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A confluence of ideas

Constraint satisfaction as a computational paradigm

Contextuality in quantum mechanics and beyond

sheaves and presheaves

sheaf cohomology

logic, finite model theory and descriptive complexity

Connecting:

concrete and abstract

structural and algorithmic
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Background

Abramsky and Brandenburger (2011) developed a sheaf-theoretic approach to
contextuality and non-locality

Abramsky, Barbosa and Mansfield (2011) and Abramsky, Barbosa, Kishida,
Lal and Mansfield (2015) developed cohomological characterisations of
contextuality

Abramsky and Dawar have a joint project on Resources and Coresources
studying the interplay between structural ideas and algorithmic and
complexity issues (“Structure meets Power”)

Dawar’s student Adam O’ Conghaile proposes (2021) a very interesting way
of connecting these apparently very different topics

Leading to ongoing joint work
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Constraint satisfaction

Setting: finite relational structures (over a finite relational vocabulary σ), and
homomorphisms between them.

We write A→ B to mean that there exists a homomorphism from A to B.

Given a finite σ-structure B, the constraint satisfaction problem CSP(B) is to
decide, for an instance given by a finite σ-structure A, whether there is a
homomorphism A→ B.

We refer to B as the template.
Elements of the universe of B are values; elements of A are variables.

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

This conjecture was recently proved by Bulatov and Zhuk (c. 2017).
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Escaping the Turing tarpit

The CSP paradigm has some structure

Can use tools e.g. from universal algebra

Classification of templates by their polymorphisms (i.e. “symmetries”)

If the template B has only trivial symmetries, CSP(B) is NP-complete.

If there is a non-trivial symmetry (e.g. a weak near-unanimity
polymorphism), it is polynomial-time solvable.
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Strong k-consistency

A natural approximation scheme for CSP is based on the notion of local
consistency.

Given an approximation level k, we test if there are solutions for all ≤ k-element
subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of
homomorphisms f : C → B, where C is an induced substructure of A with
|C | ≤ k.

This is subject to the following conditions:

down-closure: If f : C → B ∈ S and C ′ ⊆ C , then f |C ′ : C ′ → B ∈ S .

forth condition: If f : C → B ∈ S , |C | < k, and a ∈ A, then for some
f ′ : C ∪ {a} → B ∈ S , f ′|C = f .

This is equivalent to the existence of a winning strategy for Duplicator in the
existential k-pebble game from A to B.

Notation: A→k B.
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k-consistency as an approximation

This is a sound approximation:

A→ B ⇒ A→k B

Moreover, for each fixed k, it is polynomial-time computable.

To see this, note that:

The size of S is bounded by |A|k |B|k

The down-closure and forth conditions can be computed “locally”.

In certain cases (conditions on the template, or on classes of instances) it is exact
(or complete).

It also has a logical characterisation: A→k B iff every k-variable existential
positive FO formula satisfied by A is satisfied by B.
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Strategies as Presheaves

We write Σk(A) for the poset of subsets of A of cardinality ≤ k. Each such
subset gives rise to an induced substructure of A.

We define a presheaf Hk : Σk(A)op → Set by Hk(C ) = hom(C ,B).
If C ′ ⊆ C , then the restriction maps are defined by ρCC ′(h) = h|C ′ .

This is the presheaf of partial homomorphisms.

A subpresheaf of Hk is a presheaf S such that S(C ) ⊆ Hk(C ) for all
C ∈ Σk(A), and moreover if C ′ ⊆ C and h ∈ S(C ), then ρCC ′(h) ∈ S(C ′).

A presheaf is flasque (or “flabby”) if the restriction maps are surjective. This
means that if C ⊆ C ′, each h ∈ S(C ) has an extension h′ ∈ S(C ′) with
h′|C = h.
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Proposition

There is a bijective correspondence between

1 positional strategies from A to B

2 flasque sub-presheaves of Hk .

Proof.
The property of being a subpresheaf of Hk is equivalent to the down-closure
property, while being flasque is equivalent to the forth condition.
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Local consistency as coflasquification
Seen from the sheaf-theoretic perspective, the local consistency algorithm has a
strikingly simple and direct mathematical specification.
Given a category C, we write Ĉ for the category of presheaves on C. We write Ĉfl

for the full subcategory of flasque presheaves.

Proposition

The inclusion Ĉfl ↪→ Ĉ has a right adjoint, so the flasque presheaves form a

coreflective subcategory. The associated idempotent comonad on Σ̂k(A) is written
as S 7→ S3, where S3 is the largest flasque subpresheaf of S. The counit is the
inclusion S3 ↪→ S, and idempotence holds since S33 = S3. We have H3

k = Sk .

Proof.
For existence, the empty presheaf is flasque, and flasque subpresheaves are closed
under unions, i.e. joins in the subobject lattice Sub(S).
The key point for showing couniversality is that the image of a flasque presheaf
under a natural transformation is flasque. Thus any natural transformation
S′ =⇒ S from a flasque presheaf S′ factors through the counit inclusion
S3 ↪→ S.
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This construction amounts to forming a greatest fixpoint. In our concrete setting,
the standard local consistency algorithm builds this greatest fixpoint by filtering
out elements which violate the restriction or extension conditions.

This construction is dual to a standard construction in sheaf theory, which
constructs a flasque sheaf extending a given sheaf, leading to a monad, the
Godement construction.

The following proposition shows how this comonad propagates local inconsistency
to global inconsistency.

Proposition

Let S be a presheaf on Σk(A). If S(C ) = ∅ for any C ∈ Σk(A) \ {∅}, then
S3 = ∅.
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Global sections and compatible families
A global section of a flasque subpresheaf S of Hk is a natural transformation
1 =⇒ S. More explicitly, it is a family {hC}C∈Σk (A) with hC ∈ S(C ) such that,
whenever C ⊆ C ′, hC = hC ′ |C .

Proposition

Suppose that k ≥ n, where n is the maximum arity of any relation in σ. There is
a bijective correspondence between

1 homomorphisms A→ B

2 global sections of Sk .

Let Mk(A) be the maximal elements of Σk(A), i.e. the k-element subsets. A
k-compatible family in Sk is a family {hC}C∈Mk (A) such that, for all
C ,C ′ ∈Mk(A),

ρCC∩C ′(hC ) = ρC
′

C∩C ′(h′C ).

Proposition

There is a bijective correspondence between global sections and k-compatible
families of Sk .
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We can summarize our results so far as follows:

Proposition

There is a polynomial-time reduction from CSP(B) to the problem, given any
instance A, of determining whether the associated presheaf Sk has a global
section, or equivalently, a k-compatible family.

Of course, since CSP(B) is NP-complete in general, so is the problem of
determining the existence of a global section.

This motivates finding an efficiently computable approximation.

We shall use sheaf cohomology!

This will make substantial use of the prior work on contextuality, as mentioned
previously.
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Illustration: local consistency

Contextuality Analogy: Local Consistency
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b
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Illustration: global inconsistency
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Topology of Paradox

Clearly, the staircase as a whole cannot exist in the real world. Nonetheless,
the constituent parts make sense locally.

Quantum contextuality shows that the logical structure of quantum
mechanics exhibits exactly these features of local consistency, but global
inconsistency.

We note that Escher’s work was inspired by the Penrose stairs.

Indeed, these figures provide more than a mere analogy. Penrose has studied
the topological “twisting” in these figures using cohomology. This is quite
analogous to our use of sheaf cohomology to capture the logical twisting in
contextuality.

Recent cross-over of these ideas into Constraint Satisfaction and structure
isomorphism (refinements of Weisfeiler-Leman).
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Adjunctions recalled

Given a ring R, the category of R-modules is denoted R–Mod. There is an
evident forgetful functor U : R–Mod→ Set, and an adjunction

Set R–Mod

FR

U

⊥

FR(X ) is the free module generated by X (formal finite R-linear combinations
over X ).

The unit of this adjunction ηX : X → UFR(X ) embeds X in FR(X ) by sending x
to 1 · x , the linear combination with coefficient 1 for x , and 0 for all other
elements of X .

Note that Z–Mod is isomorphic to AbGrp, the category of abelian groups.
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The cohomological invariant from ABKLM

Given A with associated presheaf Sk , we can define the AbGrp-valued
presheaf FZSk .
A cohomological invariant γ is defined for a class of presheaves including
FZSk .

Given a flasque subpresheaf S of Hk , we have the AbGrp-valued presheaf
F = FZS. We use the Čech cohomology with respect to the cover
M = Mk(A).

In order to focus attention at the context C ∈M, we use the presheaf F|C ,
which “projects” onto C . The cohomology of this presheaf is the relative
cohomology of F at C . The i ’th relative Čech cohomology group of F is
written as Ȟ i (M,F|C ).

We have the connecting homomorphism Ȟ0(M,F|C )→ Ȟ1(M,F|C )
constructed using the Snake Lemma of homological algebra.

The cohomological obstruction γ : F(C )→ Ȟ1(M,F|C ) defined in ABKLM is
this connecting homomorphism, composed with the isomorphism
F(C ) ∼= Ȟ0(M,F|C ).
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Using the invariant

We use the following from ABKLM:

Proposition

For a local section s ∈ Sk(C0), with C0 ∈Mk(A), the following are equivalent:

1 γ(s) = 0

2 There is a Z-compatible family {αC}C∈Mk (A) with αC ∈ FZSk(C ), such that,

for all C ,C ′ ∈Mk(A): ρCC∩C ′(αC ) = ρC
′

C∩C ′(αC ′). Moreover, αC0 = 1 · s.

We call a family as in (2) a Z-compatible extension of s.

We can regard such an extension as a “Z-linear approximation” to a
homomorphism h : A→ B extending s.

Given a flasque subpresheaf S of Hk , and s ∈ S(C ), C ∈Mk(A), we write
Zextk(S, s) for the predicate which holds iff s has a Z-compatible extension in S.
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Computing the invariant
The idea from (AOC 2021) is to use this invariant as the key ingredient in an
algorithm refining k-consistency.

Proposition

There is a polynomial-time algorithm for deciding the predicate Zextk(S, s).

Proof.

Each constraint ρCC∩C ′(αC ) = ρC
′

C∩C ′(αC ′) can be written as a set of homogeneous
linear equations: for each s ∈ Sk(C ∩ C ′), we have the equation∑

t∈Sk (C),
t|C∩C′=s

rC ,t −
∑

t′∈Sk (C ′),
t′|C∩C′=s

rC ′,t′ = 0

in the variables rC ,s as C ranges over contexts, and s over Sk(C ).
The whole system is of size polynomial in |A|, |B|. Zextk(S, s) is equivalent to the
existence of a solution for this system of equations. Since solving systems of linear
equations over Z is in PTIME, this yields the result.
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Cohomological k-consistency
We use this predicate as a filter to refine local consistency.

We define S2 ↪→ S by

S2(C ) :=

{
{s ∈ S(C ) | Zextk(S, s)} C ∈Mk(A)

S(C ) otherwise

Note that S2 can be computed with polynomially many calls of Zextk , and thus is
itself computable in polynomial time.

S2 is closed under restriction, hence a presheaf. It is not necessarily flasque. Thus
we are led to the following iterative process:

Hk ←↩ H3
k ←↩ H

323
k ←↩ · · · ←↩ H3(23)m

k ←↩ · · ·

Since the size of Hk is polynomially bounded in |A|, |B|, this will converge to a
fixpoint in polynomially many steps.

We write S
(m)
k for the m’th iteration of this process, and S∗k for the fixpoint. Note

that Sk = S
(0)
k .
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that Sk = S
(0)
k .
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Cohomological k-consistency and CSP

Returning to the CSP decision problem, we define some relations on structures:

We define A→k B iff A is strongly k-consistent with respect to B, i.e. iff

Sk = S
(0)
k 6= ∅.

We define A→Z
k B if S∗k 6= ∅, and say that A is cohomologically k-consistent

with respect to B.

We define A→Z(1)
k B if S

(1)
k 6= ∅, and say that A is one-step cohomologically

k-consistent with respect to B.

As already remarked, these relations are all polynomial-time computable.

We can regard these relations as approximations to the “true” homomorphism
relation A→ B. The soundness of these approximations is stated as follows:

Proposition

We have the following chain of implications:

A→ B ⇒ A→Z
k B ⇒ A→Z(1)

k B ⇒ A→k B.
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Affine templates: the power of one iteration

We now consider the case where the template structure B is affine. This means
that B = R is a finite ring, and the interpretation of each relation in σ on R has
the form

ER
~a,b(r1, . . . , rn) ≡

n∑
i=1

ai ri = b

for some ~a ∈ Rn and b ∈ R.
Thus we can label each relation in σ as E~a,b, where ~a, b correspond to the
interpretation of the relation in R.

Given an instance A, we can regard each tuple ~x ∈ An such that EA
~a,b(x1, . . . , xn)

as the equation
∑n

i=1 aixi = b. The set of all such equations is denoted by TA.

We say that a function f : A→ R satisfies this equation if
∑n

i=1 ai f (xi ) = b holds
in R, i.e. if EA

~a,b(f (x1), . . . , f (xn)).

It is then immediate that a function f : A→ R simultaneously satisfies all the
equations in TA iff it is a homomorphism.
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Cohomological k-consistency is exact for affine templates
We can now state an important result from AOC 2021: that cohomological
k-consistency is an exact condition for affine templates. Moreover, the key step in
the argument is the main result from ABKLM (2015), that AvNR implies CSC.

Proposition

For every linear template R, and instance A:

A→ R ⇐⇒ A→Z
k R ⇐⇒ A→Z(1)

k R.

In their seminal paper Feder and Vardi identified two tractable subclasses of CSP,
those with templates of bounded width, and those which are “subgroup problems”
in their terminology, i.e. essentially those with affine templates.

Since all other cases with known complexity at that time were NP-complete, this
motivated their famous Dichotomy Conjecture.

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.
Cohomological k-consistency captures the tractability of both!

Samson Abramsky, Adam O’ Conghaile and Anuj Dawar (Department of Computer Science, University College London Computer Laboratory, University of Cambridge )From Kochen-Specker to Feder-Vardi 24 / 27



Cohomological k-consistency is exact for affine templates
We can now state an important result from AOC 2021: that cohomological
k-consistency is an exact condition for affine templates. Moreover, the key step in
the argument is the main result from ABKLM (2015), that AvNR implies CSC.

Proposition

For every linear template R, and instance A:

A→ R ⇐⇒ A→Z
k R ⇐⇒ A→Z(1)

k R.

In their seminal paper Feder and Vardi identified two tractable subclasses of CSP,
those with templates of bounded width, and those which are “subgroup problems”
in their terminology, i.e. essentially those with affine templates.

Since all other cases with known complexity at that time were NP-complete, this
motivated their famous Dichotomy Conjecture.

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.
Cohomological k-consistency captures the tractability of both!

Samson Abramsky, Adam O’ Conghaile and Anuj Dawar (Department of Computer Science, University College London Computer Laboratory, University of Cambridge )From Kochen-Specker to Feder-Vardi 24 / 27



Cohomological k-consistency is exact for affine templates
We can now state an important result from AOC 2021: that cohomological
k-consistency is an exact condition for affine templates. Moreover, the key step in
the argument is the main result from ABKLM (2015), that AvNR implies CSC.

Proposition

For every linear template R, and instance A:

A→ R ⇐⇒ A→Z
k R ⇐⇒ A→Z(1)

k R.

In their seminal paper Feder and Vardi identified two tractable subclasses of CSP,
those with templates of bounded width, and those which are “subgroup problems”
in their terminology, i.e. essentially those with affine templates.

Since all other cases with known complexity at that time were NP-complete, this
motivated their famous Dichotomy Conjecture.

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.
Cohomological k-consistency captures the tractability of both!

Samson Abramsky, Adam O’ Conghaile and Anuj Dawar (Department of Computer Science, University College London Computer Laboratory, University of Cambridge )From Kochen-Specker to Feder-Vardi 24 / 27



Cohomological k-consistency is exact for affine templates
We can now state an important result from AOC 2021: that cohomological
k-consistency is an exact condition for affine templates. Moreover, the key step in
the argument is the main result from ABKLM (2015), that AvNR implies CSC.

Proposition

For every linear template R, and instance A:

A→ R ⇐⇒ A→Z
k R ⇐⇒ A→Z(1)

k R.

In their seminal paper Feder and Vardi identified two tractable subclasses of CSP,
those with templates of bounded width, and those which are “subgroup problems”
in their terminology, i.e. essentially those with affine templates.

Since all other cases with known complexity at that time were NP-complete, this
motivated their famous Dichotomy Conjecture.

The two tractable classes identified by Feder and Vardi appeared to be quite
different in character.
Cohomological k-consistency captures the tractability of both!

Samson Abramsky, Adam O’ Conghaile and Anuj Dawar (Department of Computer Science, University College London Computer Laboratory, University of Cambridge )From Kochen-Specker to Feder-Vardi 24 / 27



The main question

For each template structure B, either CSP(B) is NP-complete, or B admits a
weak near-unanimity polymorphism.

Zhuk shows that if B admits a weak near-unanimity polymorphism, there is a
polynomial-time algorithm for CSP(B), thus establishing the Dichotomy Theorem.

This result motivates the following question:

Question
Is is the case that for all structures B, if B has a weak near unanimity
polymorphism, then it has bounded cohomological width?

A positive answer to this question would give an alternative proof of the
Dichotomy Theorem.

Note that Zhuk’s algorithm (and all others in this genre) makes explicit use of the
polymorphism, whereas cohomological k-consistency is completely general, and
applies to any CSP.
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Further Developments

The same ideas can be adapted to give a very similar analysis for the widely
studied Weisfeiler-Leman equivalences, which give polynomial-time
approximations to graph and structure isomorphism.

Cohomological refinements of these equivalences can then be introduced, and
are shown to defeat various families of counter-examples based on the
Cai-Furer-Immerman construction, which is paradigmatic in finite model
theory.
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