Hausdorff Polynomial Functors

Jiří Adámek*

Czech Technical University Prague, Czech Republic and Technical University Braunschweig, Germany j.adamek@tu-bs.de

We study endofunctors on categories of metric spaces analogous to the Kripke polynomial set functors. The latter form a 'well-behaved' class of functors F including a number of examples where F-coalgebras are well-known state-based systems. (For example Kripke structures.) Kripke polynomial functors are the set functors F obtained from Id, the finite power-set functor \mathcal{P}_f and the constant functors A (A any set) by using products, coproducts, and composition:

$$F ::= \mathcal{P}_f |\operatorname{Id}|A| \prod_{i \in I} F_i | \prod_{i \in I} F_i| FF$$

(Various other versions are used in the literature, restricting e.g. coproducts to finite ones etc.)

It follows from the results of Worrell [7] that each such functor F has a terminal coalgebra obtained in $\omega + \omega$ steps of the construction of terminal coalgebras introduced (in dual form) in [1]. This transfinite construction is given by $V_0 = 1$, the terminal object, $V_{i+1} = FV_i$ for every $i < \omega + \omega$, and V_{ω} is the limit of the ω^{op} -chain V_i ($i < \omega$). For every Kripke polynomial functor F the terminal coalgebra is the limit $\lim_{i < \omega + \omega} V_i$. Consequently, every Kripke polynomial functor F generates a cofree comonad \overline{F} obtained as a limit of the chain \overline{V}_i ($i < \omega + \omega$) of endofunctors defined by $\overline{V}_0 = \operatorname{Id}$, $\overline{V}_{i+1} = F \cdot \overline{V}_i + \operatorname{Id}$ and $\overline{V}_{\omega} = \lim_{i < \omega} \overline{V}_i$: we have $\overline{F} = \lim_{i < \omega + \omega} \overline{V}_i$.

Recall that \mathcal{P}_f is the monad on **Set** of semilattices with zero.

For coalgebraic modal logic the Vietoris endofunctor on the category of Stone spaces (assigning to a space all compact subsets with the Vietoris topology) plays an important role. This led Kurz et al. [5] to introduce Vietoris polynomial functors by the analogous grammar to above: just \mathcal{P}_f is substituted by the Vietoris functor.

We now consider similar collections of endofunctors on the category **Met** of extended metric spaces (that is, distance ∞ is admitted) and nonexpanding maps. And on its full subcategories **CMet** of complete spaces and **KMet** of compact spaces. The role of \mathcal{P}_f is played be the *Hausdorff functor* assingning to a space X the Hausdorff space $\mathcal{H}X$ of all nonempty compact subsets with the Hausdorff metric

$$d(A,B) = \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}$$

where $d(a, B) = \inf_{b \in B} d(a, b)$. The functor \mathcal{H} preserves completeness, and it thus yields an endofunctor of **CMet**, also denoted by \mathcal{H} . This is the semilattice monad on **CMet**, as proved in [3]. (Surprisingly, the functor \mathcal{H} is finitary on **CMet**, see [2].)

Analogously, the semilattice monad on **Met** assigns to X the space $\mathcal{H}_f X$ of all nonempty finite subsets with the Hausdorff metric, as proved in [6].

Joint work with Stefan Milius and Lawrence S. Moss.

Supported by the Grant Agency of the Czech Republic under the grant 22-02964S.

Definition. Hausdorff polynomial functors on **CMet** are the endofunctors F obtained from the Hausdorff functor, Id and the constant functors A (any object) by using products, coproducts, and composition:

$$F ::= \mathcal{H} |\operatorname{Id}|A| \prod_{i \in I} F_i | \prod_{i \in I} F_i| FF$$

We now obtain a result about cofree comonads for the above functors analogous to Kripke polynomial functors. An *isometric embedding* is a morphism of **Met** preserving distances. A cone $f_i: A \to A_i$ $(i \in I)$ is called *isometric* if $\langle f_i \rangle : A \to \prod_{i \in I} A_i$ is an isometric embedding.

Theorem. The Hausdorff functor \mathcal{H} on **CMet** preserves isometric embeddings and their wide intersections. Moreover, it preserves isometric cones of ω^{op} -chains.

Corollary. Every Hausdorff polynomial functors F on CMet

- (1) has a terminal coalgebra obtained in $\omega + \omega$ steps: $\nu F = \lim_{i < \omega + \omega} V_i$, and
- (2) generates a cofree comonad in $\omega + \omega$ steps: $\overline{F} = \lim_{i < \omega + \omega} \overline{V_i}$.

It follows that the category of coalgebras for F is complete.

An analogous corollary holds for **Met**, where the polynomial functors are as above with \mathcal{H}_f replacing \mathcal{H} . (Actually, that corollary also holds for **Met** without this replacement: every endofunctor on **Met** as in the above definition has a terminal coalgebra obtained in $\omega + \omega$ steps.)

The situation with **KMet** is completely different: as demonstrated by Hofmann and Nora [4], the Hausdorff polynomial functor $\mathcal{H} + 1$ on this subcategory does not have a terminal coalgebra. In op.cit. the name Hausdorff polynomial functors is used in a different manner: the elements of $\mathcal{H}X$ are the closed subsets of X rather than the compact ones. (On the category **KMet** this makes no difference, of course.) Terminal coalgebras for such endofunctors on **CMet** are proved not to exist in op.cit.

References

- J. Adámek, Free algebras and automata realizations in the language of categories, Comment. Math. Univ. Carolinae 15 (1974), 589–609
- [2] J. Adámek, S. Milius and L. S. Moss, On finitary functors and their presentation, J. Comput. System Sci. 81 (2015), 813–833
- [3] F. van Breugel, C. Hermida, M. Makkai and J. Worrell, Recursively defined metric spaces without contraction, Theoret. Comput. Sci. 380 (2007), 143–163
- [4] D. Hofmann and P. Nora, Hausdorff coalgebras, Appl. Categorical Struct. 28 (2020), 773–806
- [5] C. Kupke, A. Kurz and Y. Venema, Stone coalgebras, Theoret. Comput. Sci. 327 (2004), 109-?134
- [6] R. Mardare, P. Panangaden and G. D. Plotkin, Quantitative algebraic reasoning, Proceedings LICS 2016, 700–709
- J. Worrell, Terminal sequences for accessible endofunctors, Electronic Notes in Theoret. Comput. Sci. 19 (1999), 24–38