → Prof and Cat → Preord. Which is just
the (Monotone,Light)-factorization mentioned above. But this pro-
cess does not work in general, being the monotone-light factorizations
for the reflections CompHaus → Prof and Cat → Preord two rare
examples. Nevertheless, we shall prove that the (Full on 2-Cells
and Bijective on Objects and Morphisms, Faithful on 2-Cells)-
factorization1 for 2-categories is another instance of a successful simul-
taneous stabilization and localization.

What guarantees the success is the following pair of conditions, which
hold in the three cases:

(1) the reflection I : C→ X has stable units (in the sense of [2]);
(2) for each object B in C, there is a monadic extension2 (E, p) of

B such that E is in the full subcategory X.

Indeed, the two conditions (1) and (2) trivially imply that the (E ,M)-
factorization is locally stable, which is a necessary and sufficient con-
dition for (E ′

,M∗) to be a factorization system (see the central result
of [1]).

Actually, we shall prove that the reflection 2Cat→ 2Preord has also
stable units, as well as the reflections Cat→ Preord and CompHaus→
Prof were known to have. And, for the reflection 2Cat → 2Preord,
the monadic extension (E, p) of B may be chosen to be the obvious pro-
jection from the coproduct E = 2Cat(vh4, B) ·vh4 of sufficiently many
copies of the 2-preorder vh4 (cf. its definition in Example 4.1), one copy
for each triple of composable 2-cells in B. As for Cat → Preord and
for CompHaus → Prof , it was chosen to be the obvious projection
from the coproduct E = Cat(4, B) ·4 of sufficiently many copies of the
ordinal number 4, and the canonical surjection from the Stone-Čech
compactification E = β|B| of the underlying set of B, respectively.
In the three cases these monadic extensions are precisely the counit
morphisms of the following adjunctions from Set: the unique (up to
an isomorphism) adjunction 2Cat(vh4,−) ` (−) · vh4 : Set → 2Cat
which takes the terminal object 1 to the 2-preorder vh4; the unique
(up to an isomorphism) adjunction Cat(4,−) ` (−) · 4 : Set → Cat
which takes the terminal object 1 to the ordinal number 4, and the
adjunction | · | ` β : Sets→ CompHaus, where the standard forgetful
functor | · | is monadic, respectively.

1.2. The three reflections may be considered as admissible Galois struc-
tures3, in the sense of categorical Galois theory, since having stable

1Notice that “full” and “faithful” here are with respect to the vertical
composition.

2It is said that (E, p) is a monadic extension of B, or that p is an effective descent
morphism, if the pullback functor p∗ : C/B → C/E is monadic.

3In which all morphisms are considered.
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units implies admissibility. Therefore, in the three cases, for every ob-
ject B in C, we know that the full subcategory TrivCov(B) of C/B,
determined by the trivial coverings of B (i.e., the morphisms over B
in M), is equivalent to X/I(B). Moreover, the categorical form of the
fundamental theorem of Galois theory gives us even more information
on each C/B using the subcategory X. It states that the full sub-
category Spl(E, p) of C/B, determined by the morphisms split by the
monadic extension (E, p) of B, is equivalent to the category XGal(E,p)

of internal actions of the Galois pregroupoid of (E, p). In fact, the
conditions (1) and (2) above imply that Gal(E, p) is really an internal
groupoid in X (see section 5.3 of [1]).

The condition (1) implies as well that any covering over an object
which belongs to the subcategory is just a trivial covering. An easy
consequence of this last statement, condition (2) and the fact that cov-
erings are pullback stable, is that a covering morphism α : A → B
is such if and only if, for every morphism φ : X → B with X in the
subcategory X, the pullback X ×B A of α along φ is also in X. In
particular, when the reflection has stable units, a monadic extension
(E, p), as in condition (2), is a covering if and only if the kernel pair
of p is in the full subcategory X of C. Thus, since the monadic exten-
sions considered for the three cases are in fact coverings, we conclude
that Gal(2Cat(vh4, B) · vh4, p), Gal(Cat(4, B) ·4, p) and Gal(β|B|, p)
are not just internal groupoids, but internal equivalence relations in
2Preord, Preord and CompHaus, respectively.

2. The category of all 2-categories

Consider the category 2Cat, with objects all 2-categories and whose
morphisms are the 2-functors (see [6, §XII.3]). Its definition is going
to be stated in a way that suits our purposes. In order to do so, some
intermediate structures need to be defined previously.

First, consider the category P generated by the following precategory
diagram,

P2

-

-

-r
m

q

P1

-

�

-c
e

d

P0

in which
d ◦ e = 1P0 = c ◦ e, d ◦m = d ◦ q, c ◦m = c ◦ r and c ◦ q = d ◦ r,

where 1P0 stands for the identity morphism of P0 (see [1, §4.1]).

A precategory is an object in the category of presheaves P̂ = SetP,
that is, any functor P : P→ Set to the category of sets.
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If Q2

-

-

-
r′
m′
q′

Q1

-

�

-
c′
e′
d′

Q0

is another precategory diagram, then a triple (f2, f1, f0) with f2 : P2 →
Q2, f1 : P1 → Q1 and f0 : P0 → Q0, will be called a precategory
morphism diagram provided the following equations hold: f0 ◦ d =
d′ ◦ f1, f0 ◦ c = c′ ◦ f1, f1 ◦ e = e′ ◦ f0, f1 ◦ q = q′ ◦ f2, f1 ◦ m =
m′ ◦ f2, f1 ◦ r = r′ ◦ f2.

Secondly, consider the category 2P generated by the following 2-
precategory diagram,

hvP2

-

-

-hr × hr
hm× hm
hq × hq

vP2

-

�

-hc× hc
he× he
hd× hd

P0

vr2

?

vm2

?

vq2

?

vr
?

vm
?

vq
?

1P0

?

hP2

-

-

-
hr
hm

hq

2P1

-

�

-
hc
he

hd

P0 (2.1)

vc2

?

ve2
6

vd2

?

vc
?

ve
6

vd
?

1P0

?

P2

-

-

-r
m

q

P1

-

�

-c
e

d

P0 ,

in which:

• each one of the three horizontal diagrams (upwards, P , hP and
hvP ) is a precategory diagram;
• each one of the three vertical diagrams (from the left to the

right, vhP , vP and the trivial P0) is a precategory diagram;
• (vc2, vc, 1P0), (ve2, ve, 1P0), (vd2, vd, 1P0), (vr2, vr, 1P0), (vm2, vm, 1P0),

(vq2, vq, 1P0) are all six precategory morphism diagrams (equiv-
alently, (hq × hq, hq, q), (hm × hm, hm,m), (hr × hr, hr, r),
(hd× hd, hd, d), (he× he, he, e), (hc× hc, hc, c) are all six pre-
category morphism diagrams).

Notice that the names given to objects and morphisms in (2.1) are
arbitrary, being so chosen in order to relate to the following last defini-
tion of section 2 (for instance, vq2 = vq× vq will denote the morphism
uniquely determined by a pullback diagram).

The category 2Cat of all 2-categories is the full subcategory of 2̂P =
Set2P, determined by its objects C : 2P → Set such that the image
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by C of each horizontal and vertical precategory diagram in (2.1) is a
category. That is, for instance, in the case of the bottom horizontal
precategory diagram in (2.1):

the commutative square

C(P1)

C(P2)

C(P0)

C(P1)

Cr

Cq

Cc (2.2)
Cd

-

-

? ?

is a pullback diagram in Set;
the associative and unit laws hold for the operation Cm, that is, the

following respective diagrams commute in Set,

C(P2)

C(P2)×C(P1) C(P2)

C(P1),

C(P2)

Cr × Cm

Cm× Cq

Cm (2.3)
Cm

-

-

? ?

C(P0)×C(P0) C(P1)

?

- �

C(P1)

pr2

-

Ce× 1C(P1)

1C(P1)
C(P1)

C(P2)

C(P1) .

C(P1)×C(P0) C(P0)

Cm

1C(P1) × Ce

pr1 (2.4)
1C(P1)�

? ?

It would be a long and trivial calculation to check that there is
an isomorphism between the category of all 2-categories (in the sense

of [6, §XII.3]) and the full subcategory of 2̂P just defined. Notice
that: the requirement that the horizontal composite of two vertical
identities is itself a vertical identity is encoded in diagram (2.1) in the
commutativity of the square hm ◦ ve2 = ve ◦m ; the interchange law,
which relates the vertical and the horizontal composites of 2-cells, is
encoded in diagram (2.1) in the commutativity of the square vm◦hm×
hm = hm ◦ vm2.

3. Internal categories and limits

In section 2, if the category Set of sets is replaced by any category C
with pullbacks, then one obtains the definition of 2Cat(C), the category
of internal 2-categories in C.

In this section 3, the goal is to show that the category of all 2-
categories 2Cat is closed under limits in the presheaves category 2̂P =

Set2̂P. The following Lemmas 3.1 and 3.2 give some well known facts
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about limits of internal categories, which will translate into internal 2-
categories, and finally into 2-categories in the special case of C = Set.

In what follows, Cat(C) will denote the category of internal cate-
gories in C, that is, the full subcategory of the category of functors CP,
determined by all the functors C : P→ C such that the diagram (2.2)
is a pullback diagram in C and the diagrams (2.3) and (2.4) commute
in C (P is of course the category defined in section 2).

Lemma 3.1. Let C be a category with pullbacks.
Then, Cat(C) is closed under pullbacks in CP, where pullbacks exist

and are calculated pointwise.

Lemma 3.2. Let C be a category with pullbacks.
If I is a discrete category (that is, a set) and C has all limits I→ C,

then Cat(C) is closed under all limits I → Cat(C) in CP, where limits
I→ CP exist and are calculated pointwise.

Corollary 3.1. If C has all limits then 2Cat(C) is closed under limits
in the functor category C2P, where all limits exist and are calculated
pointwise.

In particular, for C = Set, 2Cat is closed under limits in 2̂P = Set2P.

Proof. The proof follows from the fact that limits are calculated point-
wise in C2P, and that a category with pullbacks and all products has
all limits, and fom Lemmas 3.1 and 3.2. �

4. Effective descent morphisms in 2Cat

Consider again the category of all categories Cat and its full inclusion
in the category of precategories P̂ = SetP.

A functor p : E → B is an effective descent morphism (e.d.m.)4 in
Cat if and only if it is surjective on composable triples of morphisms.
The proof of this statement can be found in [5, Proposition 6.2]. In
a completely analogous way, a class of effective descent morphisms in
2Cat is going to be given in the following Proposition 4.1.

Proposition 4.1. A 2-functor 2p : 2E → 2B is an e.d.m. in the
category of all 2-categories 2Cat if it is surjective both on horizontally
composable triples of 2-cells and on vertically composable triples of 2-
cells.

Proof. Let 2p : 2E→ 2B be surjective on triples of composable 2-cells
(both horizontally and vertically). Then, 2p is an e.d.m. in 2P̂ = Set2P ,
since the effective descent morphisms in a category of presheaves are
simply those surjective pointwise (which, of course, is implied by ei-
ther surjectivity on triples of composable 2-cells). Hence, the following
instance of [5, Corollary 3.9] can be applied:

4Also called a monadic extension in categorical Galois theory.
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if 2p : 2E → 2B in 2Cat is an e.d.m. in 2P̂ = Set2P then 2p is an
e.d.m. in 2Cat if and only if , for every pullback square

2E

2D

2B

2A

(4.1)
2p

-

-

? ?

in 2P̂ = Set2P such that 2D is in 2Cat, then also 2A is in 2Cat.
Since the pullback square (4.1) is calculated pointwise (cf. Corollary

3.1), it induces six other pullback squares in P̂ = SetP, corresponding
to the three rows P , hP and hvP , and the three columns vhP , vP and
P0, in the 2-precategory diagram (2.1).

The fact that 2p is surjective on triples of composable 2-cells (both
horizontally and vertically) implies that its six restrictions (to the six
rows and columns 2A(P ), 2A(hP ), 2A(hvP ), 2A(vhP ), 2A(vP ) and
2A(P0)) are surjective on triples of composable morphisms in Cat, as
it is easy to check. Hence, these six restrictions are effective descent
morphisms in Cat. Therefore, 2A must always be a 2-category, pro-
vided so is 2D.

�

Example 4.1. It is obvious that the coproduct
∐

of 2-categories is just
the disjoint union, as for categories.

Let v4 and h4 be the 2-categories generated by the following two
diagrams, respectively:

a b ;

-

-

-

-

⇓
⇓
⇓

a b c d .
-

-

-

-

-

-
⇓ ⇓ ⇓

Consider, for each 2-category 2B, the 2-category

2E = (
∐
i∈I

v4)
∐

(
∐
j∈J

h4),

such that I is the set of all vertically composable triples of 2-cells in
2B, and J is the set of all horizontally composable triples of 2-cells in
2B.

Then, there is an e.d.m. 2p : 2E → 2B which projects the corre-
sponding copy of v4 and h4 to every i ∈ I and every j ∈ J , respectively.
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As another option, let

2E =
∐
k∈I∪J

vh4,

with vh4 the 2-category5 generated by the following diagram,

a b

-

-

-

-

⇓
⇓
⇓

c

-

-

-

-

⇓
⇓
⇓

d .

-

-

-

-

⇓
⇓
⇓

5. The reflection of 2-categories into 2-preorders has
stable units and a monotone-light factorization

Let 2Preord be the full subcategory of 2Cat determined by the ob-
jects C : 2P → Set such that Cvd and Cvc are jointly monic (cf.
diagram (2.1)), that is,

C(vP2)

-

-

-Cvr
Cvm

Cvq

C(2P1)

-

�

-Cvc
Cve

Cvd

C(P1) (5.1)

is a preordered set.

There is a reflection

H ` I : 2Cat - 2Preord, (5.2)a b a b,
-f

-
g

7→
-f

-
g

⇓ θ ⇓≤

which identifies all 2-cells which have the same domain and codomain
for the vertical composition. That is, the reflector I takes the middle
vertical category C(vP ) (cf. diagram (5.1)) to its image by the well
known reflection Cat → Preord from categories into preordered sets
(see [7]).

Many of the results in [9] are going to be stated again, with small im-
provements in their presentation6, in order to prove that the reflection
H ` I : 2Cat→ 2Preord has stable units (in the sense of [2]).

5Remark that v4, h4 and vh4 are really 2-preorders as defined just below at the
beginning of the following section 5.

6The reader could easily bring these small improvements to the paper [9]. In
fact, although they are stated here in the particular case of the reflection from
2Cat into 2Preord, they are completely general.
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5.1. Ground structure. Consider the adjunction H ` I : 2Cat →
2Preord, described just above in (5.2), with unit η : 12Cat → HI.

• 2Cat has pullbacks (in fact, it has all limits - see Corollary 3.1).
• H is a full inclusion of 2Preord in 2Cat, that is, I is a reflection

of a category with pullbacks into a full subcategory.
• Consider also the forgetful functor U : 2Cat→ 2RGrph, where

2RGrph is the presheaves category Set2G, with 2G the category
generated by the following 2-reflexive graph diagram,

2P1

-

�

-hc
he

hd

P0

vc
?

ve

6

vd
?

1P0

?

P1

-

�

-c
e

d

P0 ,

satisfying the same equations as in the 2-precategory diagram
(2.1).
• E denotes the class of all morphisms (2g1, g1, g0) : G → H of

2RGrph which are bijections on objects and on arrows, and
surjections on 2-cells (that is, g0 : G(P0) → H(P0) and g1 :
G(P1) → H(P1) are bijections, and 2g1 : G(2P1) → H(2P1) is
a surjection).
• T = {T} is a singular set, with T the 2-preorder generated by

the diagram a a′ (5.3)
-h

-
h′
⇓≤ ,

that is, a 2-preorder with two objects, two non-identity arrows
and only one non-identity (both horizontally and vertically) 2-
cell.

Then, the following four conditions are satisfied.

(a) U preserves pullbacks (in fact, it preserves all limits).

(b) E is pullback stable in 2RGrph, and if g′ ◦ g is in E so is g′,
provided g is in E .7

7In [9], it was also demanded in (b) that E is closed under composition, which is
not needed. We take this opportunity to correct that redundancy in [9].
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(c) Every map UηC : U(C) → UHI(C) belongs to E , C ∈ 2Cat
(this is also obvious).

(d) 8Let g : N →M be any morphism of 2Preord such that UHg :
UH(N)→ UH(M) is in E .
If,

there is one morphism f : A→ UH(N) of 2RGrph in E
such that,

for all morphisms c : T →M in 2Preord,
there is a commutative diagram as below

A

A×UH(M) UH(T )

UH(N) UH(M)

UH(T )

pr1 UHc (5.4)

f UHg
- -

-pr2

? ?

�
�

�
�	

then
g : N →M is an isomorphism in 2Preord.

It remains to show that the statement in (d) is true, which is trivial,
since if g : N → M is in E , seen as a morphism of 2RGrph, then g
must be an isomorphism in 2Preord by the uniqueness of the 2-cells in
N and in M .

5.2. Stable units. Using the fact that a ground structure holds, it
will be possible to show that H ` I : 2Cat → 2Preord is an admis-
sible reflection in the sense of Galois categorical theory (cf. [4]) or,
equivalently, semi-left-exact in the sense of [2]. Furthermore, it will
be shown, always using the results in [9], that the reflection H ` I :
2Cat→ 2Preord satisfies the stronger condition of having stable units.

Definition 5.1. Consider any morphism µ : T → HI(C) from T (∈ T ;
cf. (5.3)), for some C ∈ 2Cat.

The connected component of the morphism µ is the pullback Cµ =
C ×HI(C) T in the following pullback square

C

Cµ

HI(C) ,

T

πµ1 µ (5.5)
ηC

πµ2

-

-

? ?

where ηC is the unit morphism of C in the reflection H ` I : 2Cat →
2Preord, and T is identified with H(T ).

8This item is rephrased from [9], in a way that seems to us now more easily
understandable. Remark also that the diagram (5.4) is simplified, suppressing one
morphism UH(T )→ UH(T ), which can be the identity. We take this opportunity
to correct that other redundancy.
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Theorem 5.1. The reflection H ` I : 2Cat → 2Preord is semi-left-
exact.

Proof. According to Theorem 2.1 in [9], one has to show that Iπµ2 :
I(Cµ)→ I(T ) is an isomorphism, for every connected component Cµ.

If µ(a a′
-h

-
h′
⇓≤ ) = c c′,

-k

-
k′
⇓≤ then,

since UηC ∈ E (identity on objects and morphisms, and surjection on
2-cells), the pullback Cµ is the 2-category generated by the diagram

(c, a) (c′, a′)
-(k, h)

-
(k′, h′)

⇓ (θr,≤) ,

with θr ∈ HomC(vP )(k, k
′) = {θr | r ∈ R}, that is, with θr any 2-cell

with domain k and codomain k′.
Hence, I(Cµ) ∼= T . �

Theorem 5.2. The reflection H ` I : 2Cat → 2Preord has stable
units.

Proof. According to Theorem 2.2 in [9], one has to show that I(Cµ×T
Dν) ∼= T , for every pair of connected components Cµ, Dν , where Cµ×T
Dν is the pullback object in any pullback of the form

Cµ

Cµ ×T Dν

T ,

Dν

p1 πν2
πµ2

p2

-

-

? ?

where πµ2 and πν2 are the second projections in pullback diagrams of the
form (5.5).

According to the previous Theorem 5.1, one can suppose (up to iso-

morphism) that Cµ = c c′
-k

-
k′
⇓ θr , r ∈ R, and Dν = d d′

-l

-
l′
⇓ δs ,

s ∈ S (the identity morphisms and the identity 2-cells are not dis-

played). Hence, Cµ ×T Dν = (c, d) (c′, d′)
-(k, l)

-
(k′, l′)

⇓ (θr, δs) , (r, s) ∈
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R× S, and so it is obvious that I(Cµ ×T Dν) ∼= a a′.
-h

-
h′
⇓≤

�

5.3. Monotone-light factorization for 2-categories via 2-preorders.

Theorem 5.3. The reflection H ` I : 2Cat → 2Preord does have a
monotone-light factorization.

Proof. The statement is a consequence of the central result of [1] (cf.
Corollary 6.2 in [8]), because H ` I has stable units (cf. Theorem
5.2) and for every 2B ∈ 2Cat there is an e.d.m. 2p : 2E → 2B with
2E ∈ 2Preord (cf. Example 4.1).

�

In the following section 6, it will be proved that the monotone-light
factorization system is not trivial. That is, it does not coincide with
the reflective factorization system associated to the reflection of 2Cat
into 2Preord.

6. Vertical and stably-vertical 2-functors

In this section, it will be given a characterization of the class of verti-
cal morphisms EI in the reflective factorization system (EI ,MI), and of
the class of the stably-vertical morphisms E ′I (⊆ EI)9 in the monotone-
light factorization system (E ′I ,M∗

I), both associated to the reflection
2Cat→ 2Preord. Then, since E ′I is a proper class of EI , one concludes
that (E ′I ,M∗

I) is a non-trivial monotone-light factorization system.

Consider a 2-functor f : A → B, which is obviously determined by
the three functions f0 : A(P0) → B(P0), f1 : A(P1) → B(P1) and
2f1 : A(2P1) → B(2P1) (cf. diagram (2.1)), so that we may make the
identification f = (2f1, f1, f0).

Proposition 6.1. A 2-functor f = (2f1, f1, f0) : A→ B belongs to the
class EI of vertical 2-functors if and only if the following two conditions
hold:

(1) f0 and f1 are bijections;
(2) for every two elements h and h′ in A(P1), if HomB(vP )(f1h, f1h

′))
is nonempty then so is HomA(vP )(h, h

′).

Proof. The 2-functor f = (2f1, f1, f0) belongs to EI if and only if If is
an isomorphism (cf. [1, §3.1]), that is, If0, If1, and I2f1 are bijections.
Since If0 = f0 and If1 = f1, the fact that f ∈ EI implies and is implied
by (1) and (2) is trivial.

�

9E ′I is the largest subclass of EI stable under pullbacks.
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Proposition 6.2. A 2-functor f = (2f1, f1, f0) : A → B belongs to
the class E ′I of stably-vertical 2-functors if and only if the following two
conditions hold:

(1) f0 and f1 are bijections;
(2) for every two elements h and h′ in A(P1), f induces a surjection

HomA(vP )(h, h
′) → HomB(vP )(f1h, f1h

′)) (f is a “full functor
on 2-cells”).

Proof. As every pullback g∗(f) = π1 : C ×B A → C in 2Cat of f
along any 2-functor g : C → B is calculated pointwise, and (2f1, f1) :
A(vP ) → B(vP ) is a stably-vertical functor for the reflection Cat →
Preord, that is, f1 is a bijection and (2f1, f1) is a full functor (cf.
Propositions 4.4 and 3.2 in [7]), then (1) and (2) imply that g∗(f)
belongs to EI (cf. last Proposition 6.1).

Hence, f ∈ E ′I if (1) and (2) hold.

If f ∈ E ′I , then f ∈ EI (E ′I ⊆ EI), and therefore (1) holds.
Suppose now that (2) does not hold, so that there is θ : f1h→ f1h

′

not in the image of f , and consider the 2-category C generated by

the diagram b b′
-f1h

-
f1h

′
⇓ θ , and let g be the inclusion of C in B. Then,

C×BA ∼= b b′
-f1(h)

-
f1(h

′)

, with no non-identity 2-cells, and so g∗(f) is not
in EI .

Hence, if f ∈ E ′I then (1) and (2) must hold. �

It is evident that E ′I is a proper class of EI , therefore the monotone-
light factorization system (E ′I ,M∗

I) is non-trivial (6= (EI ,MI)).

7. Trivial coverings for 2-categories via 2-preorders

A 2-functor f : A → B belongs to the class MI of trivial coverings
(with respect to the reflection H ` I : 2Cat→ 2Preord) if and only if
the following square

B

A

I(B)

I(A)

f

ηA

If (7.1)
ηB

-

-

? ?
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is a pullback diagram, where ηA and ηB are unit morphisms for the
reflection H ` I : 2Cat→ 2Preord (cf. [2, Theorem 4.1]).

Since the pullback (as any limit) is calculated pointwise in 2Cat (cf.
Corollary 3.1), then f ∈ MI if and only if the following seven squares
are pullbacks, corresponding to the seven pointwise components of ηA
and of ηB (cf. diagram (2.1)):

B(Pi)

A(Pi)

I(B)(Pi)

I(A)(Pi)

fPi

ηA(Pi)

IfPi
(Di) (i = 0, 1, 2)
ηB(Pi)-

-

? ?

these three squares are pullbacks since ηA(Pi) and ηB(Pi) are identity
maps for i = 0, 1, 2 (cf. diagram (2.1) and the definition of the reflection
H ` I : 2Cat→ 2Preord in (5.2));

B(2P1)

A(2P1)

I(B)(2P1)

I(A)(2P1)

f2P1

ηA(2P1)

If2P1 ;(2D)
ηB(2P1)-

-

? ?
B(vP2)

A(vP2)

I(B)(vP2)

I(A)(vP2)

fvP2

ηA(vP2)

IfvP2 ;(vD)
ηB(vP2)-

-

? ?

B(hP2)

A(hP2)

I(B)(hP2)

I(A)(hP2)

fhP2

ηA(hP2)

IfhP2 ;(hD)
ηB(hP2)-

-

? ?
B(hvP2)

A(hvP2)

I(B)(hvP2).

I(A)(hvP2)

fhvP2

ηA(hvP2)

IfhvP2(hvD)
ηB(hvP2)-

-

? ?

Notice that if diagram (2.1) is restricted to the (vertical) precategory
diagram vP , one obtains from (7.1) the following square in Cat, with
unit morphisms of the reflection of all categories into preorders Cat→
Preord (cf. [7]),

B(vP )

A(vP )

I(B(vP )).

I(A(vP ))

fvP

ηA(vP )

IfvP (7.2)
ηB(vP )

-

-

? ?

It is known (cf. [7, Proposition 3.1]) that this square is a pullback
in Cat if and only if, for every two objects h and h′ in A(P1) with
HomA(2P1)(h, h

′) nonempty, the map

HomA(2P1)(h, h
′)→ HomB(2P1)(f1h, f1h

′)
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induced by f is a bijection.
A necessary condition for the 2-functor f to be a trivial covering

was just stated; the following Lemma 7.1 will help to show that this
necessary condition is also sufficient in next Proposition 7.1.

Lemma 7.1. Consider the following commutative parallelepiped

B2

@
@@R

ηB,2

--
rB

qB
B1

@
@@R
ηB,1

--
dB

cB
B0
HHH

HHj

ηB,0

f2 f1 f0

? ??

A2

@
@@RηA,2

--
rA

qA
A1

@
@@RηA,1

--
dA

cA
A0 HHH

HHj

ηA,0

I(B)2
--

IrB

IqB
I(B)1

--

IdB

IcB
IB0 ,

If2 If1 If0
? ??

I(A)2 --

IrA

IqA
I(A)1

--

IdA

IcA
I(A)0

where the five squares dAqA = cArA, dBqB = cBrB, IdAIqA = IcAIrA,
If0ηA,0 = ηB,0f0 and If1ηA,1 = ηB,1f1 are pullbacks.

Then, the square If2ηA,2 = ηB.2f2 is also a pullback.10

Proof. The proof is obtained by an obvious diagram chase. �

Proposition 7.1. A 2-functor f : A→ B is a trivial covering for the
reflection H ` I : 2Cat → 2Preord (in notation, f ∈ MI) if and
only if, for every two objects h and h′ in A(P1) with HomA(2P1)(h, h

′)
nonempty, the map

HomA(2P1)(h, h
′)→ HomB(2P1)(f1h, f1h

′)

induced by f is a bijection.

Proof. In the considerations just above, it was showed that the state-
ment warrants that the squares (2D) and (vD) are pullbacks, adding
to the fact that (D0), (D1) and (D2) are all the three pullbacks.

Then, (hD) and (hvD) must also be pullbacks according to Lemma
7.1. �

8. Coverings for 2-categories via 2-preorders

A 2-functor f : A → B belongs to the class M∗
I of coverings (with

respect to the reflection H ` I : 2Cat → 2Preord) if there is some
effective descent morphism (also called monadic extension in Galois
categorical theory) p : C → B in 2Cat with codomain B such that
the pullback p∗(f) : C ×B A → C of f along p is a trivial covering
(p∗(f) ∈MI).

10The notation used in diagram (7.3) is arbitrary, being so chosen in order to
make the application of Lemma 7.1 in this section more easily understandable.
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The following Lemma 8.1 can be found in [7, Lemma 4.2], in the
context of the reflection of categories into preorders, but for 2-categories
via 2-preorders the proof is exactly the same, since the same conditions
hold (cf. Theorem 5.2 and Example 4.1). The next Proposition 8.1
characterizes the coverings for 2-categories via 2-preorders.

Lemma 8.1. A 2-functor f : A → B in 2Cat is a covering (for the
reflection H ` I : 2Cat→ 2Preord) if and only if, for every 2-functor
ϕ : X → B over B from any 2-preorder X, the pullback X ×B A of f
along ϕ is also a 2-preorder.

Proposition 8.1. A 2-functor f : A → B in 2Cat is a covering (for
the reflection H ` I : 2Cat → 2Preord) if and only if it is faithful
vertically with respect to 2-cells, that is, for every pair of morphisms g
and g′, the map

HomA(2P1)(g, g
′)→ HomB(2P1)(f1g, f1g

′

induced by f is an injection.

Proof. Consider again the 2-preorder T generated by the diagram a a′.
-h

-
h′
⇓≤

If f is not faithful vertically with respect to 2-cells, then, by including
T in B, one could obtain a pullback T ×B A that is not a preorder.

Therefore, f is not a covering, by the previous Lemmma 8.1.

Reciprocally, consider any 2-functor ϕ : X → B such that X is a
2-preorder.

If f is faithful (vertically with respect to 2-cells), then the pullback
X ×B A is a 2-preorder, given the nature of X. Hence, f is a covering,
by the previous Lemmma 8.1.

�
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