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Motivation: Belief based on information

@ It is natural to view belief as based on evidence/information

@ Potential incompleteness, uncertainty, and contradictoriness of information
needs to be dealt with adequately

@ Separately, these characteristics has been taken into account by various
appropriate logical formalisms and (classical) probability theory

@ The first two are often accommodated within one formalism (e.g. imprecise
probability), the second two less so.

@ Conflict or contradictoriness of information is rather to be resolved than to
be reasoned with.
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Two-dimensionality of information

Addressing incompleteness and contradictoriness of information in one
framework:
@ separating positive and negative information, which are not considered
complementary and can overlap
@ semantically, distinguishing support for from opposition to a statement (or
qualifying/quantifying evidence for and evidence against a statement being
the case separately)
@ explicit in the double-valuation semantics of Belnap-Dunn logic, and the
concept of bi-lattices or twist product algebras.

@ this approach can be extended to encompass uncertainty measures like
probabilities, belief functions, and graded reasoning.
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Two-layer logics for uncertainty

Two-layer syntax. (£;, M, £L,) with

@ inner language L; (events, evidence) CPC
@ outer language £, (agent, belief) t or linear inequalities
@ M: Modalities m : (£;)" — L, p

4

Two-layer semantics consists of

- semantics of £; (P(W),N,U,-)
- interpretation of modalities M u:P(W) — [0,1]
- semantics of £, [0,1]x, |

Two-layer axiomatization of L = (L;, M, L,)) consists of

- a complete axiomatics of the inner logic L;

- modal axioms and rules M P-pe ~Pp or P-p=1-Py
- a complete axiomatics of the outer logic L,,.

4
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Two-layer logics for uncertainty

@ Fagin, Halpern, Meggido 1990’s: two-layer logics for reasoning about
probability and belief
(CPC, probability, reasoning about linear inequalities),

@ Zhou 2013: generalization of belief functions, and the logics above, to
distributive lattices
(BD, belief, reasoning about linear inequalities),

@ Hajek, Godo, Esteva 1995: two-layer modal logics, with many-valued
modality "probably” (CPC, P, t.),

@ Cintula & Noguera 2014: an abstract framework of two-layer modal logics,
with a general theory of syntax, semantics and completeness.

@ This talk: two-layer modal logics, with a many-valued modalities based on
Belnapian probabilities or belief (and plausibility) functions
(BD, M, L,) with L, derived from tukasiewicz logic.
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Belnapian two-layer logics for uncertainty

Two-layer syntax. (£;, M, £L,) with

@ inner language £; (evidence) BD
@ outer language £, (agent, belief) L_ or linear inequalities
@ M: Modalities m : (£;)" — L, p

y

Two-layer semantics consists of

- semantics of £; (P(S)™, A, V,7)

- interpretation of modalities M u:P(S) — [0,1]

- semantics of £, [0, 117
y

Two-layer axiomatization of L = (L;, M, L,) consists of

- a complete axiomatics of the inner logic L;

- modal axioms and rules M P-pe —Pp or P —p=P ¢
- a complete axiomatics of the outer logic L,,.

y

Bilkova Two-layered Belnapian logics for uncertainty TACL 2022 6/37



Belnap-Dunn as the inner logic: qualifying evidence

Language Lgp: ¢:=peProp|org|leVe|-e

(4, A, Vv, =) is a de Morgan algebra
@ (4, A, V) is a distributive lattice
@ each element represents the availability of positive
and/or negative information
t: true (top)
n: no info  b: contradictory info
f: false (bottom)

@ - is an involutive de Morgan negation.

.

BD consequence relation and Exactly true logic

I" Egp ¢ given as preservation of {z, b}.
I" FeTL @ given as preservation of {¢}.
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Belnap-Dunn as the inner logic: axiomatics

BD is completely axiomatized using the following axioms and rules:
PAYFo CAY Y prY Ve preVy
¢k gk AWV Y)F(@AY)V(PA))
@AY k(e V) (e AY) F @V Y

prY, by wrY, oty @R x, YEy prY
orFx prYAx VY Fx /Al

@ I' +gp ¢ is the consequence relation generated by the above
@ BD is strongly complete and locally finite.

@ BD allows for a unique (irredundant) DNF and CNF.

@ ETL: et is obtained from +gp adding =@ A (@ VY) F
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Belnap-Dunn as the inner logic: frame semantics [Dunn 76]
Language Lgp ¢:=peProp|oAg|epVe|-p

4-valued Models M = (S, v: S x Prop — 4)
v is extended to formulas in the standard way. )
Double-valuation semantics M = (S, ", )
s iff v(s)(e) € {t,b} sk @ iff v(s)(p) € {f,Db}.
i.e.

s oAy iff s pand sy S @AY iff sk~ pors ik

sk VY iff sk pand sy st oV yiff skt gors ikt y

sk =g iff s @ sk g iff st

lol" ={s [ s+ ¢} lel” ={s | s+ ¢} )
Consequence relation T kgp ¢ iff VM,s (s -t T — s IF* ¢). )
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Belnapian probabilities: quantifying evidence
@ m: S — [0,1] amass function: Y cgm(s) =1
@ p:PS — [0,1] given by
p(X) = > {n(s) | s € X}

@ Generates an assignment (p*,p7) : Lgp — [0, 1] x [0, 1]°7:

p*(¢) =p(Igl) = > {m(s) | s " o}
p (¢) =p(l¢|") =p"(-¢) —-coherence

The probability function p* satisfies:
(A1) normalization 0 <p*(¢) <1
(A2) monotonicity if ¢ Fgp ¥ then p*(¢) < p*(¥)
(A3) incl.-excl. P (e AY)+p (e VyY)=p (p) +p (¥).

@ D. Klein, O. Majer, S. Raffie-Rad, Probabilities with gaps and gluts, JPL 2021.
@ C. Zhou, Belief functions on distributive lattices. Artif. Intell. 201, (2013).
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Belnapian probabilities: quantifying evidence

@ m: PLit — [0, 1] a mass function: Y ;e m(I) =1
@ Generates an assignment (p*,p”) : Lgp — [0, 1] x [0, 1]°7:

P(¢) = ) {n(D) | T+ ¢}
p (¢) =p'(-¢) -—-coherence

The probability function p* satisfies:
(A1) normalization 0 <p*(¢) <1
(A2) monotonicity if ¢ Fgp ¥ then p*(¢) < p*(¥)
(A3) incl.-excl. P (e AY)+p (e V) =p*(p) +p"(¥).

@ D. Klein, O. Majer, S. Raffie-Rad, Probabilities with gaps and gluts, JPL 2021.
@ C. Zhou, Belief functions on distributive lattices. Artif. Intell. 201, (2013).
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Other uncertainty measures p,bel,pl : PS — [0, 1]
(A1) normalization, (A2) monotonicity, and

Inner probabilities (p*,p™) : p~(¢) = p*(—p)
(A3)incl.-excl. pT (e V) > pt()+pt(¥) —p (@ AY)

General belief functions (bel™,bel™) : bel™(¢) = bel™(—gp)

n
(A,)) n-monotonicity bel*(\/ ¢;) > Y (-1)MWH . pe1* ( A goj)
i=1 Jc{l,..., n} jeJ

General plausibility functions (p1*,pl17) : p17(¢) = pl*(—¢)

n
(A,) n-monotonicity pl*(A ¢;) < > (O ( \V goj)
i=1 Jc{l,..., n} JjeJ

Similarly, we can consider possibilities and necessities, or qualitative
probabilities.
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Example: belief based on (multiple) information sources

@ A model provides sets

lol* ={s| s+ ¢}and|o|” ={s|s+ ¢} States of a model:

@ They can intersect and do not have to cover § o || F

@ each source provides probabilities e
(p(¢),p (¢)) (or belief functions (R
(bel*(p), bel™(¢)))

@ an aggregation provides an assignment
(B*(¢), B~ (¢)) = a degree of belief

v

@ Belief assighment can be a Belnapian probability: then it satisfies the
probability axioms,

@ it can be a Belnapian belief function: then it satisfies the belief function
axioms,

@ or, it can be just monotone and coherent:

prep ¥ / B (¢) < B'(¢¥) B (¢) =B (-¢).
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Belnapian uncertainty measures: the range [0, 1] x [0, 1]°7

Continuous extension of 4:
the twist product [0, 1] with Ly 1] = ([0, 1], min, max).

The twist product [0, 1]* (1,0)

O\

(a1,a2) A (b1,b2) = (a1 A bi,az V b) (0,0) O (1,1)
(a1,a2) v (b1,b2) = (a1 V b1,a2 A b)

—(a,az) = (az,a)

y 0,1)
@ (p*(¢),p (¢)): positive/negative probabilistic support of ¢

@ “classical” vertical line: p™(¢) =1 - p (¢),

@ Graded reasoning about (belief based on) probabilities or belief functions
can be interpreted over expansions of [0, 1]™.
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Two-dimensional outer logics for probabilities and belief
functions

@ to be interpreted over an algebra (matrix) expanding [0, 1]™ with
implication, fusion, negation, ...

@ to be able to express all three probability (belief functions) axioms
— derived from tukasiewicz logic and [0, 1],
@ two ways of negating implication
(a) "de Morgan” way, using a co-implication

=(a > b) :=(=b©-a)
(b) "Nelson” way, combining positive and negative semantical values

=(a — b) := (a & -b)
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Two-dimensional logics for comparative uncertainty

@ to be interpreted over an algebra (matrix) expanding [0, 1]™ with
implication, fusion, negation, ...

@ to be able to express: monotonicity and coherence in case of comparative
uncertainty
— derived from Godel logic and [0, 1]

@ two ways of negating implication
(a) "de Morgan” way, using a co-implication (bi-Godel logic)

=(a — b) := (=b < —a)
(b) "Nelson” way, combining positive and negative semantical values

=(a — b) :=(a N —Db)
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case (a): L2, reasoning with probabilities or bel. functions
Standard MV algebra
[Oa 1]L = ([0’ 1]1 /\, V, &Ls _>L):

a A b :=min{a, b}, a&y,b ;= max{0,a +b — 1}
aV b :=max{a, b} a —y b:=min{l,1-a+b)}
~pa:=a > 0=1-a akpb <c o b<a-—yc

Definable connectives:

a®y b:=~a >y, b=min{l,a+b}
a ey b:=~(a —y, b) =max{0,a — b}
c<adpboscepb<a

oy, is a co-implication.
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case (a): L2, reasoning with probabilities or bel. functions

twist product [0, 1]™, =(a1, a2) = (az,a1), F = {(1,0)},

[0, 1]* expanded with (1,0)
(a1,a2) — (b1,b2) = (a1 =1 b1, b2 ©p az) (0,0) .\Q (1,1)
(a1,a2)&(b1, ba) = (a1&yb1, az &1 b2)
~(a1,az) = (~pa1, ~Laz) ) 0.1)

Notice: — is symmetry along the horizontal, ~ is symmetry along the middle
point, ~— is symmetry along the vertical (conflation).
—a < ~a defines the vertical. = and ~ are distinct.

I' £y 2 @ defined as preservation of (1,0).
Its (A, V, =)-fragment coincides with ETL. J
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case (a): L2, reasoning with probabilities or bel. functions

twist product [0, 1]%, =(a1, a2) = (a2, a1), F = (1, 1),

[0, 1]™ expanded with (1,0)
(a1,a2) — (b1, b2) = (a1 —1, b1, b2 61 a2) (0,0) .\. (1,1)
(a1,a2)&(b1, b2) = (a1&yb1, a2 &1 b2)
~(a1,az) = (~pa1, ~Laz) ) 0.1)

Notice: — is symmetry along the horizontal, ~ is symmetry along the middle
point, ~— is symmetry along the vertical (conflation).
-a < ~a defines the vertical. = and ~ are distinct.

(1,n)T

'k 2« defined as preservation of (1, .
Its (A, v, =)-fragment coincides with BD.
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case (a): L2, reasoning with probabilities or bel. functions
L2: L expanded with the bi-lattice negation .

Axiomatization of 1.2

a— (B— a) ——a o a
(a—B)—> (B—y) = (a—>Y) T~ o~
((a=p)—>B) = (- a) — a) (~=a - ~=p) & ~=(a— p)
(~B—> ~a) - (a—p) a,a—BrB ar~—a

@ —- negation normal form
@ Local Deduction Theorem:

Ia ke Biff 3nT k2 (~—a)" — B

Theorem (FSSC):
L2 is finitely strongly standard-complete w.r.t. (([0,1]™, =, ~), {(1,0)}).

y
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case (a): 1.2

(1L,n?
. . . 2
Axiomatization of L(1,1)T
a— (B a) ——a o a
(a—B) = ((B—vy) = (a—>y)) —~a o ~na
(=) —p) = (B—a) — a) (v — ~=) & ~=(a— )
(~B > ~a) > (a > B) a,a > BrPB Falt~—a

@ —- negation normal form
@ Local Deduction Theorem:

Marz Piff InlHe " -
@n? @n?

Theorem (FSSC):
L?l o is finitely strongly standard-complete w.r.t. (([0,1]>, —, ~), (1, 1)T).

Bilkova Two-layered Belnapian logics for uncertainty TACL 2022 20/37



Adding a A operator: £.2A

1, ifa=1
On the standard MV algebra: Apa = { 1t

0 else

(A1) 2AaV~Aa

(A2) Aa—a

(AS) Aa — AAa A(al,ag) = (ALal, "LALNLaQ)
(24)  A(aVp) - raVvap

(A5)  A(a —> B) — ra— A

(Aé) A & ~A~Q
(Nec) a/ra

Globalization operator on [0, 1]} Aa := Aa A ~—Aa

(1,0), if (a1,az2) = (1,0)
A(ay,az) =
(0,1) else
@ —- negation normal form
@ A-Deduction Theorem: T',a ty2, BiffT k2, Ao — B
@ Finite strong standard completeness (FSSC)
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Case (b): NL, reasoning with probabilities or bel. functions

twist product [0, 1], = (a1, a2) = (as,a1), F = (1, 1)T:
[0, 1]™ expanded with
(a1,a2) — (b1, b2) = (a1 -y, b1, a1&1.b2)

(a1, a2)& (b1, b2) = (a1&1.b1, a1 —1, ~Lb1)

~(ai,az) = (~pai,ay)

y

I" Eng, @ defined as preservation of F = {(1,a) | a € [0,1]}.
Its (A, v, =)-fragment coincides with BD. J

The weak equivalence a <+ B8 := (@ — B) A (B — a) is not congruential, the
strong one @ «— B := (@ «> B) A (ma <> =) is.
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Case (b): NL, reasoning with probabilities or bel. functions

twist product [0, 1]™, = (a1, a2) = (az,a1), F = (1, )T:
[0, 1]™ expanded with (1,0)
(a1,az) — (b1,b2) = (a1 — b1, a1&bo) (0,0) .\. (1,1)

(a1, a2)& (b1, b2) = (a1&1.b1, a1 —1, ~1Lb1)

~(ay,az) = (~pay,ay)

y (09 1)

I" Eng, @ defined as preservation of F = {(1,a) | a € [0,1]}.
Its (A, v, =)-fragment coincides with BD. J

~a is always on the vertical. ~a <> —~a defines the vertical, ~« — —a defines the
right triangle, and —a@ — ~a the left. (¢ — B8) A (-a — —B) captures the
information order.
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Case (b): NL, reasoning with probabilities or bel. functions

Axiomatics of NL.:

The axioms of tukasiewicz logic (in terms of —) with MP as the only rule, plus
the —-axioms:

@ > A
~(@ AB) + —a V-
(@ V )+ —~a AP
(@ = p) + (a&=p)
~(a&p) +> (@ — ~B)

i~ <> X

@ —-negation normal form (weakly equivalent only)
@ Local Deduction Theorem as in L

@ Finite strong standard completeness (FSSC)
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case Il.(a): G~ . (=), comparative uncertainty

(1 0)

Standard Goédel algebra:
[0,1]G = ([0, 1], A, V, —¢)

1, ifa<b
a—g b= ~ga:=a—¢g0
b else

c<a—gbiff anc<b

can be expanded by a co-implication:

0,ifb<a
b<ga= -ga:=1<ga
b else

b<ga<ciff b<avec
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case (a): G (1 0

twist product [0, 1], =(ay, a2) = (az,a1), F = {(1,0)},

[0, 1]* expanded with

(a1,az) — (b1,b2) = (a1 —¢ b1, b2 <G a2)
(a1,az) < (b1,b2) = (a1 <G b1, b2 —¢ a2)

~(ay,az2) = (~gai,—gaz)

r I=G(21’0)(_,) a defined as preservation of (1, 0).

Its (A, v, =)-fragment coincides with ETL.

(—), comparative uncertainty

(O’ 0)
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case (a): G (—), comparative uncertainty

(1 Dt

twist product [0, 1]%, = (a1, a2) = (a2, a1), F = (1, 1),
[0, 1]* expanded with
(a1,a2) — (b1,b2) = (a1 —>¢ b1, b2 <G a2) (0,0)

(a1,a2) < (b1,b2) = (a1 <G b1, b2 —¢ a2)

~(ay,az) = (~gai, —gaz)

(1,1)

| () @ defined as preservation of (1,1)T.
Its (A, v, =)-fragment coincides with BD.
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case (a): G%l 0)(—>), comparative uncertainty
G%LO) (—): bi-Godel logic expanded with a bi-lattice negation

Axiomatization: bi-IL in the language {A, v, —, <, 0, 1} extended with the
prelinearity axiom: (« — B) V (B — «)

- < a 0 o ~0
(@ AB) & (maV =p)
~(aVp) & (ma A-p)
-(a > B) © (=B < -a)

 F~—a

@ —-negation normal form; p A —-p + g
@ Deduction theorem: T, a + Biff T+ ~—a A ~—a — B
@ Standard strong completeness (SSC)

@ Its theorems coincide with Wansing'’s 1,C, extended with prelinearity
axiom.
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case (a): G )T(—>) comparative uncertainty

(11

Axiomatization: bi-IL in the language {A, Vv, —, <, 0, 1} extended with the
prelinearity axiom: (¢ — B) V (8 — «a)

—m o a 0 o ~0
(@ AB) & (maV —p)
—(aVpB) & (ma A-p)
(@ = B) & (=< —a)

Fa/+F~a

—-negation normal form; p A =p ¥ g
Deduction theorem: T',a + Biff T + ~—a — B
Standard strong completeness (SSC)

= Wansing’s 1,C, extended with prelinearity axiom.
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Case (b): G, | ,(—), comparative uncertainty

(1 1)
twist product [0, 1], = (a1, a2) = (as,a1), F = (1, 1)T:
[0, 1]* expanded with

(a1,az) — (b1,b2) = (a1 —¢ b1,a1 A ba)

~(ay,a3) = (~gai,ai)

['kg2 (L) a defined as preservation of F = {(1,a) | a € [0,1]}. J

(1.l

The weak equivalence @ <> B8 := (@ — B) A (B — a) is not congruential, the
strong one @ < B := (@ «> B) A (ma <> =) is.
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Case (b): G (—), comparative uncertainty

(1 DT
twist product [0, 1]™, = (a1, a2) = (az,a1), F = (1, D)T:
[0, 1]™ expanded with

(a1,az) — (b1,b2) = (a1 —¢ b1,a1 A ba)

~(ai,az) = (~gai,a)

I'Ege2 () @ defined as preservation of F = {(1,a) | a € [0,1]}. J

(1,1)

The resulting logic coincides with Nelson’s N4+ extended with prelinearity
(global consequence).
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Two-dimensional logics: summing up

.. of quantified uncertainty

@ 2 (=) =NE LY (=) =E% L2 (=) (1.0)

@ FSSC, SC w.r.t. twist products of MV algebras / \\
(MV-chains) (xTy)

@ Varying the filters (x, y)T: different tautologies, ©.0 (!
different entailments \ /

@ Constraint tableaux calculi, finitary entailment
is coNP-complete.

(0,1)

@ M.B., S. Frittella, D. Kozhemiachenko. Constraint tableaux for
two-dimensional fuzzy logics, TABLEAUX 2021.

@ M.B,, S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with
belief functions over Belnap-Dunn logic. submitted.
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Two-dimensional logics: summing up

... of comparative uncertainty
2 2 2
o G(l,O)T(_))’ G(l,l)T(_))’ G(1,1)T(_°)
@ SSC, SC w.r.t. twist products of G-algebras \
(G-chains) or bi-G algebras (bi-G chains) / \
@ Frame semantics (0,0) () (1,1)

@ Varying the filters (x, y)T: same tautologies,
different entailments:

@ Constraint tableaux calculi, frame semantics,
finitary entailment is coNP-complete.

1>x>y>0for G*(—)

Fa,pt ©Fa,nt © Fa,op
Fx,)! C© Fy0t © Fa,x)! © Fx,yt © F,o
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An application: two-layer logics of probabilities
Belnapian probabilities (quantified uncertainty)
@ Two-layer logics (BD, M,,,1?), (BD, M,,,L*»), or (BD, M}Y,NL)
@ Finite strong completeness w.r.t. intended semantics:
Models: (S,+*,+",p: PS — [0,1])
Semantics: |Py| := (p(l¢[), p(l¢l7))

Modal axioms
Mp: b2 Pmp < =Py {r2 Po— Py | ¢ tpp ¢}

b2 P(e Vi) & (P o P(p AY)) ® Py

y

@ M.B,, S. Frittella, O. Majer, S. Nazari. Belief based on inconsistent information,
DalLi 2020, LNCS volume 12569, pp 68-86, 2020.

@ M.B,, S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with
belief functions over Belnap-Dunn logic. submitted.
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An application: two-layer logics of probabilities

Belnapian probabilities (quantified uncertainty)
@ Two-layer logics (BD, M,,L?), (BD, M,,,L?a), or (BD, M}Y,NL)
@ Finite strong completeness w.r.t. intended semantics:
Models: (S,+*,+",p: PS — [0,1])
Semantics: |Py| := (p(l¢l"), p(l¢l7))

Modal axioms
MY: np Pog e =Pp {rnp Pe — Py | ¢ Fap ¥}

FNE P V) <> (Ppo P(e AY)) © Py
FNE P(@ AY) <> (P © P(p VY)) ® Py

@ M.B,, S. Frittella, O. Majer, S. Nazari. Belief based on inconsistent information,
DaLi 2020, LNCS volume 12569, pp 68-86, 2020.

@ M.B,, S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with
belief functions over Belnap-Dunn logic. submitted.
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Example: measuring (¢ A =)

For a BD formula ¢,

NL
@ P(p A=gp) — ~(P(¢ A —yp)) says "rather small degree of conflict” (closer to
0 then 1)
@ ~P(¢p A —p) — (P(¢ A —¢p)) says "rather big degree of conflict” (closer to 1
then 0)

L2
@ P(p A=) = ~(P(¢ A —¢)) says "rather small degree of conflict” and
"rather small degree of ignorance”

(By "says” we mean consequences of the formula being designated in the resp.
algebra.)
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Example: reasoning about (¢ A —¢) in L2
Assume ~P(¢ A =)
~P(o A=) b ~=~P(@ A=) b ~~=P(@ A=) F =P(@ A =g) F Po V —g).

From (A3) we know that + (Pp © P(¢ A —¢)) ® P-gp
which is equivalent to

F(Po — P(o A=) — P-g.
From ~P(p A=¢)+ (Po — P(@ A —p)) < ~Pp we obtain
~P(@g A=)+ ~Pp — =Py + ~=Pp — Pg.

As ~-Pyp — Py and Py — ~— Py are inter-derivable, we see that assuming
~P(¢ A =) entails that Py is classical.
On the other hand, assuming Py is classical, we can prove that

~P(o A =p) & P(oV —p).
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Expressing belief function and plausibility axioms

We define a sequence of outer (L2) formulas y,, in propositional letters of the
inner language p1, ..., p, inductively as follows:

Y1 = Bp1
Yns1 = ¥Yn ® (Bpns1 © Yu[BY : B(Y A puy1) | By atoms of y,])

The n-monotonicity axiom
is expressed by substitution instances of

n
Ap = Yn — B(\/pn)-
i=1
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Expressing belief function and plausibility axioms
We define sequences of outer (NL) formulas y,,, o, in propositional letters of

the inner language p1, ..., p, inductively as follows:
Y1 = Bpi
Yni1 = Yn @ (Bpna1 © yu[BY : B(Y A pni1) | By atoms of y,])
oy = Plpy

On+1 = On ® (Plpps1 © 0[Pl - PL(Y V pni1) | Ply atoms of o7,])

The n-th belief function and plausibility axioms
are expressed by substitution instances of

n
Qp = Yn —> B(\/pn)-
i=1

B = Pl(/n\ Pn) — On.
i=1
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An application: two-layer logics of belief functions and
plausibilities

Belief (quantified uncertainty)
@ Two-layer logic (BD, M, L?)
@ Finite strong completeness w.r.t. intended semantics

Models: (S, r*, ", bel : PS — [0,1])
Semantics: |By| := (bel(|p|*),bel(]¢|7))

Modal axioms

My,: kg2 B-¢ < =By {I—Lz By — By | ¢ +gp ¥}
{ri2 @y | n € N}

M.B., S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with belief
functions over Belnap-Dunn logic. submitted.
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An application: two-layer logics of belief functions and
plausibilities

Belief and plausibility
@ Two-layer logic (BD, MY, NL)
@ Finite strong completeness w.r.t. intended semantics

Models: (S,+*,F",bel,pl: PS — [0,1])
Semantics: |By| := (bel(lg|*), p1(l¢]7))
|Plp| == (p1(l¢l"), bel(le]™))

Modal axioms

M): Fnp Plmg & =By {Fnp Bo — By, Plo — PIy | ¢ bpp ¥/}
{FNL @n> FNL Bn | n € N}

M.B., S. Frittella, D. Kozhemiachenko, O. Majer, S. Nazari. Reasoning with belief
functions over Belnap-Dunn logic. submitted.
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Two-layer logics of comparative uncertainty

@ Two-layer logic (BD, M., G*(—))
@ Strong completeness w.r.t. intended semantics

Models: (S, ", 7 : PS — [0,1])
Semantics: |Co| := (x(l¢|*), 7(l¢]|7))

Modal axioms
Mc: rGg2Cop o ~Co  {rg2Cp — Cy | @tpp ¢}

@ similarly for (BD, MY, G%(—))
@ bi-G and G?(—) can be also used to capture two-layer logics of qualitative
uncertainty measures (probabilities):

¢ S Y :=n(Bp — BY)

M.B., S. Frittella, D. Kozhemiachenko, O. Majer, Comparing certainty in
contradictory evidence. manuscript. J
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