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Hofmann-Mislove

The Hofmann-Mislove theorem is a classic result at the
intersection of topology, lattice theory, and domain
theory.

It states that for each sober space X, the Scott-open
filters of the frame O(X) of open subsets of X are (dually)
isomorphic to the compact saturated subsets of X.
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Sober spaces and compact saturated sets

A space is sober if each closed irreducible set is the
closure of a unique point.

A closed set is irreducible if it cannot be written as a
union of two proper closed super sets.

A subset of a topological space X is saturated if it is an
intersection of open sets.

Saturated sets are exactly the upsets in the specialization
order of X, given by x ≤ y iff x belongs to the closure of y.

Let KSat(X) be the poset of compact saturated subsets of
X ordered by inclusion.
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Frames and Scott-open filters

A frame is a complete lattice L satisfying the join-infinite
distributive law a ∧

∨
S =

∨
{a ∧ s | s ∈ S}.

For each space X, the lattice of open sets O(X) is a frame.
Frames of this form are spatial.

It is well-known that there is a dual equivalence between
spatial frames and sober spaces.

A filter F of L is Scott-open if
∨
S ∈ F implies

∨
T ∈ F for

some finite subset T of S.

Let OFilt(L) be the poset of Scott-open filters of L ordered
by inclusion.
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Hofmann-Mislove

Let X be a sober space and L = O(X).
Then OFilt(L) is isomorphic to KSat(X).
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Priestley

A Priestley space is a compact space X equipped with a
partial order ≤ that satisfies the Priestley separation
axiom: x ≰ y implies that there is a clopen upset U with
x ∈ U and y /∈ U.

Priestley duality establishes a dual equivalence between
the category of bounded distributive lattices and
bounded lattice homomorphisms and the category of
Priestley spaces and continuous order-preserving maps.

In particular, for each bounded distributive lattice L and
Priestley dual Y of L, the Stone map φ is a bounded
lattice isomorphism from L to the clopen upsets of Y.
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Spectral spaces

Each Priestley space carries two additional topologies,
the topology of open upsets and the topology of open
downsets.

Each of these topologies is a spectral topology, meaning
that they are sober and compact opens form a basis that
is a bounded sublattice of the open subsets of X.

Spaces satisfying the latter condition are known as
coherent spaces. Thus, spectral spaces are exactly the
spaces that are sober and coherent.
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Priestley duality

There is a similar result to Hofmann-Mislove in Priestley
duality.

For a bounded distributive lattice D, let Filt(D) be the
poset of filters of D ordered by inclusion.

For a Priestley space X, let ClUp(X) be the poset of closed
upsets of X ordered by inclusion.
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Priestley

Let D be a bounded distributive lattice
and Y its Priestley dual. Then Filt(D) is
isomorphic to ClUp(Y).
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Priestley duality

This theorem “smells” like Hofmann-Mislove.

A close look at the two proofs reveals striking similarities.
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Proving Hofmann-Mislove

With each Scott-open filter F
we associate the compact
saturated set

KF :=
∩

{U ∈ O(X) : U ∈ F};

and conversely, with each
compact saturated set K we
associate the Scott-open filter

FK := {U ∈ O(X) : K ⊆ U}.

We then prove that F = FKF and
K = KFK .

Proving Priestley
With each filter F of a bounded
distributive lattice D we
associate the closed upset

KF :=
∩

{φ(a) : a ∈ F};

and conversely, with each
closed upset K we associate
the filter

FK := {a ∈ D : K ⊆ φ(a)}.

We then prove that F = FKF and
K = KFK .
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Analogy

These similarities can’t be just a coincidence, can they?

Indeed, it was pointed out by (G. Bezhanishvili,
N. Bezhanishvili, D. Gabelaia, and A. Kurz, 2010) that that the
two results are equivalent in the setting of spectral
spaces.

But they actually imply each other in full generality!
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From Hofmann-Mislove to Priestley

Let D be a bounded distributive lattice and Y its Priestley
space.

Let τ be the topology of open upsets of Y. Then (Y, τ) is a
spectral space. In particular, (Y, τ) is a sober space, so
Hofmann-Mislove applies.

Compact saturated subsets of (Y, τ) are exactly the
closed upsets of Y. Therefore, KSat(Y, τ) = ClUp(Y).

The Stone map φ is an isomorphism of D to the lattice of
compact open subsets of (Y, τ). Thus, φ is an
isomorphism of D to a bounded sublattice of the frame L
of open subsets of (X, τ).
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From Hofmann-Mislove to Priestley

There is an isomorphism between Filt(D) and OFilt(L).

This isomorphism sends a Scott-open filter F of L to
φ−1[F]; and a filter G of D to the Scott-open filter of L
generated by the image φ[G].

Applying Hofmann-Mislove to (X, τ) yields that OFilt(L) is
dually isomorphic to KSat(X, τ).

But KSat(X, τ) is exactly ClUp(X), and OFilt(L) is
isomorphic to Filt(D).

Thus, Filt(D) is dually isomorphic to ClUp(X), and
Priestley’s result follows.
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From Priestley to Hofmann-Mislove

Let X be a sober space and L the frame of open subsets
of X.

We let Y be the Priestley space of L.

There is an embedding e : X → Y given by
e(x) = {U ∈ L : x ∈ U}.

Since L is spatial, the image e[X] is dense in Y.

For simplicity, we identify X with its image and view X as a
dense subset of Y.
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Characterization of Scott-open filters

The key is to characterize Scott-open filters of L in the
language of Y.

Let F be a filter of L and let KF be the corresponding
closed upset in Y.

Since KF is closed, for each x ∈ KF there exists m ∈ min KF
such that m ≤ x. In other words, KF = ↑min KF.

Theorem
F is Scott-open iff min KF ⊆ X.

13



Characterization of Scott-open filters

The key is to characterize Scott-open filters of L in the
language of Y.

Let F be a filter of L and let KF be the corresponding
closed upset in Y.

Since KF is closed, for each x ∈ KF there exists m ∈ min KF
such that m ≤ x. In other words, KF = ↑min KF.

Theorem
F is Scott-open iff min KF ⊆ X.

13



Characterization of Scott-open filters

The key is to characterize Scott-open filters of L in the
language of Y.

Let F be a filter of L and let KF be the corresponding
closed upset in Y.

Since KF is closed, for each x ∈ KF there exists m ∈ min KF
such that m ≤ x.

In other words, KF = ↑min KF.

Theorem
F is Scott-open iff min KF ⊆ X.

13



Characterization of Scott-open filters

The key is to characterize Scott-open filters of L in the
language of Y.

Let F be a filter of L and let KF be the corresponding
closed upset in Y.

Since KF is closed, for each x ∈ KF there exists m ∈ min KF
such that m ≤ x. In other words, KF = ↑min KF.

Theorem
F is Scott-open iff min KF ⊆ X.

13



Characterization of Scott-open filters

The key is to characterize Scott-open filters of L in the
language of Y.

Let F be a filter of L and let KF be the corresponding
closed upset in Y.

Since KF is closed, for each x ∈ KF there exists m ∈ min KF
such that m ≤ x. In other words, KF = ↑min KF.

Theorem
F is Scott-open iff min KF ⊆ X.

13



Scott-upsets

Definition
We call a closed upset K of Y a Scott-upset if min K ⊆ X.

Let SUp(Y) be the poset of Scott-upsets of Y ordered by
inclusion.
Theorem
OFilt(L) is isomorphic to SUp(Y).

Corollaries
1. A Scott-open filter F is completely prime iff min KF is

a singleton.
2. Every Scott-open filter of L is an intersection of

completely prime filters of L.
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Scott-upsets and compact saturated sets

Theorem
SUp(Y) is isomorphic to KSat(X).

The isomorphism is obtained by sending a Scott-upset K
to K ∩ X.

Hofmann-Mislove is a direct consequence of the last two
theorems.
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Consequences



Hofmann-Mislove for frames

In fact, we can prove a more general version of
Hofmann-Mislove.

Hofmann-Mislove for frames
For each frame L and the space X of points of L, we have
that OFilt(L) is dually isomorphic to KSat(X).

This result is known, see e.g. (S. Vickers, 1989), but the
proof relies on Zorn’s lemma, while our proof needs only
the Prime Ideal Theorem.
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Dualities
Frmop

✓

Top0

SFrmop

✓

Sob

1SFrmop

✓

GLCSob

ContFrmop

✓

LCSob

KSFrmop

✓

KSob

StCFrmop

✓

SLCTop

StKFrmop

✓

SCTop

CohFrmop

✓

Spec

KRegFrmop

✓

KHaus

StoneFrmop

✓

Stone

A new proof of:

• The Hofmann-Lawson duality
between continuous frames and
locally compact sober spaces

• The Johnstone duality between
stably continuous frames and
stably locally compact spaces.

• The Isbell duality between
compact regular frames and
compact Hausdorff spaces.

• Other (dual) equivalences.
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Thank you!
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