Subordination Algebras as Semantic Environment of Input/Output Logic

Xiaolong Wang joint with Andrea De Domenico, Ali Farjami, Krishna Balajirao Manoorkar, Alessandra Palmigiano, Mattia Panettiere

VU Amsterdam

TACL 2022, Coimbra, June 21, 2022

- Introduction
- 2 I/O logic
- Subordination algebra
- 4 Canonical extensions and slanted algebras
- Proto-subordination algebras and slanted algebras
- 6 Application
- Summary and further work

Xiaolong (VU) I/O logic June 21, 2022 2/33

Introduction

I/O logic is introduced as

- agency-related notions
- non-classical

Xiaolong (VU) I/O logic June 21, 2022 3/33

Introduction

Subordination algebras can be defined as tuples (A, \prec) such that A is a Boolean algebra and \prec is a binary relation on A such that the direct (resp. inverse) image of each element $a \in A$ is a filter (resp. an ideal) of A. Subordination algebras are equivalent presentations of some other algebras.

Xiaolong (VU) I/O logic June 21, 2022 4/33

- Introduction
- 2 I/O logic
- Subordination algebra
- 4 Canonical extensions and slanted algebras
- Proto-subordination algebras and slanted algebras
- 6 Application
- Summary and further work

Xiaolong (VU) I/O logic June 21, 2022 5/33

Definition

An input/output logic is a tuple $\mathbb{L}=(\mathcal{L},N)$ s.t. $\mathcal{L}=(\operatorname{Fm},\vdash)$ is a (selfextensional) logic, and $N\subseteq\operatorname{Fm}\times\operatorname{Fm}$ is a relation on Fm , is called a normative system.

For any $\Gamma \subseteq \operatorname{Fm}$, let $\mathcal{N}(\Gamma) := \{ \psi \mid \exists \alpha (\alpha \in \Gamma \& (\alpha, \psi) \in \mathcal{N}) \}$.

Xiaolong (VU) I/O logic June 21, 2022 6/33

Definition (Output operations)

For any input/output logic $\mathbb{L}_i = (\mathcal{L}, N_i)$, and each $1 \leq i \leq 4$,

$$out_i^N(\Gamma) := N_i(\Gamma) = \{ \psi \in \operatorname{Fm} \mid \exists \alpha (\alpha \in \Gamma \& (\alpha, \psi) \in N_i) \}$$

where $N_i \subseteq \operatorname{Fm} \times \operatorname{Fm}$ is the *closure* of N under (i.e. the smallest extension of N satisfying) the inference rules below, as specified in the table.

Xiaolong (VU) I/O logic June 21, 2022 7/33

$$\frac{(\alpha,\varphi) \quad \beta \vdash \alpha}{(\beta,\varphi)} \text{ (SI)} \qquad \frac{(\alpha,\varphi) \quad \varphi \vdash \psi}{(\alpha,\psi)} \text{ (WO)}$$

$$\frac{(\alpha,\varphi) \quad (\alpha,\psi)}{(\alpha,\varphi \land \psi)} \text{ (AND)} \qquad \frac{(\alpha,\varphi) \quad (\beta,\varphi)}{(\alpha \lor \beta,\varphi)} \text{ (OR)} \qquad \frac{(\alpha,\varphi) \quad (\alpha \land \varphi,\psi)}{(\alpha,\psi)} \text{ (CT)}$$

N_i	Rules
$\overline{N_1}$	(⊤), (SI), (WO), (AND)
N_2	(\top) , (SI), (WO), (AND), (OR)
N_3	(\top) , (SI), (WO), (AND), (CT)
N_4	(\top) , (SI), (WO),(AND), (OR), (CT)

- Introduction
- 2 I/O logic
- Subordination algebra
- 4 Canonical extensions and slanted algebras
- 5 Proto-subordination algebras and slanted algebras
- 6 Application
- Summary and further work

Xiaolong (VU) I/O logic June 21, 2022 10 / 33

Definition ((Proto-)subordination algebra)

A proto-subordination algebra is a tuple $\mathbb{S}=(A,\prec)$ such that A is a (possibly bounded) poset (with bottom denoted \bot and top denoted \top when they exist), and $\prec \subseteq A \times A$. A proto-subordination algebra is named as indicated in the left-hand column in the table below when \prec satisfies the properties indicated in the right-hand column.

Xiaolong (VU) I/O logic June 21, 2022 11/33

(SL2)

```
(\top)
    (\bot)
              \perp \prec \perp
                                                                             T \prec T
               a \prec x \& b \prec x \Rightarrow a \lor b \prec x (WO) b \prec x \leq y \Rightarrow b \prec y
  (OR)
(AND)
               a \prec x \& a \prec y \Rightarrow a \prec x \land y (SI) a < b \prec x \Rightarrow a \prec x
               a \prec c \Rightarrow \exists b(a \prec b \& b \prec c) (S6) a \prec b \Rightarrow \neg b \prec \neg a
    (D)
  (CT)
               a \prec b \& a \land b \prec c \Rightarrow a \prec c (T) a \prec b \& b \prec c \Rightarrow a \prec c
  (DD)
               a \prec x_1 \& a \prec x_2 \Rightarrow \exists x(a \prec x \& x < x_1 \& x < x_2)
               a_1 \prec x \& a_2 \prec x \Rightarrow \exists a(a \prec x \& a_1 < a \& a_2 < a)
  (UD)
               \exists c(c \prec b \& x \prec a \lor c) \iff \exists a' \exists b'(a' \prec a \& b' \prec b \& x \prec a' \lor b')
   (S9)
 (SL1)
               a \prec b \lor c \Rightarrow \exists b' \exists c' (b' \prec b \& c' \prec c \& a \prec b' \lor c')
               b \land c \prec a \Rightarrow \exists b' \exists c' (b' \prec b \& c' \prec c \& b' \land c' \prec a)
```

Xiaolong (VU) I/O logic June 21, 2022 12 / 33

Name	Properties
	(SI)
-premonotone	(WO)
premonotone	(SI) (WO)
◇-directed	(WO) (DD)
■-directed	(SI) (UD)
◇-monotone	(WO) (DD) (SI)
■-monotone	(SI) (UD) (WO)
directed/monotone	(SI) (WO) (UD) (DD)
◇-regular	(SI) (WO) (DD) (OR)
■-regular	(SI) (WO) (UD) (AND)
regular	(SI) (WO) (OR) (AND)
◇-normal	(SI) (WO) (DD) (OR) (\bot)
■-normal	(SI) (WO) (UD) (AND) (\top)
subordination algebra	(SI) (WO) (OR) (AND) (\bot) (\top)

Definition

A model for an input/output logic $\mathbb{L}=(\mathcal{L},N)$ is a tuple $\mathbb{M}=(\mathbb{S},h)$ s.t. $\mathbb{S}=(A,\prec)$ is an $\mathrm{Alg}(\mathcal{L})$ -based proto-subordination algebra (i.e. $A\in\mathrm{Alg}(\mathcal{L})$), and $h:\mathrm{Fm}\to A$ is a homomorphism s.t. for all $\varphi,\psi\in\mathrm{Fm}$, if $(\varphi,\psi)\in N$, then $h(\varphi)\prec h(\psi)$.

Xiaolong (VU) I/O logic June 21, 2022 14/33

- Introduction
- 2 I/O logic
- Subordination algebra
- 4 Canonical extensions and slanted algebras
- 5 Proto-subordination algebras and slanted algebras
- 6 Application
- Summary and further work

Xiaolong (VU) I/O logic June 21, 2022 15 / 33

Definition

Let A be a subposet of a complete lattice A'.

- The canonical extension of a poset A is a complete lattice A^{δ} containing A as a dense and compact subposet.
- ② An element $k \in A'$ is *closed* if $k = \bigwedge F$ for some down-directed $F \subseteq A$; an element $o \in A'$ is *open* if $o = \bigvee I$ for some up-directed $I \subseteq A$;
- ullet A is dense in A' if every element of A' can be expressed both as the join of closed elements and as the meet of open elements of A.
- **③** A is compact in A' if, for all $F, I \subseteq A$ s.t. F is down-directed, I is up-directed, if $\bigwedge F \subseteq \bigvee I$ then $a \subseteq b$ for some $a \in F$ and $b \in I$.

The canonical extension A^δ of any poset A always exists and is unique up to an isomorphism fixing A^{-1}

Xiaolong (VU) I/O logic June 21, 2022 16/33

¹Dunn, J. M., M. Gehrke and A. Palmigiano, Canonical extensions and relational completeness of some substructural logics, J. Symb. Log. 70 (2005), pp. 713–740

Definition

A slanted algebra is a triple $\mathbb{A}=(A,\lozenge,\blacksquare)$ such that A is a poset, and $\diamondsuit,\blacksquare:A\to A^\delta$ s.t. $\diamondsuit a\in K(A^\delta)$ and $\blacksquare a\in O(A^\delta)$ for every a. A slanted algebra as above is

- **1** tense if $\Diamond a \leq b$ iff $a \leq \blacksquare b$ for all $a, b \in A$;
- monotone if ◊ and are monotone;
- **③** regular if \Diamond and **■** are regular (i.e. $\Diamond(a \lor b) = \Diamond a \lor \Diamond b$ and **■** $(a \land b) = \blacksquare a \land \blacksquare b$ for all $a, b \in A$);
- **4** normal if \Diamond and are normal (i.e. they are regular and $\Diamond\bot=\bot$ and $■\top=\top$).

4□ > 4□ > 4 = > 4 = > = 90

Xiaolong (VU) I/O logic June 21, 2022 17/33

Definition

For any slanted algebra $\mathbb{A} = (A, \lozenge, \blacksquare)$ the *canonical extension* of \mathbb{A} is the (standard!) modal algebra $\mathbb{A}^{\delta} := (A^{\delta}, \lozenge^{\sigma}, \blacksquare^{\pi})$ such that $\lozenge^{\sigma}, \blacksquare^{\pi} : A^{\delta} \to A^{\delta}$ are defined as follows: for every $k \in K(A^{\delta})$, $o \in O(A^{\delta})$ and $u \in A^{\delta}$,

$$\lozenge^{\sigma}k := \bigwedge \{\lozenge a \mid a \in A \text{ and } k \leq a\} \quad \lozenge^{\sigma}u := \bigvee \{\lozenge^{\sigma}k \mid k \in \mathit{K}(A^{\delta}) \text{ and } k \leq u\}$$

$$\blacksquare^{\pi}o := \bigvee \{\blacksquare a \mid a \in A \text{ and } a \leq o\}, \quad \blacksquare^{\pi}u := \bigwedge \{\blacksquare^{\pi}o \mid o \in O(A^{\delta}) \text{ and } u \leq o\}$$

For any slanted algebra \mathbb{A}^{δ} , any assignment $\nu : \mathsf{PROP} \to \mathbb{A}$ uniquely extends to a homomorphism $v: \mathcal{L} \to \mathbb{A}^{\delta}$

18 / 33

Definition

A modal inequality $\phi \leq \psi$ is satisfied in a slanted algebra $\mathbb A$ under the assignment v (notation: $(\mathbb A,v)\models\phi\leq\psi$) if $(\mathbb A^\delta,e\cdot v)\models\phi\leq\psi$ in the usual sense, where $e\cdot v$ is the assignment on $\mathbb A^\delta$ obtained by composing the canonical embedding $e:\mathbb A\to\mathbb A^\delta$ to the assignment $v:\mathsf{Prop}\to\mathbb A$. Moreover, $\phi\leq\psi$ is valid in $\mathbb A$ (notation: $\mathbb A\models\phi\leq\psi$) if $(\mathbb A^\delta,e\cdot v)\models\phi\leq\psi$ for every assignment v into $\mathbb A$ (notation: $\mathbb A^\delta\models_\mathbb A \phi\leq\psi$).

◆ロト ◆団ト ◆豆ト ◆豆 ◆ りへで

- Introduction
- 2 I/O logic
- Subordination algebra
- 4 Canonical extensions and slanted algebras
- 5 Proto-subordination algebras and slanted algebras
- 6 Application
- Summary and further work

Xiaolong (VU) I/O logic June 21, 2022 20/33

Let $\mathbb{S}=(A,\prec)$ be a proto-subordination algebra s.t. $\mathbb{S}\models(\mathrm{DD})+(\mathrm{UD})$. The slanted algebra associated with \mathbb{S} is $\mathbb{S}^*=(A,\lozenge,\blacksquare]$ s.t. $\lozenge a:=\bigwedge \prec [a]$ and $\blacksquare a:=\bigvee \prec^{-1}[a]$ for any a. From $\mathbb{S}\models(\mathrm{DD})$ it follows that $\prec [a]$ is down-directed for every $a\in A$, hence $\lozenge a\in K(A^\delta)$. Likewise, $\mathbb{S}\models(\mathrm{UD})$ guarantees that $\blacksquare a\in O(A^\delta)$ for all $a\in A$.

Xiaolong (VU) I/O logic June 21, 2022 21/33

Lemma

For any proto-subordination algebra $\mathbb{S}=(A,\prec)$ and all $a,b\in A$,

- **1** $a \prec b$ implies $\Diamond a \leq b$ and $a \leq \blacksquare b$.
- 2 if $\mathbb{S} \models (WO) + (DD)$, then $\lozenge a \leq b$ iff $a \prec b$.
- if | = (SI) + (UD), then a ≤ <math> b iff a < b.

Xiaolong (VU) I/O logic June 21, 2022 22/33

Lemma

For any proto-subordination algebra $\mathbb{S}=(A,\prec)$,

- If $\mathbb{S} \models (WO) + (DD)$, then:

 - $\mathfrak{S} \models (\bot)$ iff $\mathbb{S}^* \models \Diamond \bot \leq \bot$.
- 2 If $\mathbb{S} \models (SI) + (UD)$, then:
 - **1** \mathbb{S} |= (WO) iff on \mathbb{S}^* is monotone;

 - $\mathbb{S} \models (\top)$ iff $\mathbb{S}^* \models \top \leq \blacksquare \top$.

Xiaolong (VU) I/O logic June 21, 2022 23/33

For any proto-subordination algebra $\mathbb{S}=(A,\prec)$,

- ② If $\mathbb{S} \models (WO) + (DD)$, then $\mathbb{S} \models \subseteq \subseteq \prec$ iff $\mathbb{S}^* \models \lozenge a \subseteq a$;
- \bullet if $\mathbb{S} \models (WO) + (DD) + (SI)$, then
- if $\mathbb{S} \models (WO) + (DD) + (SI)$ and is meet-semilattice based, then
- \bullet if $\mathbb{S} \models (SI)$, then $\mathbb{S} \models (CT)$ implies $\mathbb{S} \models (T)$.
- \bullet if $\mathbb S$ is directed and based on (A,\neg) with \neg antitone, involutive, and (left or right) self-adjoint,
- If $\mathbb{S} \models (SI) + (UD) + (WO)$ and is join-semilattice based, then

- Introduction
- 2 I/O logic
- Subordination algebra
- 4 Canonical extensions and slanted algebras
- Proto-subordination algebras and slanted algebras
- 6 Application
- Summary and further work

Xiaolong (VU) I/O logic June 21, 2022 25/33

The output operators out_i^N for $1 \leq i \leq 4$ associated with a given input/output logic $\mathbb{L} = (\mathcal{L}, N)$ can be given semantic counterparts in the environment of proto-subordination algebras as follows: for every proto-subordination algebra $\mathbb{S} = (A, \prec)$, we let $\mathbb{S}_i := (A, \prec_i)$ where $\prec_i \subseteq A \times A$ is the smallest extension of \prec which satisfies the properties indicated in the following table:

$\overline{\prec_i}$	Properties
\prec_1	(⊤), (SI), (WO), (AND)
\prec_2	(\top) , (SI), (WO), (AND), (OR)
\prec_3	(\top) , (SI), (WO), (AND), (CT)
\prec_4	(\top) , (SI), (WO), (AND), (OR), (CT)

Then, for each $1 \le i \le 4$, if $k \in K(A^{\delta})$, then

$$\lozenge_i^{\sigma} k := \bigwedge \{ \prec_i [a] \mid a \in A \text{ and } k \leq a \}$$

encodes the algebraic counterpart of $out_i^N(\Gamma)$ for any $\Gamma \subseteq \operatorname{Fm}$, and the characteristic properties of \Diamond_i for each $1 \le i \le 4$ are those identified above.

Xiaolong (VU) I/O logic June 21, 2022 26 / 33

$$(P,Q) \in R_{\prec} \quad \text{iff} \quad {\prec} [P] := \{ x \in A \mid \exists a (a \in P \& a \prec x) \} \subseteq Q.$$

Xiaolong (VU) I/O logic June 21, 2022 27/33

Up to isomorphism, we can equivalently define the subordination space of $\mathbb S$ as follows:

Definition

The subordination space associated with a subordination lattice $\mathbb{S}=(A,\prec)$ is $\mathbb{S}_*:=(J^\infty(A^\delta),R_\prec)$, where $J^\infty(A^\delta)$ is the set of the completely join-irreducible elements of A^δ , and $R_\prec\subseteq J^\infty(A^\delta)\times J^\infty(A^\delta)$ such that $(j,i)\in R_\prec$ iff $i\leq \Diamond j$.

Lemma

For any subordination lattice $\mathbb{S} = (A, \prec)$, the subordination spaces \mathbb{S}_* given according to the two definitions above are isomorphic.

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ 夕へで

Xiaolong (VU) I/O logic June 21, 2022 28 / 33

Proposition

For any subordination lattice S,

- **1** \mathbb{S} |= \prec \subseteq ≤ iff R_{\prec} is reflexive;
- **2** $\mathbb{S} \models (D)$ iff R_{\prec} is transitive, i.e. $R_{\prec} \circ R_{\prec} \subseteq R_{\prec}$;
- **3** $\mathbb{S} \models (\mathbf{T})$ iff R_{\prec} is dense, i.e. $R_{\prec} \subseteq R_{\prec} \circ R_{\prec}$;

Xiaolong (VU) I/O logic June 21, 2022 29/33

Proposition

Let $\mathbb{S} = (A, \prec)$ be a subordination lattice, and (X, R_{\prec}) be its subordination space, then,

$$\bullet$$
 $\mathbb{S} \models (CT)$ iff

$$\forall P, Q \in X(PR \downarrow Q) \implies \exists N, O \in X(P, N \subseteq O\&PR \downarrow N\&OR \downarrow Q));$$

$$\forall P, Q, N \in X(\exists M \in X(M \subseteq P \cap Q\&MR_{\prec}N))$$

$$\implies \exists K, L \in X(K \subseteq M \cap L\&LR_{\prec}Q\&KR_{\prec}N));$$

Xiaolong (VU) I/O logic June 21, 2022 30 / 33

- Introduction
- 2 I/O logic
- Subordination algebra
- 4 Canonical extensions and slanted algebras
- 5 Proto-subordination algebras and slanted algebras
- 6 Application
- Summary and further work

Xiaolong (VU) I/O logic June 21, 2022 31/33

Summary and further work

- √ Subordination algebra and slanted algebra
- \odot ? designing scalable I/O reasoners for legal applications.
- 4 ? dynamic-deontic logic.

Xiaolong (VU) I/O logic June 21, 2022 32/33

Further work

Finally, we hope that the bridge established here can be used to improve mathematical models and methods such as topological, algebraic and duality-theoretic techniques in normative reasoning on one hand, and finding conceptual applications for subordination algebra and related literature on the other hand.

Xiaolong (VU) I/O logic June 21, 2022 33/33