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Why are distributive £-monoids interesting?

@ Algebra: There is a deep connection between the variety of

distributive ¢-monoids and the variety of ¢-groups (Colacito et al.
2022).

@ Logic: For various classes of distributive residuated lattices the
residual free reducts are distributive /-monoids.

In this talk:
@ Semilinear idempotent distributive /-monoids.

@ A structure theorem for the finite subdirectly irreducibles.

@ A description of the subvariety lattice and a proof that it is countably
infinite.
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Distributive /-monoids

A distributive £-monoid is an algebra (M, A, V, -, e) such that

e (M,A,V) is a distributive lattice,
e (M,- e) is a monoid,
o foralla,b,c,d e M

a(bAc)d=abd ANacd and a(bVc)d = abdV acd.
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Distributive /-monoids

A distributive £-monoid is an algebra (M, A, V, -, e) such that
e (M,A,V) is a distributive lattice,
e (M,- e) is a monoid,
o foralla,b,c,d e M

a(bAc)d=abd ANacd and a(bVc)d = abdV acd.

We call a distributive /-monoid M idempotent or commutative if its
monoid reduct is idempotent or commutative, respectively.

The class DLM of all distributive ¢-monoids forms a variety (equational
class). Similarly, the classes ZdDLM and CZdDLM of idempotent and
commutative idempotent distributive £-monoids are varieties.
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Examples

Example J

The inverse-free reduct of an ¢-group is a distributive ¢-monoid.
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Examples

Example

The inverse-free reduct of an ¢-group is a distributive ¢-monoid.

Example |

For a distributive lattice (D, A, V) with top element T € D the algebra
(D,A,V,\, T) is a commutative idempotent distributive ¢-monoid.

Example |
A totally ordered monoid (M, -, e, <), i.e., a monoid (M, -, e) with a total
order < on M such that a < b implies cad < c¢bd for a,b,c,d € M, can be
considered as a distributive /-monoid (M, min, max, -, ¢) which we also call
totally ordered monoid.
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Semilinear distributive /-monoids

o We call a distributive £-monoid M semilinear if it is a subdirect
product of totally ordered monoids.
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Semilinear distributive /-monoids

o We call a distributive £-monoid M semilinear if it is a subdirect
product of totally ordered monoids.

@ The class SemZdDLM of semilinear idempotent distributive

{-monoids is a variety which is generated by the class of totally
ordered idempotent monoids.

Theorem (Merlier 1971)

Every commutative distributive £-monoid is semilinear.

Corollary

The variety CZADLM s the subvariety of SemZdDLM consisting of the
commutative members of SemZdDLM.
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Local finiteness of ZdDLM

Recall that an algebra A is called locally finite if every finitely generated

subalgebra of A is finite and a class K of algebras is called locally finite if
every member of K is locally finite.
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Local finiteness of ZdDLM

Recall that an algebra A is called locally finite if every finitely generated
subalgebra of A is finite and a class K of algebras is called locally finite if
every member of K is locally finite.

Theorem (Green, Rees 1952)

The variety of idempotent monoids is locally finite.

Using this fact we can show:

Proposition
The variety TdDLM of idempotent distributive £-monoids is locally finite.

Corollary

SemZdDLM is locally finite and generated by the class of finite
subdirectly irreducible totally ordered idempotent monoids.
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Examples

The totally ordered idempotent monoids Co, Cg, G3, and D3 described
below are exactly the simple totally ordered idempotent monoids:
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Examples

The totally ordered idempotent monoids Co, Cg, G3, and D3 described
below are exactly the simple totally ordered idempotent monoids:

02 = <{L,€},',€, S) Cg = <{67T}1'767S>
e T
e[ L] [ [ e[T]
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Ly L]t n TIT[T .
Simon Santschi June 23, 2022

7/28



Examples

The totally ordered idempotent monoids C», C4, G3, and D3 described

below are exactly the simple totally ordered idempotent monoids:

02 = <{L,€}7'7€, S) Cg = <{6,T},',€, S>
e T
el L] [ e[ T]
€ e | L e e | T
Ly L]t n TIT[T .

G3 = <{J-7 €, T}7 € S>

[ TelLlT] i
e e | L | T e
1 1| L | L
T T | T | T
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Examples

The totally ordered idempotent monoids C», C4, G3, and D3 described
below are exactly the simple totally ordered idempotent monoids:

Ce = {{L,e},e,<)

[ - Tell]
e e 1
L 1] L

G3 = <{J-7 €, T}7 € S>

[ [ el L[T]
e e | L | T
1 1| L | L
T T T | T

Simon Santschi
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Combining totally ordered idempotent monoids

-

L [e[L[L[T] 97 ‘
e e | 1| L]|T

11 ]1]L|T . . L
L] L] L]l
TN T | T|T|T

1 1 1

Gs C, G3 ® C2
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The e-sum construction

The e-sum (also known as nested sum or K[L] in (Galatos 2004)) was
used in (Olson 2012) to study the subvariety lattice of the variety of
semilinear idempotent residuated lattices.
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The e-sum construction

The e-sum (also known as nested sum or K[L] in (Galatos 2004)) was
used in (Olson 2012) to study the subvariety lattice of the variety of
semilinear idempotent residuated lattices.

Let L. and M be totally ordered idempotent monoids, where we relabel the
elements such that LN M = {e}. The e-sum of L and M is defined by
LeM=(LUM,- e <), where

@ the product - is the extension of the monoid operations on L and M
witha-b=b-a=aforalla e L\{e} and b € M,

o < is the least extension of the orders of L and M that satisfies for all
a€ L\{e}andbe M thata<bifa<peandb<aife<ya.

Intuition: L & M is obtained by replacing the identity e in L with M and
extending the order and product in such a way that the elements of M
behave like e with respect to elements of L.
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Properties of the e-sum

Lemma (cf. Olson 2012)

Let L and M be totally ordered idempotent monoids. Then L. & M is an

totally ordered idempotent monoid. Moreover, L and M embed into
L & M via the inclusion maps.
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Properties of the e-sum

Lemma (cf. Olson 2012)

Let L and M be totally ordered idempotent monoids. Then L. & M is an
totally ordered idempotent monoid. Moreover, L and M embed into
L & M via the inclusion maps.

Lemma (Olson 2012)
Let L, M, and N be totally ordered idempotent monoids. Then

Lo (MaN)~(LeM)sN.

So it makes sense to write M & - - - @& M, for totally ordered idempotent
monoids My, ..., M, or shorter @;" ; M;, where @?:1 M, = 0 for some
fixed trivial algebra 0. We note that M 0= 0 M = M for all M, i.e.,
0 is the neutral element of the e-sum operation.
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Back to the Examples

The totally ordered idempotent monoids Co, Cg, G3, and D3 are
indecomposable with respect to the e-sum:

02 = <{L,€}7'7€, S) Cg = <{6,T},',€, S>
€ T
L e[ L] [ [[e[T]
€ e | L e e | T
Ly L]t n TIT[T .
G3 = <{J-767T}7 '76’S> D3 = <{L,6,T},',€, S>
T T
[ [ el Ll]T] [ [ el Ll]T]
e e 1| T e e e 1| T e
1 1| L] L 1 1| L | T
T T | T | T T T | L | T
1 1
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The e-sum decomposition

Theorem

Every finite totally ordered idempotent monoid M is isomorphic to an
e-sum ;| M; with M; € {Co, Cg, G3,D3}. Moreover, this e-sum is
unique with respect to the algebras {Cs, C9, G3, D3}.
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The e-sum decomposition

Theorem

Every finite totally ordered idempotent monoid M is isomorphic to an
e-sum @;"_ | M; with M; € {Cs, Cg, G3,D3}. Moreover, this e-sum is
unique with respect to the algebras {Cs, C9, G3, D3}.

Corollary (cf. Gil-Férez, Jipsen, Metcalfe 2020) |

The number I(n) of totally ordered idempotent monoids with n € N\{0}
elements (up to isomorphism) is recursively defined by I(1) = 1, I(2) = 2,
and

In)=2-In—-1)+2-I(n—2) (n>2).
Moreover,
(1++3)" — (1 - V3)"

I(n) = Wi
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Finite subdirectly irreducibles of SemZdD LM

Theorem |
Let M be a non-trivial finite semilinear idempotent distributive £-monoid.
Then the following are equivalent:

@ M is subdirectly irreducible.

Q@ M =@} | M; for some n € N\{0} with M; € {C2,CY,G3,D3}
such that if M; = M1, then M; € {Gs3, D3} for every
ie{l,...,n—1}.

© Con(M) is a chain.
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Finite subdirectly irreducibles of SemZdD LM

Theorem |

Let M be a non-trivial finite semilinear idempotent distributive £-monoid.
Then the following are equivalent:

@ M is subdirectly irreducible.

Q@ M =@} | M; for some n € N\{0} with M; € {C2,CY,G3,D3}
such that if M; = M1, then M; € {Gs3, D3} for every
ie{l,...,n—1}.

© Con(M) is a chain.

Corollary

The number S(n) of subdirectly irreducible totally ordered idempotent
monoids with n € N\{0} elements (up to isomorphism) is recursively
defined by S(1) =1, S(2) =2, S(3) =4, and

S(n)=S(n—1)+2S(n—2)+2S(n—3) (n>3).

Simon Santschi June 23, 2022 13 /28



llustration of the irreducibility condition
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llustration of the irreducibility condition
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1

.1

M, @ - ®CIpCIi®--- M, _;
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Describing the subvariety lattice

Goal: Describe the subvariety lattice of SemZdDLM.
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Describing the subvariety lattice

Goal: Describe the subvariety lattice of SemZdDLM.

@ A relation < on a set P is called a quasi-order if it is reflexive and
transitive. It is called a well quasi-order if it contains neither an
infinite antichain nor an infinite descending chain.

o For algebras A and B we define the relation <pgs (<;g) by

A<psBiff Ac HS({B}) (A <;sBiff AeIS({B})),

where H, S, and I denote the closure under homomorphic images,
subalgebras and ismorphic images.

@ For a variety V of finite type we denote by V. a fixed set which
contains (up to isomorphism) exactly one copy of each finite
subdirectly irreducible of V. Then (V,, <pyg) and (V,, <;g) are
partially ordered sets.
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A theorem about subvariety lattices

Theorem (Davey 1979)

Let V be a congruence-distributive, locally finite variety of finite type. Then
the subvariety lattice of V is completely distributive and is isomorphic to
the lattice of order ideals of the poset (V., <pg).
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A theorem about subvariety lattices

Theorem (Davey 1979)

Let V be a congruence-distributive, locally finite variety of finite type. Then
the subvariety lattice of V is completely distributive and is isomorphic to
the lattice of order ideals of the poset (V.,<pg).

Corollary (Olson 2012)

For a a congruence-distributive, locally finite variety V of finite type the
subvariety lattice of V is countable iff (V., <pgs) is a well quasi-ordered set.
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The order <gg on SemZdDLM.,

We fix SemZdDLM., to be the set of finite subdirectly irreducibles of
SemTdDLM that are e-sums of the algebras Cs, C3, G3, Ds.
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We fix SemZdDLM., to be the set of finite subdirectly irreducibles of
SemTdDLM that are e-sums of the algebras Cs, C3, G3, Ds.

As SemZdDLM is congruence-distributive and locally finite, our goal is to
show that (SemZdDLM.,, <ps) is a well quasi-ordered set.

Lemma

Every homomorphic image of an totally ordered idempotent monoid M is
isomorphic to a subalgebra of M.
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The order <gg on SemZdDLM.,

We fix SemZdDLM., to be the set of finite subdirectly irreducibles of
SemTdDLM that are e-sums of the algebras Cs, C3, G3, Ds.

As SemZdDLM is congruence-distributive and locally finite, our goal is to
show that (SemZdDLM.,, <ps) is a well quasi-ordered set.
Lemma

Every homomorphic image of an totally ordered idempotent monoid M is
isomorphic to a subalgebra of M.

So it suffices to show that (SemZdDL M., <;s) is a well quasi-ordered set.
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Higman's Lemma

For a quasi-ordered set (P, <) we define the order <* on the set o(P) of
finite sequences of P by

(P1y - s0n) <" {q1y-..,qm) : <= there exists an order embedding
fA{1,...,n} = {1,...,m} such that
pi < qpi) foralli € {1,...,n}.
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Higman's Lemma

For a quasi-ordered set (P, <) we define the order <* on the set o(P) of
finite sequences of P by

(P1y - s0n) <" {q1y-..,qm) : <= there exists an order embedding
fA{1,...,n} = {1,...,m} such that
pi < qpi) foralli € {1,...,n}.

Lemma (Higman 1952)
If (P, <) is a well quasi-ordered set, then so is (o(P),<*).
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The order <;g restricted to {C5, CJ, G3, D3}

The order <jg restricts to the following well quasi-order on the set
{C27 Cga G3a D3}

C, cd
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The order <;g restricted to {C5, CJ, G3, D3}

The order <jg restricts to the following well quasi-order on the set
{C27 Cga G3a D3}

C, cd

We define for L, M € SemZdDLM, the relation < by
L=M:<— (Ly,...,Ly) <jg My,...,M,;),

forL=L1®---@L,, M=M; ®---®M,, with
MZ;L] S {C27C37G37D3}'
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The subvariety lattice of SemZdDLM

Using Higman's Lemma and the fact that the restriction of a well
quasi-order to a subset is again a well quasi-order, we obtain:

Corollary
(SemZdDLM.,, =) is a well quasi-ordered set.
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The subvariety lattice of SemZdDLM

Using Higman's Lemma and the fact that the restriction of a well
quasi-order to a subset is again a well quasi-order, we obtain:

Corollary
(SemZdDLM.,, =) is a well quasi-ordered set. {

Considering how embeddings behave we can show:

Lemma
For all L,M € SemZdDLM, we have L <M if and only if L <;5 M. J

Simon Santschi June 23, 2022 20 /28



The subvariety lattice of SemZdDLM

Using Higman's Lemma and the fact that the restriction of a well
quasi-order to a subset is again a well quasi-order, we obtain:

Corollary
(SemZdDLM.,, =) is a well quasi-ordered set. {

Considering how embeddings behave we can show:

Lemma
For all L,M € SemZdDLM, we have L <M if and only if L <;g M. (

Thus we get that (SemZdDLM.,, <;g) is a well quasi-ordered set, yielding

Theorem
The subvariety lattice of SemZdDLM is countably infinite. {
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A description of the subvariety lattice of SemZdDL M

@ Using the theorem of (Davey 1979) and the fact that <gpg = < we
get that the subvariety lattice of SemZdDLM is isomorphic to the
lattice of order-ideals of (SemZdDLM.,, =), via the map that maps
an order ideal Z to the variety V(Z) generated by Z.
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A description of the subvariety lattice of SemZdDL M

@ Using the theorem of (Davey 1979) and the fact that <gpg = < we
get that the subvariety lattice of SemZdDLM is isomorphic to the
lattice of order-ideals of (SemZdDLM.,, =), via the map that maps
an order ideal Z to the variety V(Z) generated by Z.

@ Thus, by the characterization of the finite subdirectly irreducibles and
the definition of < via the Higman order, we get a description of the
subvariety lattice of SemZdDLM.
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The commutative case

For CZdADLM the previous theorems yield the following immediate results:

Proposition

Let M be a finite commutative totally ordered idempotent monoid. Then
M = @7 | M; with M; € {Cy, C§}. Moreover M is subdirectly
irreducible if and only if for alli € {1,...,n — 1}, M; # M.
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The commutative case

For CZdADLM the previous theorems yield the following immediate results:

Proposition

Let M be a finite commutative totally ordered idempotent monoid. Then
M = @7 | M; with M; € {Cy, C§}. Moreover M is subdirectly
irreducible if and only if for alli € {1,...,n — 1}, M; # M.

Corollary

There are up to isomorphism 2"~ totally ordered commutative idempotent
monoids of sizen > 1.

Simon Santschi June 23, 2022 22 /28



Subdirectly irreducibles of CZdDLM

For n > 2 we define inductively the algebras C,, and C? by

C,=CaC?
Cl=ClaC,

and we set C; = C? = 0.
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Subdirectly irreducibles of CZdDLM

For n > 2 we define inductively the algebras C,, and C? by
C,=CaC?
Cl=ClaC,

and we set C; = C? = 0.

Remark
The algebras C,, are exactly the reducts of the finite Sugihara chains.

Proposition

For every n > 1 the algebras C,, and C2 are up to isomorphism the only
subdirectly irreducible totally ordered commutative idempotent monoids
with n elements.
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Example C3 and CY

1 2
0 0
2 1
C3 Cg

n - m = maxy(n, m)

Simon Santschi June 23, 2022
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The subvariety lattice of CZdDLM
Theorem
The subvariety lattice of CLADLM is of the form:
CZdDLM
V(Cns1) VV(C2y,)
V(Cny1) V(CZ,,)
V(C,) vV V(C?)
V(Cs) Vv V(CY)
V(G  v(CY)
V(C2) v V(C)
V(Cz) v(c?)

V(Cy)

Simon Santschi June 23, 2022
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Thank you!

Thank youl!
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