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Sheaves as “continuous presheaves’:
F: Q(X)P — Set

s.t. for all S C Q(X) closed under binary A, F(\/S) = limyes F(U)

A sheaf F: Q(X)°? — V is soft if every local section on a compact saturated
subset of X can be extended to a global section.

Theorem (Gehrke & van Gool, JPAA 2018)

Let X be a stably compact space and A # () an algebra in a variety V. There is
a bijection between:

» (isomorphism classes of) soft sheaf representations of A over X;

» (A, \)-preserving maps K(X)°? — Con(A) whose images consist of
commuting congruences.
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Let C be a regular category : )
(reg. epi, mono) stable fact. system

» Forall Ac C, (QuoA)°P +*" s EquivA is an order-embedding.

If ker is surjective, C is said to be Barr-exact .

Examples of regular cat’s: (possibly infinitary) varieties and quasivarieties,
toposes, Stone, KHaus, KHaus®?, Nachbin®?, ...

For all A € C, its canonical representation is
v: RegEpiA— C, (A— B)+— B.

[P°P, RegEpi A] —— [P°P, C]

H+— voH.

If P is any poset, this induces a functor

3/9



Definition
A K-sheaf on a complete lattice P is a functor F: P°? — C such that:

4/9



Definition

A K-sheaf on a complete lattice P is a functor F: P°® — C such that:

(K1) F(L) is a terminal object of C.
(K2) For all p,q € P, the following is a pullback square in C:

FpV q) —222 F(p)

_
fqu,ql lfp,pmq

Fla) =" F(p A aq)

4/9



Definition

A K-sheaf on a complete lattice P is a functor F: P°® — C such that:

(K1) F(L) is a terminal object of C.
(K2) For all p,q € P, the following is a pullback square in C:

FpV q) —222 F(p)

_
fqu,ql lfp,pmq

Fla) =" F(p A aq)

(K3) F preserves directed colimits, i.e. F(/\ D) = colimpep F(p) for all
codirected subsets D C P.

4/9



Definition

A C-sheaf on a complete lattice P is a functor F: P°® — C such that:

(K1) F(L)is a subterminal object of C.
(K2) For all p,q € P, the following is a pullback square in C:

F(pVq) —222 F(p)

.
[PVq»Ql lfp,pAq

F(q) —2% F(p A q)

K3) F preserves directed CO“IIIitS, i.e. F D) = colim €D F P for all
P
codirected subsets D C P.

4/9



Definition
A C-sheaf on a complete lattice P is a functor F: P°? — C such that:
(K1) F(L) is a subterminal object of C.

(K2) For all p, g € P, the following is a pullback square in C:

F(pvq) —2" F(p)

|
lpva, ql lfp,p/\q

F(a) =" F(p A q)

(K3) F preserves directed colimits, i.e. F(/\ D) = colimpep F(p) for all
codirected subsets D C P.

A K-sheaf F: PP — Cis soft if, for all p e P, F(T) — F(p) is a regular epi.
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where
» M is the full subcategory of [P°P, RegEpi A] on the (A, \/)-preserving maps
whose images consist of ker-commuting elements;
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Theorem
VA € C, the functor ,: [P°P, RegEpi A] — [P°P, C] induces an isomorphism

M = s-Sh(P, C)

where

» M is the full subcategory of [P°P, RegEpi A] on the (A, \/)-preserving maps
whose images consist of ker-commuting elements;

> s—Sh,é(P, C) is the category of soft K-sheaf representations of A over P.

Rmk: If Cis Barr-exact and we take poset reflections , RegEpi A can be
replaced with Equiv A. In that case, the ker-commuting regular epis correspond
to the commuting equivalence relations.
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Let C be a bicomplete regular category and let L be a domain .
(E.g., L=Q(X) for X a locally compact space).

LoP 2 Filt(L) <"~ oFilt(L)

induces
A* Rang
[L°P, C] T [oFilt(L),C].
Kk* Lany
Proposition

The previous adjunction restricts to an equivalence

w-lim[L°P, C] ~ w-colim[oFilt(L), C] . (M)
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An Q-sheaf on a complete lattice P is a functor F: P°? — C such that:
(Q1) = (K1)
(22) = (K2)
(Q3) = (K3)°P = F preserves codirected limits.

Theorem
If L is a stably continuous lattice, (M) restricts to a fully faithful functor

Shi(cFilt(L)°P, C) < Shq(L, C).
This is an equivalence if directed colimits in C commute with finite limits .

Rmk: If L = Q(X) with X stably compact, then we can replace oFilt(L)°P with
K(X) in the previous theorem.
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This restricts to sheaf representations : for all A € C,
M = s-Shi (o Filt(L)°P, C) < s-Sha(L, C) (La)

and the composite is an equivalence if directed colimits in C commute with
finite limits.

Rmk (sheaves vs -sheaves): For any space X, a presheaf F: Q(X)°P — Cis
a sheaf iff it is an Q-sheaf and F(() is terminal.

As finitary varieties are bicomplete Barr-exact categories in which directed
colimits commute with finite limits, Gehrke & van Gool's result follows by
taking poset reflections in (Ls).
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Thank you for your attention!
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