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Main ideas

• Study the dual side of `-groups and Riesz spaces introduced in
the previous talk.

• Compare the functors in the duality with Spec, PWLZ and
PWLR.

• Application 1: a concrete representation of Spec into
ultrapowers of R.

• Application 2: an alternative proof of Panti’s characterisation
of prime ideals.
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Recap from the previous talk



The Galois connection

• V indicates either the variety of abelian `-groups or the
variety of vector lattices.

• PWL indicates either the piecewise homogeneous functions
with coefficients in R or in Z.

• U always denotes some ultrapower of R in V .

For κ a cardinal, F κ is the free algebra in V over κ generators.

For cardinals κ < γ, the operators V and I are defined, for any
T ⊆ F κ and S ⊆ Uκ,

κ

V

γ
U

(T ) :={x ∈ Uκ | t(x) = 0 for all t ∈ T}

κ

I

γ
U

(S) :={t ∈ F κ | t(x) = 0 for all x ∈ S}.

They form a Galois connection that extends to dual adjunction.
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The duality

For a cardinal γ, let Vγ the full subcategory of V that contains all
κ-generated objects, with κ < γ.

Theorem
For any cardinal γ, there exists an ultrapower U of R such that
the category Vγ is dually equivalent to the category of V I-closed
subsets of Uκ.

Notice that for any S ⊆ Uκ,

V I(S) = S if and only if S = V(T ) for some T ⊆ F κ

3 / 19



The duality

For a cardinal γ, let Vγ the full subcategory of V that contains all
κ-generated objects, with κ < γ.

Theorem
For any cardinal γ, there exists an ultrapower U of R such that
the category Vγ is dually equivalent to the category of V I-closed
subsets of Uκ.

Notice that for any S ⊆ Uκ,

V I(S) = S if and only if S = V(T ) for some T ⊆ F κ

3 / 19



The duality

For a cardinal γ, let Vγ the full subcategory of V that contains all
κ-generated objects, with κ < γ.

Theorem
For any cardinal γ, there exists an ultrapower U of R such that
the category Vγ is dually equivalent to the category of V I-closed
subsets of Uκ.

Notice that for any S ⊆ Uκ,

V I(S) = S if and only if S = V(T ) for some T ⊆ F κ

3 / 19



The operator V I



V I is (almost) topological

The operator V I is a closure operator and commutes with binary
unions. However, it does not commute with empty unions, because
every homogeneous polynomial vanishes on the origin O:
V I(∅) = {O}.

So we need to consider Uo
κ := Uκ \ {O} and modify V

accordingly: V o(S) := V(S) \ {O}.
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Some remarks

Remark

• The subsets V({t}) = {x ∈ Uκ
o | t(x) = 0} form a basis of

closed sets for the topology.

• Notice that the Zariski topology on Uκ
o depends on whether

we work with abelian `-groups or vector lattices.

The Zariski topology on Uκ
o is not even T0. Indeed, t(x) = 0

implies t(x + x) = t(x) + t(x). Whence x and 2x cannot be
separated by an open set.
Therefore, we will consider the T0-reflection of Uκ

o . This is
equivalently obtained by taking a quotient over the relation

x ∼ y if and only if V I(x) = V I(y).
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The topology on the quotient

Remark

The frames of open sets of Uκ
o and Uκ

o /∼ are isomorphic.

This is because all closed subsets of Uκ
o are saturated w.r.t. the

relation ∼.

6 / 19



The topology on the quotient

Remark

The frames of open sets of Uκ
o and Uκ

o /∼ are isomorphic.

This is because all closed subsets of Uκ
o are saturated w.r.t. the

relation ∼.

6 / 19



Compact open

Lemma

The compact opens of Uκ
o are exactly the complements of the

basic closed sets V(t).

One direction comes from the fact that t belongs to an arbitrary
ideal J if and only if there are t1, . . . , tn ∈ J such that
t ≤ t1 + · · ·+ tn.

The other direction is a consequence of the fact that finitely
generated ideals are principal in V.
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Irreducible

Recall that a closed subset of a topological space is said to be
irreducible if it is not the union of two proper closed subsets.

The nonempty irreducible Zariski-closed subsets of Rn \ {O} are
the semilines starting from the origin (VR(I) with I maximal).

Proposition

The nonempty irreducible closed subsets of Uκ
o are exactly the

closure of points.

Indeed, notice that being irreducible means to be join-prime in the
lattice of closed sets. The latter is order-dual to the lattice of
ideals, in which prime ideals are exactly the meet-prime elements.
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The Zariski topology is generalized spectral

Proposition
Uκ

o /∼ is a generalized spectral space, i.e., T0, sober, and with a
basis of compact open sets stable under binary intersections.

It is T0 by construction, and by taking the quotient the compact
open sets and the irreducible closed ones do not change.
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A representation of Spec

Spec(A) is classically considered with its hull-kernel topology,
where the basic closed subsets are {P ∈ Spec(A) | a ∈ P}.

Theorem

The map e : Uκ
o /∼ → Spec(F κ) that sends x/∼ 7→ I(x) is a

homeomorphism.

Corollary
For any κ-generated object in A ∈ V there exists an embedding
of Spec A into Uκ

o such that A ∼= ∗PWL(Spec(A)).

Corollary
A topological space is the spectrum of some A ∈ V iff it is a
closed subspace of some Uκ

o /∼.
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Irreducible closed



Non standard tools

If U =
∏

R/F for some ultrafilter F , every subset X ⊆ Rn can be
associated with a subset ∗X of Un defined as{

x ∈ Un | {i ∈ I | πi (x) ∈ X} ∈ F
}

and called the enlargement of X . Similarly, every predicate P ⊆ Rn

and function f : Rn → R can be enlarged to ∗P ⊆ Un and
∗f : Un → U .

Transfer principle ( Loś Theorem)
Let ϕ be a first order formula and ∗ϕ the formula obtained by
replacing every predicate symbol P and every function symbol f
with ∗P and ∗f . Then ϕ is true in R iff ∗ϕ is true in U .
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Indices and irreducible closed

Orthogonal decomposition theorem (Goze 1995)
Any x ∈ Un

o can be written in a unique way as

x = α1v1 + · · ·+ αkvk

where

1. v1, . . . , vk are orthonormal vectors of Rn,
2. 0 < α1, . . . , αk ∈ U , and
3. αi+1/αi is infinitesimal for every i < k.
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Cones and indices

Thus, each x ∈ Un
o gets associated with a sequence

v = (v1, . . . , vk) of orthonormal vectors, which we call index.

For an index v, let Hcone(v) be the set of points of Un
o whose

index is a truncation of v.

Theorem (Carai, Lapenta, and S.)
In the Zariski topology of Un

o relative to vector lattices each
irreducible closed of Un

o is Hcone(v) for some index v. In other
words,

V I({x}) = Hcone(v(x)).
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Abelian `-groups and Z-reduced indices

Definition
If w ∈ Rn, let 〈w〉 be the smallest subspace containing w that
admits a basis in Zn.

An index v = (v1, . . . , vk) is Z-reduced if 〈vi〉 and 〈vj〉 are
orthogonal for each i 6= j .

Using a sort of Gram-Schmidt process, we can associate to each
index v a unique Z-reduced index red(v).
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Abelian `-groups and Z-reduced indices

Theorem (Carai, Lapenta, and S.)
In the Zariski topology of Un

o relative to abelian `-groups each
irreducible closed of Un

o is of the form⋃
{Hcone(w) | red(w) = v}.

for some Z-reduced index v.
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Indices and cones

If v is an index, we say that a closed cone C ⊆ Rn is a v-cone if
there exist real numbers r2, . . . , rk > 0 such that C is generated by
{v1, v1 + r2v2, . . . , v1 + r2v2 + · · ·+ rkvk}.

Proposition
Hcone(v) is the intersection of the enlargements of all the
v-cones.
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v = ((1, 0), (0, 1)).
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Primes and indices

Theorem (Carai, Lapenta, and S.)
For any f ∈ PWL(Rn),
∗f vanishes on Hcone(v) iff f vanishes on some v-cone.

In addition, if f ∈ PWLZ(Rn) and v is Z-reduced, then
∗f vanishes on

⋃
{Hcone(w) | red(w) = v} iff f vanishes on some

v-cone.

As a corollary, we obtain the description of prime `-ideals in finitely
generated vector lattices and abelian `-groups due to Panti.

Theorem (Panti 1999)
Each prime ideal of F n is of the form
{f ∈ PWL(Rn) | f vanishes on a v-cone} for a uniquely
determined (reduced) index v.
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Thank You!
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