Semilinear idempotent distributive ℓ -monoids

SIMON SANTSCHI

Mathematical Institute, University of Bern, Switzerland simon.santschi@unibe.ch

A distributive ℓ -monoid is an algebra $\mathbf{M} = \langle M, \cdot, \wedge, \vee, e \rangle$ such that $\langle M, \cdot, e \rangle$ is a monoid, $\langle M, \wedge, \vee \rangle$ is a distributive lattice, and for all $a, b, c, d \in M$

 $a(b \wedge c)d = abd \wedge acd$ and $a(b \vee c)d = abd \vee acd$.

The class \mathcal{DLM} of distributive ℓ -monoids forms a variety (equational class). We call a distributive ℓ -monoid *idempotent* or *commutative* if its monoid reduct is idempotent or commutative, respectively. A distributive ℓ -monoid is called *semilinear* if it is isomorphic to a subdirect product of totally ordered monoids, i.e., distributive ℓ -monoids where the lattice reduct is a total order. For a totally ordered monoid \mathbf{M} , we write $\mathbf{M} = \langle M, \cdot, e, \leq \rangle$, where \leq is the lattice-order of \mathbf{M} . The class \mathcal{SemDLM} of semilinear distributive ℓ -monoids forms a variety that is generated by the class of totally ordered monoids and every subdirectly irreducible member of this variety is totally ordered. Moreover it is shown in [3] (see also [1]) that every commutative distributive ℓ -monoid is semilinear.

The aim of this work is to study the variety Sem IdDLM of semilinear idempotent distributive ℓ -monoids and its subvariety CIdDLM of commutative idempotent distributive ℓ -monoids. Bearing in mind that Sem IdDLM is locally finite, we use the *e*-sum construction of [4,5] (see also [2]) to investigate the structure of finite totally ordered idempotent monoids. Let $\mathbf{L} = \langle L, \cdot_L, e, \leq_L \rangle$ and $\mathbf{M} = \langle M, \cdot_M, e, \leq_M \rangle$ be totally ordered idempotent monoids, where we relabel the elements of M and L such that $M \cap L = \{e\}$. Then the *e*-sum of \mathbf{L} and \mathbf{M} is defined as $\mathbf{L} \oplus \mathbf{M} = \langle M \cup L, \cdot, e, \leq_{\lambda} \rangle$, where \cdot is the extension of the monoid operations \cdot_L and \cdot_M with $a \cdot b = b \cdot a = a$ for all $a \in L \setminus \{e\}$ and $b \in M$ and \leq is the least extension of the orders \leq_L and \leq_M to $L \cup M$ that satisfies for all $a \in L \setminus \{e\}$, $b \in M$ that $a \leq b$ if $a \leq_L e$ and $b \leq a$ if $e \leq_L a$. The *e*-sum of two totally ordered idempotent monoids is again a totally ordered idempotent monoid and the operation of taking *e*-sums is associative. Accordingly we write $\bigoplus_{i=1}^{n} \mathbf{M}_i$ for $\mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_n$, where $\bigoplus_{i=1}^{0} \mathbf{M}_i \coloneqq \mathbf{0}$ is a trivial algebra. It turns out that every finite totally ordered idempotent monoid can be constructed as an *e*-sum using only the four algebras \mathbf{C}_2 , \mathbf{C}_2^2 , \mathbf{G}_3 , and \mathbf{D}_3 described below.

Theorem. Every finite totally ordered idempotent monoid is isomorphic to an *e*-sum $\bigoplus_{i=1}^{n} \mathbf{M}_{i}$ with $\mathbf{M}_{i} \in {\mathbf{C}_{2}, \mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}}$. Moreover, this *e*-sum is unique with respect to the algebras \mathbf{C}_{2} , $\mathbf{C}_{2}^{\partial}, \mathbf{G}_{3}, \mathbf{D}_{3}$.

We also characterize the finite subdirectly irreducibles of Sem IdDLM in terms of e-sums.

Theorem. A finite totally ordered idempotent ℓ -monoid **M** is subdirectly irreducible if and only if there exists an n > 0 and algebras $\mathbf{M}_i \in {\mathbf{C}_2, \mathbf{C}_2^\partial, \mathbf{G}_3, \mathbf{D}_3}$ for $i \in {1, ..., n}$ such that $\mathbf{M} \cong \bigoplus_{i=1}^n \mathbf{M}_i$ and $\mathbf{M}_i = \mathbf{M}_{i+1}$ implies $\mathbf{M}_i \in {\mathbf{G}_3, \mathbf{D}_3}$ for every $i \in {1, ..., n-1}$.

Using this characterization and [5, Corollary 4.3] we prove:

Theorem. The subvariety lattice of Sem IdDLM is countably infinite.

For the commutative case the characterization of the finite subdirectly irreducibles yields that for every n > 1 the variety \mathcal{CIdDLM} contains up to isomorphism exactly two *n*-element subdirectly irreducibles which we denote by \mathbf{C}_n and \mathbf{C}_n^{∂} . Setting $\mathbf{C}_1 = \mathbf{C}_1^{\partial}$ to be a trivial algebra, we can give an explicit characterization of the subvariety lattice of \mathcal{CIdDLM} .

Theorem. The subvariety lattice of \mathcal{CIdDLM} is of the following form, where $V(\mathbf{A})$ denotes the variety generated by \mathbf{A} :

References

- A. Colacito, N. Galatos, G. Metcalfe, and S. Santschi, From distributive l-monoids to l-groups, and back again, J. Algebra 601 (2022), 129–148.
- [2] N. Galatos, Minimal varieties of residuated lattices, Algebra Universalis 52 (2004), no. 2-3, 215–239.
- [3] T. Merlier, Sur les demi-groupes reticules et les o-demi-groupes, Semigroup forum 2 (1971), no. 1, 64-70.
- [4] J. S Olson, Free representable idempotent commutative residuated lattices, International Journal of Algebra and Computation 18 (2008), no. 08, 1365–1394.
- [5] _____, The subvariety lattice for representable idempotent commutative residuated lattices, Algebra universalis 67 (2012), no. 1, 43–58.