The Dependence Problem in Varieties of Modal Semilattices

NAOMI TOKUDA

Mathematical Institute, University of Bern, Switzerland naomi.tokuda@unibe.ch

In [1] De Jongh and Chagrova introduced the notion of dependence for intuitionistic propositional logic IPC. Formulas $\varphi_1, \ldots, \varphi_n$ are called IPC-*dependent* if there exists a formula $\psi(p_1, \ldots, p_n)$ such that $\vdash_{\mathsf{IPC}} \psi(\varphi_1, \ldots, \varphi_n)$ and $\nvDash_{\mathsf{IPC}} \psi(p_1, \ldots, p_n)$, otherwise $\varphi_1, \ldots, \varphi_n$ are called IPC-*independent*.

In [4] we generalise this notion to a universal algebra setting. Let \mathcal{L} be an algebraic language and let \mathcal{V} be a variety of \mathcal{L} -algebras. By $\operatorname{Tm}(\bar{x})$ and $\operatorname{Eq}(\bar{x})$, we denote the set of \mathcal{L} -terms and \mathcal{L} -equations over the set of variables \bar{x} , respectively. We call terms $t_1, \ldots, t_n \in \operatorname{Tm}(\bar{x})$ \mathcal{V} -dependent if for some equation $\varepsilon(y_1, \ldots, y_n)$,

$$\mathcal{V} \vDash \varepsilon(t_1, \ldots, t_n)$$
 and $\mathcal{V} \nvDash \varepsilon$;

otherwise, we call $t_1, \ldots, t_n \mathcal{V}$ -independent. This notion of dependence is related to a general algebraic notion of dependence introduced by Marcewski in [3]. The problem of deciding whether any finite number of terms are \mathcal{V} -dependent is called the *dependence-problem for* \mathcal{V} .

Let $\Gamma, \Delta \subseteq \text{Eq}(\bar{y})$. We write $\Gamma \succ_{\mathcal{V}} \Delta$ if for any substitution $\sigma \colon \text{Tm}(\bar{y}) \to \text{Tm}(\omega)$ extended to equations by setting $\sigma(s \approx t) = \sigma(s) \approx \sigma(t)$,

$$\mathcal{V} \vDash \sigma(\Gamma) \implies \mathcal{V} \vDash \sigma(\delta) \text{ for some } \delta \in \Delta$$

Then we say that a set $\Delta \subseteq \text{Eq}(\bar{y})$ is \mathcal{V} -refuting for \bar{y} if for any equation $\varepsilon(\bar{y})$,

$$\mathcal{V} \nvDash \varepsilon \iff \{\varepsilon\} \vdash_{\mathcal{V}} \Delta$$

Lemma 1. For any \mathcal{V} -refuting set $\Delta(\bar{y})$ for $\bar{y} = \{y_1, \ldots, y_n\}$, the terms $t_1, \ldots, t_n \in Tm(\bar{x})$ are \mathcal{V} -dependent if and only if $\mathcal{V} \models \delta(t_1, \ldots, t_n)$ for some $\delta \in \Delta$.

Thus, for varieties that have a decidable equational theory and for which a finite \mathcal{V} -refuting set for any finite \bar{y} can be constructed, the dependence-problem is decidable.

Example 2. We define $[n] := \{1, \ldots, n\}$. Let us consider the variety $\mathcal{L}at$ of all lattices and let

$$\Delta_n \coloneqq \Big\{ y_i \le \bigvee_{j \in [n] \setminus \{i\}} y_j \mid i \in [n] \Big\} \cup \Big\{ \bigwedge_{j \in [n] \setminus \{i\}} y_j \le y_i \mid i \in [n] \Big\}.$$

We can show that Δ_n is a \mathcal{V} -refuting set for $\{y_1, \ldots, y_n\}$ and thus, the dependence-problem for $\mathcal{L}at$ is decidable.

Let us now turn our attention to modal semilattices studied for example in [2]. First we consider \mathcal{MJS} , the variety of $\langle A, \lor, \Box \rangle$ -algebras such that $\langle A, \lor \rangle$ is a semilattice and

$$\Box a \lor \Box b \le \Box (a \lor b), \quad \text{for all } a, b \in A.$$

The approach used for $\mathcal{L}at$ does not quite work for \mathcal{MJS} , since the modal depth of a formula can be arbitrarily large, but a more general approach works.

Lemma 3. The following set of MJS-inequations in \bar{y} is MJS-refuting for \bar{y} :

$$\Delta_{\bar{y}} \coloneqq \{y \le s \mid y \in \bar{y} \text{ and } s \ne s_1 \lor y \lor s_2\} \cup \{\Box^k y \le y' \mid y, y' \in \bar{y} \text{ and } k \ge 0\}.$$

Note that $\Delta_{\bar{y}}$ is an infinite set of non-valid inequations for any $\bar{y} \neq \emptyset$. Let $\mathrm{md}(t)$ denote the modal depth of the term t and define $\mathrm{md}(s \leq t) = \max{\mathrm{md}(s), \mathrm{md}(t)}$ for the inequation $s \leq t$.

Theorem 4. Let $t_1, \ldots, t_n \in Tm(\bar{x})$ and let $\bar{y} = \{y_1, \ldots, y_n\}$. Then t_1, \ldots, t_n are \mathcal{MJS} -dependent if and only if there is an inequation $\delta \in \Delta_{\bar{u}}^d$ such that

$$\mathcal{MJS} \vDash \delta(t_1, \ldots, t_n),$$

where $\Delta_{\bar{u}}^d \coloneqq \{\delta \in \Delta_{\bar{y}} \mid md(\delta) \le d\}$ and $d \coloneqq \max\{md(t_1), \ldots, md(t_n)\}.$

Corollary 5. The dependence-problem for MJS is decidable.

Furthermore, we consider \mathcal{MMS} , the variety of $\langle A, \wedge, \Box \rangle$ -algebras such that $\langle A, \wedge \rangle$ is a semilattice and

$$\Box a \land \Box b = \Box (a \land b), \quad \text{for all } a, b \in A.$$

Again, the approach used for $\mathcal{L}at$ does not work for \mathcal{MMS} , but studying free \mathcal{MMS} -algebras yields a simple method for deciding the dependence-problem for \mathcal{MMS} . The free \mathcal{MMS} -algebra over m > 0 generators is isomorphic to the following \mathcal{MMS} -algebra:

$$\langle (\mathcal{P}_{fin}(\mathbb{N}))^m \setminus \{ \langle \varnothing, \dots, \varnothing \rangle \}, \cup, \Box \rangle \rangle$$

where $\mathcal{P}_{fin}(\mathbb{N})$ is the set of all finite subsets of \mathbb{N} , and \cup, \Box are defined component-wise with $\Box\{a_1,\ldots,a_k\} \coloneqq \{a_1+1,\ldots,a_k+1\}$ for $a_1,\ldots,a_k \in \mathbb{N}$. Let $\mathbf{F}(\bar{x})$ denote the free \mathcal{MMS} -algebra over \bar{x} and let the elements of $\mathbf{F}(\bar{x})$ be of the form [t] for terms $t \in \mathrm{Tm}(\bar{x})$.

Theorem 6. Let us consider the MMS-terms $t_1, \ldots, t_n \in Tm(\bar{x})$. The following are equivalent:

- 1. t_1, \ldots, t_n are \mathcal{MMS} -dependent.
- 2. There is $i \in \{1, ..., n\}$ such that for each variable x occurring in t_i one of the following holds:
 - (a) $[t_i] = [\Box^k x \land \Box^l x \land t'_i] \in \mathbf{F}(\bar{x}), \text{ where } k \neq l.$
 - (b) There is $j \in \{1, ..., n\} \setminus \{i\}$ such that x also occurs in t_j .

Corollary 7. The dependence-problem for \mathcal{MMS} is decidable.

References

- D. de Jongh and L. A. Chagrova. The decidability of dependency in intuitionistic propositional logic. Journal of Symbolic Logic, 60(2):498–504, 1995.
- [2] S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter, and M. Zakharyaschev. Kripke completeness of strictly positive modal logics over meet-semilattices with operators. *Journal of Symbolic Logic*, 84(2):533–588, 2019.
- [3] E. Marczewski. A general scheme of the notions of independence in mathematics. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 6:731–736, 1958.
- [4] G. Metcalfe and N. Tokuda. Deciding dependence in logic and algebra. To appear in Dick de Jongh, Outstanding Contributions to Logic, Springer.