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Languages:
(modal) Lo = {J-, Ny V, >, D}

(conditional) L. = {J_, Ny V,—, l>}
L refers to both £g and L. DefineT ;=1 —- 1, -A:=A— 1, and
A—B:=(A—-B)A(B—A).
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Non-normal Modal Logics

Languages:

(modal) Lo = {J_, N, V,—, D} , (conditional) L. = {J_, N, V,—, l>}

L refers to both Lo and L... DefineT ;=1 — 1, -A:=A— 1, and
A< B:= (A—>B)/\(B—>A).

@ Logic E: the smallest set of formulas in L5 containing all classical
tautologies and closed under:
—
p oY pot
(4 D « 0y
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Non-normal Modal Logics

Languages:

(modal) Lo = {J_, N, V,—, D} , (conditional) L. = {J_, N, V,—, l>}

L refers to both Lo and L... DefineT ;=1 — 1, -A:=A— 1, and
A< B:= (A—>B)/\(B—>A).

@ Logic E: the smallest set of formulas in L5 containing all classical
tautologies and closed under:
S
Modal axioms: M and C are weakenings of CI(A A B) «» DA A 0B
» M:O(AAB)—>OAAOB
» C:O0AAOB—O(AAB)

» N:OT

2/19



base logic E:

Non-normal modal logics are defined by adding the modal axioms to the

EN = E + (N)

M=E+ (M)
MN = M + (N)

MC =M + (C)
K = MC + (N)

EC=E+ (C)
ECN = EC + (N)



o Logic CE: the smallest set of formulas in L. containing all classical
tautologies and closed under:
VA e

Yo <> Y1
MP
(0

o <> U
CE
©o > — p1 =11
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o Logic CE: the smallest set of formulas in L. containing all classical
tautologies and closed under:
I A Yo 1 oo
—F— MP CE
(U o =0 — p1 =1

Conditional axioms: weakening of (p = (1) A 0)) < (p=1) A (p=10)
M (e (P A 0) = (p=9) A (p=0)
CC:(p=) A (p=0) = (o= (¥ A D))
CN:p=T
CEM : (p =) v (p =)

ID:pr=¢p

v

v

v

v

v

u}
8]
1
n
it

Do
4/19



Other Conditional Logics

Conditional logics are defined by adding the conditional axioms to CE:

CEN=CE+(CN)  CM = CE + (CM)
CMN = CM + (CN)  CMC = CM + (CC)
CK = CMC + (CN)  CEC = CE + (CC)
CECN = CEC + (CN)  CKID = CK + (/D)
CKCEM = CK + (CEM) ~ CKCEMID = CKCEM + (/D)
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The Polarity of the Variables

Positive and Negative Variables

e V*(p)={p}, V= (p)=VH(T)=V~(T)=V*(L)=V~(L)=2, foratom p,
VI(e09) = V() u VT (¥) and V7 (0 O ¥) = V7 (p) u V7 (¥),
for © € {A, v},
Vi =) =V (p)u VT () and V7 (p = ) = VF(p) u V™ (1),
V*(Op) = VT (p) and V= (Op) = V~(p), for L = Ln.
V(1) = V7 (p) v VT(¥) and V™ (p=9) = VT(p) u V7 (9),
for L = L..
For an atomic formula p, a formula ¢ is called p*-free (p~-free), if
pt V(p) (p¢ V(p)). For asequent S = (I = A), define V*(S) (res.
V=(S)) as V(AT -V AQ) (res. V-(AT =V AQ)).
V(p) := VT (p) L V™ (p).

We use o, T € {+, —} as variables for + and — and ¢ for the dual of o.
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Lyndon Interpolation

Lyndon Interpolation Property (LIP)
A logic L has Lyndon interpolation property (LIP) if for any formulas
w,% € L such that L — ¢ — 1), there is a formula 6 € £ such that
@ VT(0) = Vi(p) n VI(y);
Q@ V7 (0) = V() n VT (¥);
QL+ p—0,
Q@ L-O— .

A logic has Craig interpolation property (CIP) if it has the above
properties, omitting all the + and — superscripts.
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Uniform Lyndon Interpolation Property (ULIP)

Uniform Lyndon Interpolation Property (ULIP)

A logic L has ULIP if for any formula ¢ € £, atom p, and o € {+, —},
there are p°-free formulas, ¥°py and 3°pyp, such that VT(3°py) < VI(y)
and VT(¥°py) < VI(p), for any € {+, -} and

o L=Ypp — o,

e for any p°-free formula ¢ if L - — ¢ then L — ¢ — V°pyp,
o L ¢p— 3I°pyp, and

e for any p°-free formula ¢ if L - ¢ — 1 then L — 3°pp — .

A logic has uniform interpolation property (UIP) if it has all the above
properties, omitting the superscripts o, { € {+, —}, everywhere.
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Uniform Lyndon Interpolation Property (ULIP)

Uniform Lyndon Interpolation Property (ULIP)

A logic L has ULIP if for any formula ¢ € £, atom p, and o € {+, —},
there are p°-free formulas, ¥°py and 3°pyp, such that VT(3°py) < VI(y)
and VT(¥°py) < VI(p), for any € {+, -} and

o LI-Vpp — o,

e for any p°-free formula ¢ if L - — ¢ then L — ¢ — V°pyp,
o L ¢p— 3I°pyp, and

e for any p°-free formula ¢ if L - ¢ — 1 then L — 3°pp — .

A logic has uniform interpolation property (UIP) if it has all the above
properties, omitting the superscripts o, { € {+, —}, everywhere.

Theorem
If a logic L has ULIP, then it has both LIP and UIP.
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Main Results

Theorem (Akbar Tabatabai, lemhoff, J.)
The following logics have ULIP (and hence UIP and LIP):

modal E, M, EN, MN, MC, K
conditional CE, CM, CEN, CMN, CMC, CK, CKID

The following logics do not have ULIP (but they have UIP):
o CKCEM and CKCEMID

The following logics do not have CIP (and hence no U(L)IP):

modal EC, ECN
conditional CEC, CECN
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The systems G3cp and G3w

Consider the following system for classical logic called G3cp:

lp=pA
o= A
oAty =A

Me=A My=A
Novy=A

= ¢, A My=A
Ne—v=A

LA

Lv

L —

1l=,A

M= p A M=y, A

F=ond A R

=Y, A
F=eviy A
o= A
r:@Hw,A

Rv

R —
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The systems G3cp and G3w

Consider the following system for classical logic called G3cp:

Mp=p A NlL=,A
Mov=A ] M= p A M=y, A R
Lorv=24 " = oArd,A "
Me=A My=A M= ¢, 9, A R
MNoviy=A v MN=¢pvy A v
M= ¢ A My=A ! Mo=1Y A R
Ne—>vyY=A - MN=p->yY A -
Moreover, define G3w as G3cp plus the following weakening rules:
=4, IT=4A 5

MNe=A M= ¢ A
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Sequent Calculi for Basic Non-normal Modal Logics

Consider the following modal rules to add to G3w to produce a cut-free
system for their corresponding logics [Orlandelli 2019]:

=1 w=>soE = N
Op = 0Oy = O
@ﬁw 9017“'>80n:>¢
MC
Op = 0Oy Op1,---,0p, = 09

Note that in each rule (both modal and propositional), the weight of each
of the premises (sum of the length of its formulas) is less than the weight
of the consequence and hence the systems are terminating.

GM = G3w + M
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G3w plus the following rules:

©o = Y1 P1 = Po o= U1 Y1 = o e
01 511 = P B 1Pg
Yo = Y1 P1= 0 Y1 = o M
P11 = P > 1o
{vo= i , ¢i= voh<i<n P, Pn = Yo
P11, 0,00 B> 1Pn = @0 B> Yo

CMC (n>1)
=

o N
= o > 1o
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{oo= i , ©i= vo}iel o, {¥itier = o
{@i=>1iticr = o >

CKID

{po=0r . or=wotreivs  {¥itier = Vo, {¥j}jey

CKCEM
{@i =>Yitiel = @o >0, {@; =>Vj}jey

{oo=©r , ©r= Yo}retuy w0, {Vitier = Yo, {¥j}jes

CKCEMID
{wi=itiel = o =10, {@j = Vj}jey

o Cut-free terminating systems;
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ULIP for Sequents

We extend interpolation from logics to sequent calculi. As we are in
classical setting, we only define V°pS and 3°pS is —V°p—S.

ULIP for sequent calculi

G has ULIP if for any sequent S = (I' = A), any atom p and any
o € {+,—}, there exists a formula V°pS such that:
(var) ¥°pS is p°-free and V1(¥°pS) < VT(S), for any T € {+,—},
(i) T,V°pS = A is derivable in G,
(i) for any sequent ¥ = A such that p¢ V(X = A), if [ X = A/Ais
derivable in G then (X = V“pS,A) is derivable in G.
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ULIP for Sequents

We extend interpolation from logics to sequent calculi. As we are in
classical setting, we only define V°pS and 3°pS is —V°p—S.

ULIP for sequent calculi

G has ULIP if for any sequent S = (I' = A), any atom p and any
o € {4, —}, there exists a formula ¥°pS such that:

(var) V°pS is p°-free and V1(¥°pS) < VI(S), for any t € {+, -},
(i) T,V°pS = A is derivable in G,

(i) for any sequent ¥ = A such that p¢ V(X = A), if [ X = A/Ais
derivable in G then (X = V°pS,A) is derivable in G.

Theorem

Let G be one of the sequent calculi introduced here and L be its logic.
Then, G has ULIP (resp., UIP) iff L has ULIP (resp., UIP).
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Proof ldea

Let G be one of the sequent calculi introduced.

@ Backward application of any of the rules in G decreases the weight of
the sequent.

@ Using this property and recursion on the weight of the sequents, for
any given sequent S, any atom p and any o € {+, —}, we define a
p°-free formula V°pS.

@ Then by induction on the weight of S, we prove that ¥°pS meets all
the required conditions in Definition in the previous slide.
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Proof Sketch for M (using GM)

Define a formula V°pS by recursion on the weight of S = (I = A): if S is
provable define V°pS as T, otherwise, define it as:

VoupS) v \/ /\V pSi) v (Vo,pS)

Vo, pS is the disjunction of all p°~free formulas in A and the negation of
all p®-free formulas in I (where S = (I" = A)).
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(V3xPS) v \/ /\v )

v (VimpS)

the second disjunction is over all rules R in G3w backward applicable to
S, where S is the consequence and S;’s are the premises

51 S

Sn
S

R



Proof Sketch for M

(V3xPS) v \/ /\v pSi) v (¥5,pS)

the second disjunction is over all rules R in G3w backward applicable to
S, where S is the consequence and S;’s are the premises:

S S - S,
S

For V7,pS consider the following definition:

R

—0=Vp(p=) S=(0p=)
VopS = { OV°p(= 1) S= (=)
1 otherwise

17/19



Proof Sketch for M

By induction hypothesis, (var), (i), (ii) hold for all sequents T lower than S.

(var) also holds for V°pS;

(i) To show I',V°pS = A is derivable in G, it is enough to show the
provability of each disjunct in G. By induction hypothesis, a similar
claim holds for each V°pS§;.

(if) by induction on the length of the proof of ', X = A A; we take the
last rule used in the proof. If it is an axiom (V3,pS) is used; if it is a
rule in G3w, then \/(/\ V°pS;) is used and if it is a modal rule

R i

(V5,pS) is used.
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Thank you!

19/19



