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Motivation

Why are distributive ℓ-monoids interesting?

Algebra: There is a deep connection between the variety of
distributive ℓ-monoids and the variety of ℓ-groups (Colacito et al.
2022).
Logic: For various classes of distributive residuated lattices the
residual free reducts are distributive ℓ-monoids.

In this talk:

Semilinear idempotent distributive ℓ-monoids.
A structure theorem for the finite subdirectly irreducibles.
A description of the subvariety lattice and a proof that it is countably
infinite.
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Distributive ℓ-monoids

A distributive ℓ-monoid is an algebra ⟨M,∧,∨, ·, e⟩ such that

⟨M,∧,∨⟩ is a distributive lattice,
⟨M, ·, e⟩ is a monoid,
for all a, b, c, d ∈ M

a(b ∧ c)d = abd ∧ acd and a(b ∨ c)d = abd ∨ acd.

We call a distributive ℓ-monoid M idempotent or commutative if its
monoid reduct is idempotent or commutative, respectively.

The class DLM of all distributive ℓ-monoids forms a variety (equational
class). Similarly, the classes IdDLM and CIdDLM of idempotent and
commutative idempotent distributive ℓ-monoids are varieties.
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Examples

Example
The inverse-free reduct of an ℓ-group is a distributive ℓ-monoid.

Example
For a distributive lattice ⟨D,∧,∨⟩ with top element ⊤ ∈ D the algebra
⟨D,∧,∨,∧,⊤⟩ is a commutative idempotent distributive ℓ-monoid.

Example
A totally ordered monoid ⟨M, ·, e,≤⟩, i.e., a monoid ⟨M, ·, e⟩ with a total
order ≤ on M such that a ≤ b implies cad ≤ cbd for a, b, c, d ∈ M , can be
considered as a distributive ℓ-monoid ⟨M,min,max, ·, e⟩ which we also call
totally ordered monoid.
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Semilinear distributive ℓ-monoids

We call a distributive ℓ-monoid M semilinear if it is a subdirect
product of totally ordered monoids.

The class SemIdDLM of semilinear idempotent distributive
ℓ-monoids is a variety which is generated by the class of totally
ordered idempotent monoids.

Theorem (Merlier 1971)
Every commutative distributive ℓ-monoid is semilinear.

Corollary
The variety CIdDLM is the subvariety of SemIdDLM consisting of the
commutative members of SemIdDLM.
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Local finiteness of IdDLM

Recall that an algebra A is called locally finite if every finitely generated
subalgebra of A is finite and a class K of algebras is called locally finite if
every member of K is locally finite.

Theorem (Green, Rees 1952)
The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition
The variety IdDLM of idempotent distributive ℓ-monoids is locally finite.

Corollary
SemIdDLM is locally finite and generated by the class of finite
subdirectly irreducible totally ordered idempotent monoids.

Simon Santschi June 23, 2022 6 / 28



Local finiteness of IdDLM

Recall that an algebra A is called locally finite if every finitely generated
subalgebra of A is finite and a class K of algebras is called locally finite if
every member of K is locally finite.

Theorem (Green, Rees 1952)
The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition
The variety IdDLM of idempotent distributive ℓ-monoids is locally finite.

Corollary
SemIdDLM is locally finite and generated by the class of finite
subdirectly irreducible totally ordered idempotent monoids.

Simon Santschi June 23, 2022 6 / 28



Local finiteness of IdDLM

Recall that an algebra A is called locally finite if every finitely generated
subalgebra of A is finite and a class K of algebras is called locally finite if
every member of K is locally finite.

Theorem (Green, Rees 1952)
The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition
The variety IdDLM of idempotent distributive ℓ-monoids is locally finite.

Corollary
SemIdDLM is locally finite and generated by the class of finite
subdirectly irreducible totally ordered idempotent monoids.

Simon Santschi June 23, 2022 6 / 28



Local finiteness of IdDLM

Recall that an algebra A is called locally finite if every finitely generated
subalgebra of A is finite and a class K of algebras is called locally finite if
every member of K is locally finite.

Theorem (Green, Rees 1952)
The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition
The variety IdDLM of idempotent distributive ℓ-monoids is locally finite.

Corollary
SemIdDLM is locally finite and generated by the class of finite
subdirectly irreducible totally ordered idempotent monoids.

Simon Santschi June 23, 2022 6 / 28



Examples

The totally ordered idempotent monoids C2, C∂
2 , G3, and D3 described

below are exactly the simple totally ordered idempotent monoids:

C2 = ⟨{⊥, e}, ·, e,≤⟩
e

⊥

· e ⊥
e e ⊥
⊥ ⊥ ⊥

C∂
2 = ⟨{e,⊤}, ·, e,≤⟩

⊤

e

· e ⊤
e e ⊤
⊤ ⊤ ⊤

G3 = ⟨{⊥, e,⊤}, ·, e,≤⟩
⊤

e

⊥

· e ⊥ ⊤
e e ⊥ ⊤
⊥ ⊥ ⊥ ⊥
⊤ ⊤ ⊤ ⊤

D3 = ⟨{⊥, e,⊤}, ·, e,≤⟩
⊤

e

⊥

· e ⊥ ⊤
e e ⊥ ⊤
⊥ ⊥ ⊥ ⊤
⊤ ⊤ ⊥ ⊤
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Combining totally ordered idempotent monoids

· e 1 ⊥ ⊤
e e 1 ⊥ ⊤
1 1 1 ⊥ ⊤
⊥ ⊥ ⊥ ⊥ ⊥
⊤ ⊤ ⊤ ⊤ ⊤

e

1

C2G3

>

e

⊥

e

1

⊥

>

G3 ⊕C2
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The e-sum construction

The e-sum (also known as nested sum or K[L] in (Galatos 2004)) was
used in (Olson 2012) to study the subvariety lattice of the variety of
semilinear idempotent residuated lattices.

Let L and M be totally ordered idempotent monoids, where we relabel the
elements such that L ∩M = {e}. The e-sum of L and M is defined by
L⊕M = ⟨L ∪M, ·, e ≤⟩, where

the product · is the extension of the monoid operations on L and M
with a · b = b · a = a for all a ∈ L \{e} and b ∈ M ,
≤ is the least extension of the orders of L and M that satisfies for all
a ∈ L \{e} and b ∈ M that a ≤ b if a ≤L e and b ≤ a if e ≤L a.

Intuition: L⊕M is obtained by replacing the identity e in L with M and
extending the order and product in such a way that the elements of M
behave like e with respect to elements of L.
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Properties of the e-sum

Lemma (cf. Olson 2012)
Let L and M be totally ordered idempotent monoids. Then L⊕M is an
totally ordered idempotent monoid. Moreover, L and M embed into
L⊕M via the inclusion maps.

Lemma (Olson 2012)
Let L, M, and N be totally ordered idempotent monoids. Then

L⊕ (M⊕N) ∼= (L⊕M)⊕N.

So it makes sense to write M1 ⊕ · · · ⊕Mn for totally ordered idempotent
monoids M1, . . . ,Mn or shorter

⊕n
i=1Mi, where

⊕0
i=1Mi = 0 for some

fixed trivial algebra 0. We note that M⊕ 0 ∼= 0⊕M ∼= M for all M, i.e.,
0 is the neutral element of the e-sum operation.
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Back to the Examples

The totally ordered idempotent monoids C2, C∂
2 , G3, and D3 are

indecomposable with respect to the e-sum:

C2 = ⟨{⊥, e}, ·, e,≤⟩
e

⊥

· e ⊥
e e ⊥
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C∂
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⊤

e

· e ⊤
e e ⊤
⊤ ⊤ ⊤
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⊤

e

⊥

· e ⊥ ⊤
e e ⊥ ⊤
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⊥
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The e-sum decomposition

Theorem
Every finite totally ordered idempotent monoid M is isomorphic to an
e-sum

⊕n
i=1Mi with Mi ∈ {C2,C

∂
2 ,G3,D3}. Moreover, this e-sum is

unique with respect to the algebras {C2,C
∂
2 ,G3,D3}.

Corollary (cf. Gil-Férez, Jipsen, Metcalfe 2020)
The number I(n) of totally ordered idempotent monoids with n ∈ N \{0}
elements (up to isomorphism) is recursively defined by I(1) = 1, I(2) = 2,
and

I(n) = 2 · I(n− 1) + 2 · I(n− 2) (n > 2).

Moreover,

I(n) =
(1 +

√
3)n − (1−

√
3)n

2
√
3

.
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Finite subdirectly irreducibles of SemIdDLM

Theorem
Let M be a non-trivial finite semilinear idempotent distributive ℓ-monoid.
Then the following are equivalent:

1 M is subdirectly irreducible.
2 M ∼=

⊕n
i=1Mi for some n ∈ N \{0} with Mi ∈ {C2,C

∂
2 ,G3,D3}

such that if Mi = Mi+1, then Mi ∈ {G3,D3} for every
i ∈ {1, . . . , n− 1}.

3 Con(M) is a chain.

Corollary
The number S(n) of subdirectly irreducible totally ordered idempotent
monoids with n ∈ N \{0} elements (up to isomorphism) is recursively
defined by S(1) = 1, S(2) = 2, S(3) = 4, and

S(n) = S(n− 1) + 2S(n− 2) + 2S(n− 3) (n > 3).
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Ilustration of the irreducibility condition

M1 ⊕ · · · ⊕ C∂
2 ⊕ C∂

2 ⊕ · · · ⊕ Mn

Mn

⊤

⊥

b
a
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Ilustration of the irreducibility condition

M1 ⊕ · · · ⊕ C∂
2 ⊕ C∂

2 ⊕ · · · ⊕ Mn−1

e

⊤

⊥

b
a
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Describing the subvariety lattice

Goal: Describe the subvariety lattice of SemIdDLM.

A relation ≤ on a set P is called a quasi-order if it is reflexive and
transitive. It is called a well quasi-order if it contains neither an
infinite antichain nor an infinite descending chain.
For algebras A and B we define the relation ≤HS (≤IS) by

A ≤HS B iff A ∈ HS({B}) (A ≤IS B iff A ∈ IS({B}) ),
where H, S, and I denote the closure under homomorphic images,
subalgebras and ismorphic images.
For a variety V of finite type we denote by V∗ a fixed set which
contains (up to isomorphism) exactly one copy of each finite
subdirectly irreducible of V. Then ⟨V∗,≤HS⟩ and ⟨V∗,≤IS⟩ are
partially ordered sets.
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A theorem about subvariety lattices

Theorem (Davey 1979)
Let V be a congruence-distributive, locally finite variety of finite type. Then
the subvariety lattice of V is completely distributive and is isomorphic to
the lattice of order ideals of the poset ⟨V∗,≤HS⟩.

Corollary (Olson 2012)
For a a congruence-distributive, locally finite variety V of finite type the
subvariety lattice of V is countable iff ⟨V∗,≤HS⟩ is a well quasi-ordered set.
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The order ≤HS on SemIdDLM∗

We fix SemIdDLM∗ to be the set of finite subdirectly irreducibles of
SemIdDLM that are e-sums of the algebras C2,C

∂
2 ,G3,D3.

As SemIdDLM is congruence-distributive and locally finite, our goal is to
show that ⟨SemIdDLM∗,≤HS⟩ is a well quasi-ordered set.

Lemma
Every homomorphic image of an totally ordered idempotent monoid M is
isomorphic to a subalgebra of M.

So it suffices to show that ⟨SemIdDLM∗,≤IS⟩ is a well quasi-ordered set.

Simon Santschi June 23, 2022 17 / 28



The order ≤HS on SemIdDLM∗

We fix SemIdDLM∗ to be the set of finite subdirectly irreducibles of
SemIdDLM that are e-sums of the algebras C2,C

∂
2 ,G3,D3.

As SemIdDLM is congruence-distributive and locally finite, our goal is to
show that ⟨SemIdDLM∗,≤HS⟩ is a well quasi-ordered set.

Lemma
Every homomorphic image of an totally ordered idempotent monoid M is
isomorphic to a subalgebra of M.

So it suffices to show that ⟨SemIdDLM∗,≤IS⟩ is a well quasi-ordered set.

Simon Santschi June 23, 2022 17 / 28



The order ≤HS on SemIdDLM∗

We fix SemIdDLM∗ to be the set of finite subdirectly irreducibles of
SemIdDLM that are e-sums of the algebras C2,C

∂
2 ,G3,D3.

As SemIdDLM is congruence-distributive and locally finite, our goal is to
show that ⟨SemIdDLM∗,≤HS⟩ is a well quasi-ordered set.

Lemma
Every homomorphic image of an totally ordered idempotent monoid M is
isomorphic to a subalgebra of M.

So it suffices to show that ⟨SemIdDLM∗,≤IS⟩ is a well quasi-ordered set.

Simon Santschi June 23, 2022 17 / 28



The order ≤HS on SemIdDLM∗

We fix SemIdDLM∗ to be the set of finite subdirectly irreducibles of
SemIdDLM that are e-sums of the algebras C2,C

∂
2 ,G3,D3.

As SemIdDLM is congruence-distributive and locally finite, our goal is to
show that ⟨SemIdDLM∗,≤HS⟩ is a well quasi-ordered set.

Lemma
Every homomorphic image of an totally ordered idempotent monoid M is
isomorphic to a subalgebra of M.

So it suffices to show that ⟨SemIdDLM∗,≤IS⟩ is a well quasi-ordered set.

Simon Santschi June 23, 2022 17 / 28



Higman’s Lemma

For a quasi-ordered set ⟨P,≤⟩ we define the order ≤∗ on the set σ(P ) of
finite sequences of P by

⟨p1, . . . , pn⟩ ≤∗ ⟨q1, . . . , qm⟩ :⇐⇒ there exists an order embedding
f : {1, . . . , n} → {1, . . . ,m} such that
pi ≤ qf(i) for all i ∈ {1, . . . , n}.

Lemma (Higman 1952)
If ⟨P,≤⟩ is a well quasi-ordered set, then so is ⟨σ(P ),≤∗⟩.
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The order ≤IS restricted to {C2,C
∂
2 ,G3,D3}

The order ≤IS restricts to the following well quasi-order on the set
{C2,C

∂
2 ,G3,D3}.

C∂
2

D3G3

C2

We define for L,M ∈ SemIdDLM∗ the relation ⪯ by

L ⪯ M :⇐⇒ ⟨L1, . . . ,Lm⟩ ≤∗
IS ⟨M1, . . . ,Mn⟩,

for L = L1 ⊕ · · · ⊕ Lm, M = M1 ⊕ · · · ⊕Mn with
Mi,Lj ∈ {C2,C

∂
2 ,G3,D3}.
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The subvariety lattice of SemIdDLM

Using Higman’s Lemma and the fact that the restriction of a well
quasi-order to a subset is again a well quasi-order, we obtain:

Corollary
⟨SemIdDLM∗,⪯⟩ is a well quasi-ordered set.

Considering how embeddings behave we can show:

Lemma
For all L,M ∈ SemIdDLM∗ we have L ⪯ M if and only if L ≤IS M.

Thus we get that ⟨SemIdDLM∗,≤IS⟩ is a well quasi-ordered set, yielding

Theorem
The subvariety lattice of SemIdDLM is countably infinite.
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A description of the subvariety lattice of SemIdDLM

Using the theorem of (Davey 1979) and the fact that ≤HS = ⪯ we
get that the subvariety lattice of SemIdDLM is isomorphic to the
lattice of order-ideals of ⟨SemIdDLM∗,⪯⟩, via the map that maps
an order ideal I to the variety V (I) generated by I.

Thus, by the characterization of the finite subdirectly irreducibles and
the definition of ⪯ via the Higman order, we get a description of the
subvariety lattice of SemIdDLM.
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The commutative case

For CIdDLM the previous theorems yield the following immediate results:

Proposition
Let M be a finite commutative totally ordered idempotent monoid. Then
M ∼=

⊕n
i=1Mi with Mi ∈ {C2,C

∂
2}. Moreover M is subdirectly

irreducible if and only if for all i ∈ {1, . . . , n− 1}, Mi ̸= Mi+1.

Corollary
There are up to isomorphism 2n−1 totally ordered commutative idempotent
monoids of size n ≥ 1.
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Subdirectly irreducibles of CIdDLM

For n > 2 we define inductively the algebras Cn and C∂
n by

Cn := C2 ⊕C∂
n−1

C∂
n := C∂

2 ⊕Cn−1

and we set C1 = C∂
1 = 0.

Remark
The algebras Cn are exactly the reducts of the finite Sugihara chains.

Proposition

For every n > 1 the algebras Cn and C∂
n are up to isomorphism the only

subdirectly irreducible totally ordered commutative idempotent monoids
with n elements.
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Example C3 and C∂
3

2

0

1

C∂
3

C3

1

0

2

n ·m = maxN(n,m)
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The subvariety lattice of CIdDLM

Theorem
The subvariety lattice of CIdDLM is of the form:

V (C1)

V (C∂
2 )V (C2)

V (C2) ∨ V (C∂
2 )

V (C∂
3 )V (C3)

V (C3) ∨ V (C∂
3 )

V (Cn) ∨ V (C∂
n)

V (C∂
n+1)V (Cn+1)

V (Cn+1) ∨ V (C∂
n+1)

CIdDLM
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Thank you!

Thank you!
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