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Lattice-ordered groups

A lattice-ordered group, or ℓ-group, is an algebra A = (A,∧,∨, ·,−1, 1) such that

(A,∧,∨) is a lattice,

(A, ·,−1, 1) is a group and

multiplication is compatible with the order.

(It is order preserving/it distributes over
join/it distributes over meet.) So ℓ-groups form a variety denoted by LG.

Examples:

(Z,min,max,+,−, 0) , (Q,min,max,+,−, 0) , (R,min,max,+,−, 0).

Z× Z, Q× R. (direct product)

Z
→
× R (lexicographic order).

The order-preserving permutations (aka automorphisms) Aut(C,≤) on a
totally-ordered set (C,≤), under functional composition and pointwise order.
For example, the symmetric ℓ-groups: Aut(n), Aut(N), Aut(Z), Aut(R).

Note: special case of a residuated lattice.

Holland’s embedding theorem. Every ℓ-group can be embedded in a symmetric
ℓ-group: G ↪→ Aut(C), for some chain C.
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Subvarieties and decidability

Theorem. [Weinberg] The variety of abelian ℓ-groups is generated by Z.

The equational theory of abelian ℓ-groups is deciable via linear programing algorithms.

The variety of representable/semilinear ℓ-groups (subdirect products of totally ordered
ones) is properly between abelian and the whole variety. It is axiomatizeed by
yx ≤ xyx ∨ y and the decidability of the equational theory remains unknown.

Holland’s generation theorem. The variety of ℓ-groups is generated by Aut(R) (also by
Aut(Q)).

Theorem. [Holland - McCleary] The equational theory of ℓ-groups is decidable.
(Implemented online by P. Jipsen.)

If the equation is false then a finite partial description (a diagram) of an infinite
counterexample is provided by the algorithm. If it is true, the termination of the diagram
search certifies that it is true (but no equational-logic proof is provided).
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Forgetting inversion

Fact. The inverse-free subreducts of ℓ-groups are necessarily distributive as lattices and
multiplication distributes over both meet and join.
We call such structures distributive ℓ-monoids (DLMs); DLM denotes their variety.

Question. Do the DLM’s coming from ℓ-groups satisfy any additional inverse-free
equations that we are neglecting to include?

Theorem. [Repnitskii] The DLMs coming from abelian ℓ-groups satisfy more
inverse-free equations than the commutative DLMs do. /
Eg, xy ∧ x ≤ xx ∨ y, ... and infinitely many more! //

Theorem. The DLMs coming from representable ℓ-groups satisfy more inverse-free
equations than the representable DLMs do. //

Theorem. The DLMs coming from ℓ-groups satisfy the same inverse-free equations than
DLMs do!! ,,,
Equivalently, an inverse-free equation fails in a DML iff it fails in some ℓ-group.

Theorem. (FMP) DLM is generated by {End(C) : C is a finite chain}. Equivalently,
an inverse-free equation fails in a DML then it fails in some End(C), where C is finite.
Here, End(C) is the DLM of order-preserving functions from C to C.
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Examples of DLMs; the Finite Model Property

Examples. The DLMs coming from ℓ-groups (e.g., Aut(C)): all infinite (or trivial).

Examples. End(C), where C is a finite chain.

Due to the various distributivities every equation can be written as
s1 ∧ · · · ∧ sn ≤ t1 ∨ · · · ∨ tm, where si, tj are monoid/group terms.

Proof-sketch: If an inverse-free equation s = t fails in DLMs (eg, xy = yx), then by
[Anderson-Edwards] it fails in End(C) for some chain C. So, there are
f1, . . . , fn ∈ End(C) such that s(f1, . . . , fn) ̸= t(f1, . . . , fn) (eg, f ◦ g ̸= g ◦ f).
So, there is p ∈ C such that s(f1, . . . , fn)(p) ̸= t(f1, . . . , fn)(p) ((f ◦ g)(p) ̸= (g ◦ f)(p)).
Let C′ be the finite subchain of C containing all the points involved in the evaluation of
the failure. (eg, p, g(p), f(g(p)), f(p), g(f(p)))

Let f ′
i ’s be the partial maps that are the (relational) restrictions of the fi’s to C′.

(Eg, p
f7→ f(p), g(p)

f7→ f(g(p)), p
g7→ g(p), f(p)

g7→ g(f(p)).) Called a diagram.

For the FMP: we extend the f ′
i ’s to End(C′) (in a non-injective way).
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Inverse-free reducts

Lemma. If an inverse-free equation fails in an End(C), where C is a finite chain, then it
fails in Autm(Q), the inverse-free reduct of Aut(Q).

Proof-idea: As before, we obtain a diagram, as before. For example:

p
f7→ f(p), g(p)

f7→ f(g(p)), p
g7→ g(p), f(p)

g7→ g(f(p)),

on the finite chain C′

p, g(p), f(g(p)), f(p), g(f(p)).

If the partial maps in the diagram are all injective, then using the density of Q we embed
the finite chain C′ in Q and extend these partial injections to total bijections of Q, which
still show the failure at p ∈ C′ ⊆ Q.

If the partial maps in the diagram are not injective, then we duplicate the points of C′,
so as to construct a big enough, but still finite, chain C and partial injections which still
show the failure.

To create C we duplicate points q ∈ C where f(p1) = f(p2) = q for some f to get
f(p1) = q1 and f(p2) = q2. Unfortunately, if we have g(q) = r, then this creates the
further problem of g(q1) = g(q2) = r, which needs to be further resolved.

Nick Galatos, TACL, Coimbra Lattice-ordered groups via distributive lattice-ordered monoids, TACL, CoimbraJune, 2022 7 / 15



lattice-ordered groups and their proof theory Removing inverses Proof-theory for DLM’s Semilinear DLMs Orders

Inverse-free reducts

Lemma. If an inverse-free equation fails in an End(C), where C is a finite chain, then it
fails in Autm(Q), the inverse-free reduct of Aut(Q).

Proof-idea: As before, we obtain a diagram, as before. For example:

p
f7→ f(p), g(p)

f7→ f(g(p)), p
g7→ g(p), f(p)

g7→ g(f(p)),

on the finite chain C′

p, g(p), f(g(p)), f(p), g(f(p)).

If the partial maps in the diagram are all injective, then using the density of Q we embed
the finite chain C′ in Q and extend these partial injections to total bijections of Q, which
still show the failure at p ∈ C′ ⊆ Q.

If the partial maps in the diagram are not injective, then we duplicate the points of C′,
so as to construct a big enough, but still finite, chain C and partial injections which still
show the failure.

To create C we duplicate points q ∈ C where f(p1) = f(p2) = q for some f to get
f(p1) = q1 and f(p2) = q2. Unfortunately, if we have g(q) = r, then this creates the
further problem of g(q1) = g(q2) = r, which needs to be further resolved.

Nick Galatos, TACL, Coimbra Lattice-ordered groups via distributive lattice-ordered monoids, TACL, CoimbraJune, 2022 7 / 15



lattice-ordered groups and their proof theory Removing inverses Proof-theory for DLM’s Semilinear DLMs Orders

Inverse-free reducts

Lemma. If an inverse-free equation fails in an End(C), where C is a finite chain, then it
fails in Autm(Q), the inverse-free reduct of Aut(Q).

Proof-idea: As before, we obtain a diagram, as before. For example:

p
f7→ f(p), g(p)

f7→ f(g(p)), p
g7→ g(p), f(p)

g7→ g(f(p)),

on the finite chain C′

p, g(p), f(g(p)), f(p), g(f(p)).

If the partial maps in the diagram are all injective, then using the density of Q we embed
the finite chain C′ in Q and extend these partial injections to total bijections of Q, which
still show the failure at p ∈ C′ ⊆ Q.

If the partial maps in the diagram are not injective, then we duplicate the points of C′,
so as to construct a big enough, but still finite, chain C and partial injections which still
show the failure.

To create C we duplicate points q ∈ C where f(p1) = f(p2) = q for some f to get
f(p1) = q1 and f(p2) = q2.

Unfortunately, if we have g(q) = r, then this creates the
further problem of g(q1) = g(q2) = r, which needs to be further resolved.

Nick Galatos, TACL, Coimbra Lattice-ordered groups via distributive lattice-ordered monoids, TACL, CoimbraJune, 2022 7 / 15



lattice-ordered groups and their proof theory Removing inverses Proof-theory for DLM’s Semilinear DLMs Orders

Inverse-free reducts

Lemma. If an inverse-free equation fails in an End(C), where C is a finite chain, then it
fails in Autm(Q), the inverse-free reduct of Aut(Q).

Proof-idea: As before, we obtain a diagram, as before. For example:

p
f7→ f(p), g(p)

f7→ f(g(p)), p
g7→ g(p), f(p)

g7→ g(f(p)),

on the finite chain C′

p, g(p), f(g(p)), f(p), g(f(p)).

If the partial maps in the diagram are all injective, then using the density of Q we embed
the finite chain C′ in Q and extend these partial injections to total bijections of Q, which
still show the failure at p ∈ C′ ⊆ Q.

If the partial maps in the diagram are not injective, then we duplicate the points of C′,
so as to construct a big enough, but still finite, chain C and partial injections which still
show the failure.

To create C we duplicate points q ∈ C where f(p1) = f(p2) = q for some f to get
f(p1) = q1 and f(p2) = q2. Unfortunately, if we have g(q) = r, then this creates the
further problem of g(q1) = g(q2) = r, which needs to be further resolved.

Nick Galatos, TACL, Coimbra Lattice-ordered groups via distributive lattice-ordered monoids, TACL, CoimbraJune, 2022 7 / 15



lattice-ordered groups and their proof theory Removing inverses Proof-theory for DLM’s Semilinear DLMs Orders

Example (1)

Consider End(2), where 2 = ⟨{0, 1},≤⟩ is the two-element chain.

Note that the
equation yxy ≤ xyx fails in End(2) under the the assignment
x 7→ fx = {1 7→ 0, 0 7→ 0} and y 7→ fy = {1 7→ 1, 0 7→ 1} at the point p = 1:

(1)fyxy = (((1)fy)fx)fy = 1 > 0 = (((1)fx)fy)fx = (1)fxyx.

0

1

0

1

fy fx fy

0

1

0

1

fx fy fx

To construct the chain C, we consider all initial segments of the terms yxy and xyx and
the paths created by their applications to p = 1: ε = (1), y = (1, 1), yx = (1, 1, 0),
yxy = (1, 1, 0, 1), x = (1, 0), xy = (1, 0, 1), and xyx = (1, 0, 1, 0). We order these paths
with the reverse lexicographic order:

(1, 0) < (1, 0, 1, 0) < (1, 1, 0) < (1) < (1, 0, 1) < (1, 1, 0, 1) < (1, 1),

where the first three elements serve as copies of 0 and the last four as copies of 1.
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Example (2)

0

1

0

1

fy fx fy

becomes:

(1, 1)

(1, 1, 0, 1)
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(1)
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fy fx fy

Where (p, p1, . . . , pn)f = (p, p1, . . . , pn, (pn)f), if the latter is a path.
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Removing inverses

So, the validity of inverse-free equations in ℓ-groups can be reduced to their validity in
DLMs.

But what about arbitrary equations (allowing inverses)?

Fact. In abelian ℓ-groups every equation is equivalent to an inverse-free one:
ALG |= h ∧ g−1d ≤ u ⇔ ALG |= gh ∧ d ≤ gu. So, it is enough to decide inverse-free
equations. Unfortunately, the validity of inverse-free equations differs between abelian
ℓ-groups and commutative DLMs: ALG |= ε ⇔ ALG |= εm ⇎ ComDLM |= εm.

Question. Is it enough to decide inverse-free equations in ℓ-groups?

LG |= ε
?⇔ LG |= εm ⇔ DLM |= εm

Theorem. For ℓ-group terms c, d, g, h and fresh variabe x,

LG |= h ∧ cg−1d ≤ u ⇔ LG |= gxh ∧ gxcx ∧ d ≤ gxu.

There is a lose analogy with the density rule in proof-theory.

Corollary. To decide (inverse-including) equations in ℓ-groups, we only need to be able to
decide (inverse-free) equations in DLMs.

Hybrid system. Given an ℓ-group equation we apply (upward) instances of the density
rule until we obtain an inverse-free equation. Then we continue in the system DLM.
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DLM

[G. - Jipsen] provides a cut-free calculus for distributive residuated lattices (and their
fragment without implication/divisions). Adding the distribution of multiplication over
meet results in DLM’s.

Adding a further axiom to a transitivity-free system typically breaks cut-freeness. So, we
inject some transitivity into the the distributivity of multiplication over meet

xz ∧ xw ≤ x(z ∧ w)

to first get its linearized version

xz ∧ yw ≤ x(z ∧ w) ∨ y(z ∧ w)

and then the quasiequation

x(z ∧ w) ≤ c y(z ∧ w) ≤ c

xz ∧ yw ≤ c

Theorem. [G. - Jipsen] DLM admits (two-sorted) relational semantics (residuated
frames).
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Decidable and cut-free systems

To analyze proofs better, it helps if our derivation system does not include the rule of
transitivity/cut: a ≤ b and b ≤ c implies a ≤ c.

[G. - Metcalfe, 2016] gives a derivation system for ℓ-groups without the rule of
transitivity (and no other rule, where an unexpected term like b appears during a proof
search; i.e., the system is analytic).

[G-M 2016] also gives a derivation system for ℓ-groups with transitivity, the choices of
the term b are restricted to a finite set given by the inequality to be proved.

Theorem. [G-M 2016] The equational theory is decidable and its complexity is co-NP
complete. Moreoever, if an equation is true the derivation we can obtain an
equational-logic proof.

As a by-product, this provides an alternative proof of Holland’s generation theorem
without using Holland’s embedding theorem.

Shortcoming: Neither system allows for a good duality theory, as provided by residuated
frames [G. - Jipsen]. This is because the ℓ-group axioms are high in the substructural
hierarchy [Ciabbatoni - G. - Terui].
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Inverse-free reducts of representable/semilinear

Theorem. The inverse-free subreducts of semilinear ℓ-groups are not the whole variety of
semilinear (subdirect product of chains) DLMs.

Proof idea: We define the terms

F = x1x2x3 ∧ x5x4x6 ∧ x9x7x8, G = x1x4x7 ∨ x5x2x8 ∨ x9x6x3,
F ′ = x1x3x2 ∧ x5x6x4 ∧ x9x8x7, G

′ = x1x7x4 ∨ x5x8x2 ∨ x9x3x6.

We prove that F ∧ F ′ ≤ G ∨G′ holds in all totally ordered groups. This is done by
presenting a derivation in the system of [G-M 2016] expanded by the gen-cycle
quasiequation (1 ≤ s ∨ gh ⇒ 1 ≤ s ∨ hg), which holds in the free representable ℓ-group.

We also show that F ∧ F ′ ≤ G ∨G′ fails in a commutative totally ordered monoid.
(Note that in the commutative case F = F ′ and G = G′.)

Conjecture. The inverse-free subreducts of representatble ℓ-groups do not form a finitely
axiomatizable variety (over the semilinear (distributive) ℓ-monoids).

We should first axiomatize the variety of semilinear DLMs.
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Semilinear DLMs

Theorem. Semilinear DLMs are axiomatized by the equation

z1xz2 ∧ w1yw2 ≤ z1yz2 ∨ w1xw2.

Note that it implies ee(yx) ∧ yxe ≤ ex(yx) ∨ yee, namely yx ≤ xyx ∨ y.

The proof uses ideas from [G. - Horč́ık], where Holland-type theorems are established for
residuated lattices and semilattice-ordered monoids. Also, it uses ideas from [Melier].

For an DLM M and prime ideal I, we get a congruence:

a ∼I b iff for all z, w ∈ M , zaw ∈ I iff zbw ∈ I.

The quotient M/I is a chain iff

z1xz2 ∈ I and w1yw2 ∈ I implies z1yz2 ∈ I or w1xw2 ∈ I.

Proof sketch: (It works even for non-distributive and non-lattice-ordered)
1. Relatively maximal ideals are prime and they produce linear quotients and
2. we have enough relatively maximal to separate points.

We obtain a calculus for the semilinear case by transforming the above equation into the
quasiequation

z1yz2 ≤ c w1xw2 ≤ c

z1xz2 ∧ w1yw2 ≤ c

Also, adding commutativity/exchange gives a calculus for commutative DLMs.
Nick Galatos, TACL, Coimbra Lattice-ordered groups via distributive lattice-ordered monoids, TACL, CoimbraJune, 2022 14 / 15



lattice-ordered groups and their proof theory Removing inverses Proof-theory for DLM’s Semilinear DLMs Orders

Orders on the free group

Fact. The lattice order of any ℓ-group is the intersection of all of its total-order
extensions that are right orders (orders compatible with right multiplication).

Fact. Every total right order on a group is determined by its positive cone.

Fact. Total orders on the free abelian group on two generators are in bijective
correspondence with lines through the origin with irrational slope together with (counted
twice) lines through the origin with rational slope.

Theorem [Colacito - Metcalfe] The following are equivalent

1. {t1, . . . , , tn} extends to the positive cone of a right order on the free group over X.
2. ̸|=LG 1 ≤ t1 ∨ · · · ∨ tn

Theorem. The following are equivalent

1. {s1 < t1, . . . , sn < tn} extends to a right order on the free monoid over X.
2. {s1 < t1, . . . , sn < tn} extends to a right order on the free group over X.
3. LG ̸|= e ≤ s−1

1 t1 ∨ · · · ∨ s−1
n tn.

4. ̸|=LG y1s1 ∧ · · · ∧ ynsn ≤ y1t1 ∨ · · · ∨ yntn. (The variables y1, y2, . . . , yn are fresh.)
5. ̸|=DLM y1s1 ∧ · · · ∧ ynsn ≤ y1t1 ∨ · · · ∨ yntn.

Corollary. Every right order on the free monoid extends to a right order on the free group.
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Orders on the free group

Fact. The lattice order of any ℓ-group is the intersection of all of its total-order
extensions that are right orders (orders compatible with right multiplication).

Fact. Every total right order on a group is determined by its positive cone.

Fact. Total orders on the free abelian group on two generators are in bijective
correspondence with lines through the origin with irrational slope together with (counted
twice) lines through the origin with rational slope.

Theorem [Colacito - Metcalfe] The following are equivalent

1. {t1, . . . , , tn} extends to the positive cone of a right order on the free group over X.
2. ̸|=LG 1 ≤ t1 ∨ · · · ∨ tn

Theorem. The following are equivalent

1. {s1 < t1, . . . , sn < tn} extends to a right order on the free monoid over X.
2. {s1 < t1, . . . , sn < tn} extends to a right order on the free group over X.
3. LG ̸|= e ≤ s−1

1 t1 ∨ · · · ∨ s−1
n tn.

4. ̸|=LG y1s1 ∧ · · · ∧ ynsn ≤ y1t1 ∨ · · · ∨ yntn. (The variables y1, y2, . . . , yn are fresh.)
5. ̸|=DLM y1s1 ∧ · · · ∧ ynsn ≤ y1t1 ∨ · · · ∨ yntn.

Corollary. Every right order on the free monoid extends to a right order on the free group.
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