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It is often stated that a Frobenius quantale necessarily is unital. While this is correct if Frobenius
quantales are defined starting from a dualizing element, it is also possible to consider negations
as primitive operations and axiomatize them so to ensure some coherency w.r.t. implications.

Definition 1. A Frobenius quantale is a tuple (Q, ∗,⊥(−), (−)⊥) where (Q, ∗) is a quantale
and ⊥(−), (−)⊥ : Q −−−→ Q are inverse antitone maps satisfying

x\⊥y = x⊥/y , for all x, y ∈ Q. (1)

The map (−)⊥ is called the right negation while the map ⊥(−) the left negation. A Girard
quantale is a Frobenius quantale for which right and left negations coincide.

Axiom (1) explicitly appears in [4] and similar (and actually equivalent) relations, such as

x\y = x⊥/y⊥ , x/y = ⊥x\⊥y , ⊥x\y = x/y⊥ .

have been pointed out in the literature, see e.g. [2, 9]. Of course, if a quantale Q has a
dualizing element 0, then the two negations ⊥(−) := 0/− and (−)⊥ := −\0 satisfy (1). Also,
if a Frobenius quantale Q is unital, then the two negations give rise to a dualizing element
1⊥ = ⊥1, so the previous definition does not yield novelties for unital quantales. According to
it, however, we can have Frobenius quantales that are unitless. For example, for a quantale Q,
its Chu construction Chu(Q) is a Girard quantale which is unital if and only if Q is unital.

Our aim is to have a first glance on these structures and decide on the worthiness of future
research. We firstly observe that the standard representation theory via phase quantales can
be lifted to unitless Girard quantales and even to unitless Frobenius quantales.

Definition 2. For a quantale Q, a Serre1 Galois connection is a Galois connection on (l, r) on
Q such that l ◦ r = r ◦ l and x\l(y) = r(x)/y, for all x, y ∈ Q.

Theorem 3. If (l, r) is a Serre Galois connection on Q, then j = r ◦ l = l ◦ r is a nucleus
on Q. The quantale of fixed-points of j, Qj, is then a Frobenius quantale where the left (resp.,
right) negation is given by the restriction of l (resp., r) to Qj.

Every Frobenius quantale arises in this way:

Theorem 4. If Q is a Frobenius quantale, then the powerset quantale P (Q) has a canonical
Serre Galois connection l, r such that, for j = l ◦ r, the quantale P (Q)j is isomorphic to Q.

Motivations and examples for developing this theory stem from the following result:

Theorem 5 (See e.g. [7, 2, 3, 11, 10]). The quantale of sup-preserving endomaps of a complete
lattice L is a Frobenius quantale if and only if L is completely distributive.
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and also from lattice theoretic constructions [12, 5] related to Raney’s notion of tight Galois
connection [8]. Recall the definition of Raney’s transforms:

f∨(x) =
∨
x 6≤t

f(t) , g∧(x) =
∧
t6≤x

g(t) .

For L a complete lattice, a sup-preserving preserving map f : L −−−→ L is tight if f = f∧∨.
We decompose the sufficient condition of Theorem 5 as follows:

Theorem 6. The set of tight endomaps of a complete lattice L is a Girard quantale.

Then, using Raney’s characterisation of completely distributive lattices [8], we have:

Theorem 7. The Girard quantale of tight endomaps of L is unital if and only if L is a com-
pletely distributive lattice, if and only if the identity of L is tight, if and only if every sup-
preserving endomap of L is tight.

There is a precise analogy between tight maps and trace class operators on an infinite dimen-
sional Hilbert space H: these are nuclear maps [6] in the appropriate autonomous categories.
Let B1(H) be the ideal of trace class operators: as an algebra, it cannot have a unit. The trace
operation allows to define a (self-adjoint) Serre Galois connection (l, l) on the powerset quantale
P (B1(H)), where B1(H) is considered as a monoid w.r.t. multiplication. Letting j = l2 in the
next statement, we obtain a generalised version of the Girard quantale of subspaces of a finite
dimensional C∗-algebra:

Theorem 8. P (B1(H))j is a Girard quantale with no unit.

It might be thought that some completion precess allows to add units to Frobenius quantales.
This is actually true, yet the resulting embedding does not preserve the negations. There is
indeed a fundamental obstruction towards adding units:

Theorem 9. Let Q be a Frobenius quantale for which there exists a quantale embedding into a
unital Frobenius quantale which also preserves negations. Then

∧
x∈Q x\x is a unit of Q.

In order to further understand the structure of unitless Frobenius quantales, we have investi-
gated tight endomaps of Mn, the finite modular lattice with n atoms which are also coatoms.
We give characterizations of these endomaps and enumerate them. For a tight sup-preserving
endomap f of Mn, the implications f\f (one implication computed in the quantale of tight
endomaps and the other computed in the quantale of all sup-preserving endomaps) coincide.
This ensures reasonable properties of elements of the form f\f , for example they are idempo-
tent. It is easily argued, then, that elements of this form are not closed under infima. We do
not know yet whether similar phenomena hold for quantales of tight endomaps of L when L is
an arbitrary complete lattice.

References

[1] C. De Lacroix and L. Santocanale. Unitless Frobenius quantales. Preprint. Available at https:

//arxiv.org/pdf/2205.04111.pdf.

[2] J. M. Egger and D. Kruml. Girard Couples of Quantales. Applied Categorical Structures, 18(2):123–
133, Apr. 2010.
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