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In a series of successive works the following result is established:

Theorem 1 (See [7, 4, 5, 10, 9]). The quantale [L,L] of sup-preserving endomaps of a complete
lattice L is a Frobenius quantale if and only if L is a completely distributive lattice.

We give a proof of this result that relies on the ∗-autonomous structure of SLatt, the cat-
egory of complete lattices and sup-preserving maps. In doing so, we generalise this result
to arbitrary ∗-autonomous categories. Recall that an object A of an autonomous category
V = (V, I,⊗, α, λ, ρ, [−,−], ev) is nuclear if the canonical map mix : A∗ ⊗ A → [A,A] is an
isomorphism, where A∗, the dual of A, is the internal hom [A, I]. We rely on the following
characterization of completely distributive lattices:

Theorem 2 (See [8, 6]). Nuclear objects in SLatt are exactly the completely distributive lattices.

A main tool that we use is the notion of dual pair:

Definition 3. A dual pair in a monoidal category V is a triple (A,B, ε), with A,B objects of
V and ε : A⊗B −−−→ I, yielding via Yoneda natural isomorphisms

hom(X,B) ' hom(A⊗X, I) and hom(X,A) ' hom(X ⊗B, I) .

We informally say that (A,B) is a dual pair, leaving aside the arrow ε. Clearly, (A,A∗) is a
dual pair in any ∗-autonomous category. This notion provides the framework by which to study
objects that are dual to each other only up to isomorphism: for example (A∗ ⊗ A, [A,A]) is a
dual pair in any ∗-autonomous category and, for any complete lattice L, (L,Lop) is a dual pair
in SLatt. Some elementary properties of dual pairs are immediate, for instance, if (A,B) is a
dual pair, then A and B are both reflexive, that is, isomorphic to their double dual.
If (A,B) is a dual pair and A is a semigroup, then A acts on B on the left and on the right.
The left and right actions, written here α` and αρ, correspond, in the category SLatt, to the
two implications of a quantale, see e.g. [7, 3]. We define then generalized Frobenius quantales
in arbitrary autonomous categories as follows:

Definition 4. A Frobenius structure is a tuple (A,B, µA, l, r) where (A,B) is a dual pair,
(A,µA) is a semigroup, l and r are adjoint invertible maps from A to B such that the diagram
below on the left commutes:

A⊗A A⊗B

B ⊗A B

l⊗A

A⊗r

α`A

αρA

B ⊗B B ⊗A

A⊗B B.

B⊗l−1

r−1⊗B αρ

α`

(1)

By saying that l and r are adjoint, we mean that their transposes differ by a symmetry:
ε ◦ (A⊗ l) = ε ◦ (A⊗ r) ◦ σA,A. Definitions of Frobenius structures in various kind of monoidal
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categories already exist in the literature [1, 11, 3, 4]. In these works the units (and co-units)
play an important role. Following [2], where we have argued that neither dualizing elements
nor units are needed in order to define Frobenius quantales, Definition 4 does not require units.
When (A,µA) is a semigroup in SLatt, that is, a quantale, and B = Aop, the arrows l and
r play the role of the two negations in a Frobenius quantales, they are adjoint in that they
form a Galois connection. The diagram on the left of (1) may be understood as the equation
y\⊥x = y⊥/x linking negations and implications.
Couples of quantales, as defined in [4], are apparently the most similar to the Frobenius struc-
tures defined here. For a couple of quantales, however, only one negation (not necessarly
invertible) is considered and the right diagram of (1) is required to be commutative; once more,
for the negation to be classical, one requires the existence of a dualizing element and thus of a
unit. Definition 4 does not mention dualizing elements and implies the commutativity of the
right diagram of (1). If we let µB be the diagonal of this diagram, then we have:

Lemma 5. If (A,B, µA, l, r) is a Frobenius structure, then so is (B,A, µB , r
−1, l−1).

It is now immediate to derive the following:

Theorem 6. If A is nuclear, then there is a map l such that ([A,A], ◦, [A,A]
∗
, l, l) is a Frobenius

structure.

Indeed, A∗ ⊗ A is canonically a semigroup and if the canonical map mix : A∗ ⊗ A −−−→
[A,A] is invertible, then (A∗ ⊗ A, [A,A], µA∗⊗A, mix, mix) is a Frobenius structure. We derive
the theorem, since Frobenius structures are closed up to isomorphism and using Lemma 5.
Theorem 6 is actually an instance of Corollary 3.3 in [11]. However, it can be further generalised:
if mix is not invertible but the underlying ∗-autonomous category has some nice factorisation
system, then the image of mix is the support of a Frobenius structure. This is a consequence
of the following statement:

Theorem 7. Let V be a ∗-autonomous category with a factorization system. Let (A,µA) be a
semigroup and (A,B) be a dual pair. Let f : A −−−−→ B be a map, put ψA = ε ◦ (A ⊗ f) and
suppose that ψA = ψA ◦σA,A. Factor f as f = m◦e with e : A −−−−→ C epi and m : C −−−−→ B
mono. If C is a magma with multiplication µC and e is a magma homomorphism, then there
exist maps ψC : C ⊗ C −−−−→ I and g : C −−−−→ C∗, transposing into each other, making
(C,C∗, µC , g, g) into a Frobenius structure.

The converse of Theorem 6 actually holds if we add another condition.

Definition 8. An objet A of a monoidal category is pseudo-affine if the tensor unit I embeds
into A as a retract. A monoidal category is pseudo-affine if every object which is not terminal
nor initial is affine.

For example, the category SLatt is pseudo-affine.

Theorem 9. In a ∗-autonomous category, if A is a pseudo-affine object and the canonical
monoid ([A,A], ◦) is part of a Frobenius structure, then A is nuclear.

The proof of this theorem relies on the following ideas. If A,B are pseudo-affine, then the
following statement holds:

Lemma 10. If A⊗ f = g⊗B : A⊗X ⊗B −−−−→ A⊗ Y ⊗B, then there exists h : X −−−−→ Y
such that f = h⊗B and g = A⊗ h.
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This lemma is applied to the dual pair ([A,A], A∗ ⊗ A) as follows: since in this case αρ =
A∗⊗evA,A, the diagonal of the diagram on the right of (1) is of the form A∗⊗f . Considering the
explicit form of α`, we also deduce that this same diagonal is of the form g⊗A. Since both A and
A∗ are pseudo-affine, we deduce, by the last lemma, the existence of a map ε : A⊗A∗ −−−→ I.
Since A∗⊗A is isomorphic as a semigroup to [A,A], it is also unital, thereby there exists a map
η : I −−−→ A∗ ⊗ A. Since A and A∗ are pseudo-affine, tensoring with them is faifthul and we
deduce from the monoid diagrams for A∗ ⊗ A that (A,A∗, η, ε) is an adjunction. We therefore
deduce Theorem 9 from the fact that nuclear objects in an autonomous category are exactly
the adjoints, left or right, since the category is symmetric.
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