Sahlqvist correspondence for deductive systems

Damiano Fornasiere $^{1,\ast}\,$ and Tommaso Moraschini 2

¹ Department of Philosophy, University of Barcelona damiano.fornasiere@ub.edu

² Department of Philosophy, University of Barcelona tommaso.moraschini@ub.edu

In this talk we present a Sahlqvist Correspondence Theorem [11] for finitary protoalgebraic logics. Our proof is based on an extension of Sahlqvist theory to various fragments of IPC. A formula in the language

$$\mathcal{L} ::= x \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \neg \varphi \mid 0 \mid 1$$

is said to be

- (i) a Sahlqvist antecedent if it is constructed from variables, negative formulas, and the constants 0 and 1 using only ∧ and ∨;
- (ii) a *Sahlqvist implication* if either it is positive, or it has the form $\neg \varphi$ for a Sahlqvist antecedent φ , or it has the form $\varphi \rightarrow \psi$ for a Sahlqvist antecedent φ and a positive formula ψ .

Lastly, a Sahlqvist quasiequation is a universal sentence of the form

 $\forall \vec{x}, y, z((\varphi_1(\vec{x}) \land y \leqslant z \& \dots \& \varphi_n(\vec{x}) \land y \leqslant z) \Longrightarrow y \leqslant z),$

where y, z are distinct variables that do not occur in $\varphi_1, \ldots, \varphi_n$ and each φ_i is constructed from Sahlqvist implications using only \wedge and \vee .

Remark 1. The focus on quasiequations (as opposed to formulas or equations) is necessary as we deal with fragments where equations have a very limited expressive power. \square

Let PSL, (b)ISL, PDL, IL, and HA be, respectively, the varieties of pseudocomplemented semilattices, (bounded) implicative semilattices, pseudocomplemented distributive lattices, implicative lattices, and Heyting algebras. Furthermore, given a poset X, let Up(X) be the Heyting algebra of its upsets.

Theorem 2. *The following holds for every variety* K *between* PSL, (b)ISL, PDL, IL, and HA and every *Sahlqvist quasiequation* Φ *in the language of* K:

- (i) Canonicity: For every $A \in K$, if A validates Φ , then also $Up(A_*)$ validates Φ , where A_* is the poset of the meet irreducible filters of A;
- (ii) Correspondence: There exists an effectively computable sentence fo(Φ) in the language of posets such that Up(X) ⊨ Φ iff X ⊨ fo(Φ), for every poset X.

To prove Theorem 2, first we extend Sahlqvist Theorem to IPC using Gödel translation of IPC into S4 [7] and its duality theoretic interpretation (see, e.g., [3]). Then, we develop a discrete duality for each variety K as above (cf. [1]) and utilize it to extend Sahlqvist Theorem to the corresponding fragment of IPC.

^{*}Speaker.

A *logic* \vdash is a finitary substitution invariant consequence relation on the set of formulas of some language. Let \vdash be a logic and A an algebra. A subset F of A is said to be a *deductive filter* of \vdash on A if it is closed under the interpretation of the rules valid in \vdash . When ordered under the inclusion relation, the set of deductive filters of \vdash on A forms an algebraic lattice $Fi_{\vdash}(A)$ with semilattice of compact elements $Fi_{\vdash}^{\omega}(A)$. Lastly, the poset of meet irreducible elements of $Fi_{\vdash}(A)$ will be denoted by $Spec_{\vdash}(A)$.

In order to extend Sahlqvist Correspondence to arbitrary logics, recall that a logic \vdash is said to have

(i) The *inconsistency lemma* (IL) [10] if for every $n \in \mathbb{Z}^+$ there is a finite set of formulas $\sim_n (x_1, \ldots, x_n)$ such that for every set of formulas $\Gamma \cup \{\varphi_1, \ldots, \varphi_n\}$,

 $\Gamma \cup \{\varphi_1, \ldots, \varphi_n\}$ is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \ldots, \varphi_n);$

(ii) The *deduction theorem* (DT) [2] if for every $n, m \in \mathbb{Z}^+$ there is a finite set $(x_1, \ldots, x_n) \Rightarrow_{nm} (y_1, \ldots, y_m)^1$ of formulas such that for every set of formulas $\Gamma \cup \{\psi_1, \ldots, \psi_n, \varphi_1, \ldots, \varphi_m\}$,

 $\Gamma, \psi_1, \ldots, \psi_n \vdash \varphi_1, \ldots, \varphi_m \text{ iff } \Gamma \vdash (\psi_1, \ldots, \psi_n) \Rightarrow_{nm} (\varphi_1, \ldots, \varphi_m);$

(iii) The *proof by cases* (PC) [4, 5] if for every $n, m \in \mathbb{Z}^+$ there is a finite set of formulas $(x_1, \ldots, x_n) \Upsilon_{nm}(y_1, \ldots, y_m)$ such that for every set of formulas $\Gamma \cup \{\psi_1, \ldots, \psi_n, \varphi_1, \ldots, \varphi_m, \gamma\}$,

$$\Gamma, \psi_1, \ldots, \psi_n \vdash \gamma \text{ and } \Gamma, \varphi_1, \ldots, \varphi_m \vdash \gamma \text{ iff } \Gamma, (\psi_1, \ldots, \psi_n) \bigvee_{nm} (\varphi_1, \ldots, \varphi_m) \vdash \gamma.$$

A formula φ in \mathcal{L} is *compatible* with a logic \vdash when

- (i) If 0 (resp. 1) occurs in φ , then \vdash has the IL (resp. the IL or the DT);
- (ii) If \neg (resp. \rightarrow , \lor) occurs in φ , then \vdash has the IL (resp. DT, PC).

In this case, for every $k \in \mathbb{Z}^+$ we associate a finite set $\varphi^k(\vec{x}_1, \ldots, \vec{x}_n)$ of formulas of \vdash (where each \vec{x}_i is a sequence of length k) with φ as follows:

- (i) If $\varphi = x_i$, then $\varphi^k \coloneqq \{\vec{x}_i\}$;
- (ii) If $\varphi = \psi \land \gamma$, then $\varphi^k \coloneqq \psi^k \cup \gamma^k$;
- (iii) If $\varphi = \neg \psi$, then \vdash has the IL and, therefore, we set $\varphi^k \coloneqq \sim_m (\gamma_1, \dots, \gamma_m)$ where $\psi^k = \{\gamma_1, \dots, \gamma_m\}$;
- (iv) The cases where φ has the form $\psi \to \gamma$ or $\psi \lor \gamma$ are handled similarly to the previous one.

By a *Sahlqvist quasiequation for a logic* ⊢ we signify a Sahlqvist quasiequation

 $\Phi = \forall \vec{x}, y, z((\varphi_1(x_1, \dots, x_m) \land y \leqslant z \& \dots \& \varphi_n(x_1, \dots, x_m) \land y \leqslant z) \Longrightarrow y \leqslant z),$

where $\varphi_1, \ldots, \varphi_n$ are compatible with \vdash . With it, we associate the set $\mathcal{R}(\Phi)$ of metarules for \vdash of the form

$$\frac{\Gamma, \boldsymbol{\varphi}_1^k(\vec{\gamma}_1, \dots, \vec{\gamma}_m) \vdash \psi, \dots, \Gamma, \boldsymbol{\varphi}_n^k(\vec{\gamma}_1, \dots, \vec{\gamma}_m) \vdash \psi}{\Gamma \vdash \psi}.$$

where $k \in \mathbb{Z}^+$, $\Gamma \cup \{\psi\}$ is a set of formulas, and $\vec{\gamma}_1, \ldots, \vec{\gamma}_m$ are sequences of formulas of length k. A logic is *protoalgebraic* if there exists a set of formulas $\Delta(x, y)$ such that $\emptyset \vdash \Delta(x, x)$ and

 $x, \Delta(x, y) \vdash y$. Our general Sahlqvist Correspondence Theorem takes the following form:

¹We signify that \Rightarrow_{nm} is a set of formulas in the variables $x_1, \ldots, x_n, y_1, \ldots, y_m$ by the more suggestive notation $(x_1, \ldots, x_n) \Rightarrow_{nm} (y_1, \ldots, y_m)$. A similar convention applies to Condition (iii).

Sahlqvist Correspondence. Let Φ be a Sahlqvist quasiequation for a protoalgebraic logic \vdash . Then,

 \vdash validates the metarules in $\mathcal{R}(\Phi)$ iff $\mathsf{Spec}_{\vdash}(A) \vDash \mathsf{fo}(\Phi)$ for every algebra A.

As a consequence, we obtain for instance that a protoalgebraic logic with an IL satisfies a generalization of the excluded middle law (resp. of the bounded top width *n* formula) iff it is semisimple (resp. principal upsets in $\text{Spec}_{\vdash}(A)$ have at most *n* maximal elements, for every algebra A) [8, 9]. The results of this talk are collected in [6].

References

- G. Bezhanishvili and N. Bezhanishvili. An algebraic approach to canonical formulas: intuitionistic case. *The Review of Symbolic Logic*, 2(3):517–549, 2009.
- [2] W. J. Blok and D. Pigozzi. The Deduction Theorem in Algebraic Logic. Manuscript, available online, 1989.
- [3] W. Conradie, A. Palmigiano, and Z. Zhao. Sahlqvist via translation. Logical Methods in Computer Science, 15(1), 2019.
- [4] J. Czelakowski. Filter distributive logics. Studia Logica, 43:353–377, 1984.
- [5] J. Czelakowski and W. Dziobiak. Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class. *Algebra Universalis*, 27(1):128–149, 1990.
- [6] D. Fornasiere and T. Moraschini. Sahlqvist correspondence for deductive systems. Manuscript, 2022.
- [7] K. Gödel. Eine Interpretation des intuitionistischen Aussagenkalküls. Anzeiger der Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftlichen Klasse, 69:65–66, 1932.
- [8] T. Lávička, T. Moraschini, and J. G. Raftery. The algebraic significance of weak excluded middle laws. *Mathematical Logic Quarterly*, 68(1):79–94, 2022.
- [9] A. Přenosil and T. Lávička. Semisimplicity, glivenko theorems, and the excluded middle. Available online, 2020.
- [10] J. G. Raftery. Inconsistency lemmas in algebraic logic. *Mathematical Logic Quaterly*, 59(6):393–406, 2013.
- [11] H. Sahlqvist. Completeness and Correspondence in First and Second Order Semantics for Modal Logic. In S. Kanger, editor, *Proceedings of the third Scandinavian logic symposium*, pages 110–143. North-Holland, Amsterdam, 1975.